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Abstract 

This study focuses on the analysis of the bio-thermoelasticity response 

exhibited by biological tissues when their inner and outer surfaces are free 

from stress and exposing the outer surface of the skin to harmonic heating 

with heatlessness of the inner surface of the skin. The investigation employs a 

refined Green–Lindsay model for a comprehensive understanding of the 

phenomenon. A system of partial differential equations is written and the 

solution is obtained using the Laplace transform and numerical inverse 

Laplace. The current model's results for temperature, displacement, stress, 

and strain distributions are presented, and it is compared to various (coupled 

and uncoupled) models from previous literature. The relaxation times effect 

on the model with other models is clarified, the effect of time, and some vital 

parameters are also studied, and tabularly to illustrate the effect of blood 

perfusion on the four distributions. 

Keywords: Bio-thermoelasticity; classical coupled theory; Lord–Shulman theory; refined Green–

Lindsay; Pennes' model; thermal wave theory; dual phase-lag theory; harmonic heating; skin tissue; 

Laplace transform. 

1. Nomenclature 

𝑥, 𝑦, 𝑧 coordinate system 

𝜎𝑖𝑗  stress tensor (N m−2) 
𝜎  normal stress (N m−2) 
𝑒𝑖𝑗  strain tensor 

𝑒  dilatation 

𝑢𝑖  displacement components (mm) 
∇2  Laplacian operator 

𝐿  the thickness of the biological tissue (mm) 
𝜔  angular frequency parameter (rad s−1) 
𝑡  time (s) 
𝜆𝑡, 𝜇𝑡 Lamé’s constant of the skin tissue (kg m−1 s−2) 
𝜏1, 𝜏2 relaxation times (s) 
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𝑄  external heat source (W m−3) 
𝜌𝑡  the mass density of the skin tissue (kg m−3) 
𝑘𝑡  coefficient of thermal conductivity of skin tissue (W m−1 K−1) 
𝑐𝑡   specific heat capacity of the skin tissue (J kg−1 K−1) 
𝛼𝑡  thermal expansion coefficient (K−1) 
𝛾𝑡   thermal modulus (kg m−1 s−2 K−1) 
𝑤𝑏  rate of blood perfusion (s−1) 
𝜌𝑏  the mass density of the blood (kg m−3) 
𝑐𝑏  specific heat capacity of the blood transverse (J kg−1 K−1) 
𝑇𝑏  reference temperature of the blood (K) 
𝑇  temperature distribution field (K) 
𝜃 = 𝑇 − 𝑇𝑏  temperature change (K) 
𝑄𝑚  the heat source of metabolic generation of tissue cells (Wm−3) 
𝑄𝐿  external thermal load (Wm−3) 
𝑠  Laplace parameter 

2. Introduction 

Heat treatments for diseased and injured skin tissues, such as skin cancer and skin burns, have recently been 

developed as a result of advancements in lasers, microwaves, and related technologies. Pre-infecting thermal harm 

within tissue structures a few millimeters below the surface is the goal, but it must be done without injuring nearby 

healthy tissue. The accuracy of the temperature, damage, and stress distributions in tissues must be predicted and 

controlled if these thermal therapies are to be effective. From a therapeutic perspective, high-intensity heating only 

lasts a short time. 

Most biological heat transfer theories are generated according to the classical Fourier's law, which describes the 

propagation of a thermal signal very quickly. In the modern literature, a variety of biothermal transport theories have 

been developed for skin tissues, including models based on the uncoupled theory which are mainly based on the study 

of the heat conduction equation only while neglecting the mechanistic aspects such as Pennes’ equation [1] which is 
used widely to model such problems due to its simplicity and assumes that the speed of thermal energy transfer is 

infinite, in fact heat propagates with finite speed. 

By modifying the Fourier's rule of heat conduction, Cattaneo and Vernotte (C–V) [2, 3] independently suggested 

a modified constitutive relation to address this illogical behavior: The thermal wave (TW) theory where phase lag time 

captures the micro-scale responses in time due to heat flux. Also, one of those who modified Fourier's law to solve the 

issue of the infinite diffusion of heat is Tzou [4] who suggested the dual-phase-lag (DPL) theory. 

Wahyudi and Gapsari [5] proposed a modification to the Pennes equation, which is commonly used to model heat 

transfer in human skin tissues. The modified equation was solved using the finite volume method (FVM). A study on 

bioheat transfer guided by the Pennes equation was presented by Sreegowrav et al [6]. Kaur et al. [7] evaluated the 

thermal damage in tissue caused by laser heating using a 1D bioheat model with a memory-dependent derivative 

(MDD) in Pennes' bioheat transfer equation. A unified system to represent some thermoelasticity models in general 

derived by Bera et al. [8] for isotropic and homogeneous thermoelastic solids. A study by Oguntala et al. [9]modeled 
the non-Fourier bioheat process in human skin using a multi-domain trivariate spectral collocation method to assess 

skin burn injuries. 

In bioheat transfer, a one-dimensional, three-layer skin tissue model was used, and the TW was employed by Ozen 

et al. [10] as a technique in the heat analysis of tissues exposed to microwaves. A 2D single-phase-lag (SPL) bioheat 

transfer model was used by Abbas et al. [11] to study laser-irradiated biological tissues. The C-V equation took into 

account to describe the bioheat transfer in cylindrical skin tissue to determine the external heat flux and relaxation 

time based on 'measured' heating/cooling curves at several chosen places on the skin's surface by Mochnacki and 

Paruch [12]. 

Sharma and Kumar [13] employed the highly non-linear DPL bioheat transfer model to ascertain the significant 

contribution of hyperthermia treatment in the management of infected cells. Ziaeipoor et al. [14] concentrated on the 

temperature response of the skin tissue in response to time-dependent surface heat fluxes using a DPL model. Ezzat 
[15] developed a model based on the thermo-viscoelasticity theory of fractional DPL heat conduction equation with 

rheological features of the volume to investigate the bioheat transfer. The study conducted by Kumar et al. [16] focused 

on demonstrating the thermal damage caused to skin tissue when exposed to a heat source in motion and used the DPL 

model of bioheat transfer. Hu et al. [17] introduced a bioheat conduction model that incorporates a time-fractional 

DPL approach to analyze the thermoelastic response of skin when exposed to abrupt temperature changes. Zhou et al. 

[18] presented a DPL bioheat conduction model, together with the broad beam irradiation method, and rate process 
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equation to study thermal damage in laser-irradiated tissues. 

Kumar et al. [19] constructed classical Fourier, SPL, and DPL models to study the phenomenon of bioheat transfer 

in various biological tissues. Kumar et al. [20] investigated tissue temperature-dependent thermal conductivity using 

Pennes' and TW equations. In their study, Fazlali and Ahmadikia [21] employed the TW and Pennes bioheat models 

within a setting of arbitrary periodic boundary conditions. The bioheat transfer equations of TW and DPL are 

analytically solved by Forghani et al. [22] considering the non-Fourier boundary conditions. 

The bioheat transfer was also studied using models based on the coupled theory, which relies on the study of heat 

distribution, taking into account the mechanical aspects such as the classical coupled thermoelasticity theory (CTE) 

suggested by Biot [23], Lord–Shulman theory (L–S) [24], Green–Lindsay theory (G–L) [25], and Green–Naghdi 
theory (G–N) [26]. 

Bagri and Eslami [27] applied the G–L theory of thermoelasticity to analyze the thermoelastic behavior of graded 

hollow spheres and made a comparison with the results of CTE theory. Thermal shock response in a homogeneous 

porous orthotropic medium in the context of the G–L model of hyperbolic thermoelasticity has been investigated by 

Pramanik and Biswas [28]. The surface wave propagation in generalized magneto-thermoelastic materials taking the 

G–L model with voids and initial stress was investigated by Abo-Dahab [29]. Analyzed the effects of temperature-

dependent thermal conductivity on thermoelastic interactions in a medium with a spherical cavity under two-

temperature G–L theory by Kumar et al [30]. In the context of the modified G–L theory with strain rate dependence, 

Sarkar et al. [31] discussed the reflection and propagation of thermoelastic harmonic plane waves from the stress-free 

and isothermal surface of a homogeneous, isotropic thermally conducting elastic half-space. 

Choudhuri [32] established a generalized mathematical model of a coupled thermoelasticity theory that includes 
three-phase-lag (TPL) that contains many theories of thermoelasticity. Hobiny et al. [33] proposed an analytical 

method for calculating thermal damages and temperature due to laser irradiation by using skin surface measurement 

data in the context of TPL. Zankour et al. [34] evaluated a new thermoelasticity model that included thermal 

conductivity applied in skin tissue. Fractional order theory with the fractional Caputo derivative and solutions for 

dimensionless temperature, displacement, stress, and strain in the current model shows that the fractional order 

parameter strongly affects distributions. Zenkour and his colleagues [35-37] studied the thermomechanical response 

of skin tissue in 1D under the influence of ramp-type heating using the refined L–S, G–L, and DPL models. 

As a result of advancements and refinements in the field of thermodynamics and its application in the field of bio-

mathematics, a novel and modified version of the G–L theory of thermoelasticity has been formulated [34-43]. The 

differential equations for the coupled thermoelastic system are established. The distributions of field quantities such 

as temperature, stress, displacement, and dilatation are examined. On thermoelastic behaviors, the possible effects of 

the G–L relaxation times and different variables are discussed. The objective of this research is to provide an improved 
version of the G–L thermoelasticity theory. This model will be employed to investigate the behavior of biological 

tissues, with a particular focus on analyzing the impact of applied convection. 

3. Formulation of the problem 

Assume that the thinner one-dimensional skin tissue has a thickness of 𝐿 mm, such that the outer surface of the 

biological tissue is traction-free and subjected to the applied convection effect (harmonic heating). In addition, its 

inner surface should be traction-free and without any temperature increment (see Figure 1).  

The following refined G–L theory of thermoelasticity, which includes the CTE theory, the L–S, and the simple G–

L theory. The general formula of the heat conduction equation can be expressed as [34-42]  

𝑘𝑡 [𝜖1 +∑
𝜏2
𝑛−1

(𝑛−1)!

𝜕𝑛−1

𝜕𝑡𝑛−1
𝑁
𝑛=1 ]𝛻2𝜃 = 𝜌𝑡𝑐𝑡 (1+ ∑

𝜏1
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )

𝜕𝜃

𝜕𝑡
 + [𝜖2 + ∑

𝜏1
𝑚−1

(𝑚−1)!

𝜕𝑚−1

𝜕𝑡𝑚−1
𝑀
𝑚=1 ] (𝛾𝑡𝑇𝑏

𝜕𝑒

𝜕𝑡
−𝑄), (1) 

 

Fig. 1: The one-dimensional skin tissue model with boundary conditions 
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where 𝜖1, and 𝜖1 are parameters may be one or zero and 𝑁,𝑀 ≥ 1. 

The constitutive relation is also modified along the same lines as the G–L model as 

𝜎𝑖𝑗 = 𝜆𝑡𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑡𝑒𝑖𝑗 − 𝛾𝑡 (1 + ∑
𝜏2
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )𝜃𝛿𝑖𝑗, (2) 

and then the equation of motion in terms of displacement will be reduced to 

𝜇𝑡𝑢𝑖,𝑗𝑗 + (𝜆𝑡 + 𝜇𝑡)𝑢𝑘,𝑘𝑖 − 𝛾𝑡 (1 + ∑
𝜏2
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )𝜃,𝑖 + 𝜌𝑡𝑓𝑖 = 𝜌𝑡𝑢̈𝑖, (3) 

where 𝑖, 𝑗, 𝑘 = 𝑥, 𝑦, 𝑧 . According to the hypothesis that the problem is in one dimension, then the displacement 

components are as follows 

𝑢𝑥 = 𝑢(𝑥, 𝑡),      𝑢𝑦 = 𝑢𝑧 = 0,  (4) 

the strain-displacement field can be displayed as 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),  (5) 

𝑒𝑦𝑧 = 𝑒𝑥𝑧 = 𝑒𝑥𝑦 = 𝑒𝑦𝑦 = 𝑒𝑧𝑧 = 0,  (6) 

and 

𝑒𝑥𝑥 =
𝜕𝑢

𝜕𝑥
.  (7) 

So, from Eqs. (2) and (6) the stress components become 

𝜎𝑦𝑧 = 𝜎𝑥𝑧 = 𝜎𝑥𝑦 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 0,  (8) 

and 

𝜎𝑥𝑥 = (𝜆𝑡 + 2𝜇𝑡)𝑒𝑥𝑥 − 𝛾𝑡 (1 + ∑
𝜏2
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )𝜃.  (9) 

For simplicity 𝑢𝑥 = 𝑢, 𝑒𝑥𝑥 = 𝑒, 𝜎𝑥𝑥 = 𝜎, then the equation of motion where no external forces are affecting the 

skin 

(𝜆𝑡 + 2𝜇𝑡)
𝜕2𝑢

𝜕𝑥2
− 𝛾𝑡 (1 + ∑

𝜏2
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )

𝜕𝜃

𝜕𝑥
= 𝜌𝑡

𝜕2𝑢

𝜕𝑡2
. (10) 

From this model in Eqs. (1) and (3), many theories of thermoelasticity can be obtained as follows 

• The CTE theory where 𝜏1 = 𝜏2 = 0, 𝜖1 = 𝜖2 = 1. 

• The L–S theory where 𝜏2 = 0,  𝑁 = 1,  𝑀 = 2, 𝜖1 = 1, 𝜖2 = 0. 

• The simple G–L theory is obtained by 𝜖1 = 𝜖2 = 0,  𝑁 = 𝑀 = 1. 

4. The governing system  

As a consequence of numerous studies, the external heat source can be determined to study the bio-thermoelastic 

response of biological tissues by the relation 

𝑄 = 𝑤𝑏𝜌𝑏𝑐𝑏(𝑇𝑏 − 𝑇) + 𝑄𝑚 +𝑄𝐿.  (11) 

Thus, the heat conduction equation of refined G–L theory for skin tissues becomes as follows 
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𝑘𝑡 [𝜖1 +∑
𝜏2
𝑛−1

(𝑛−1)!

𝜕𝑛−1

𝜕𝑡𝑛−1
𝑁
𝑛=1 ] (

𝜕2𝜃

𝜕𝑥2
) = 𝜌𝑡𝑐𝑡 (1+ ∑

𝜏1
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )

𝜕𝜃

𝜕𝑡
 +  

+[𝜖2 +∑
𝜏1
𝑚−1

(𝑚−1)!

𝜕𝑚−1

𝜕𝑡𝑚−1
𝑀
𝑚=1 ] (𝛾𝑡𝑇𝑏

𝜕𝑒

𝜕𝑡
+𝑤𝑏𝜌𝑏𝑐𝑏𝜃 − 𝑄𝑚 −𝑄𝐿),     𝑁 ≥ 1, 𝑀 ≥ 1. (12) 

Suppose that the initial conditions of the tissue examined are homogeneous since there is no heat or displacement 

in the biological tissue at the beginning of time 

𝑢(𝑥, 𝑡)|𝑡=0 =
𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑡𝑛
|
𝑡=0

= 0

𝜃(𝑥, 𝑡)|𝑡=0 =
𝜕𝑛𝜃(𝑥,𝑡)

𝜕𝑡𝑛
|
𝑡=0

= 0
,     𝑛 ≥ 1.  (13) 

To determine the boundary conditions of the problem, suppose that the inner and outer surfaces of the biological 

tissues are not subjected to any kind of stress, that means 

𝜎(0, 𝑡) = 0,     𝜎(𝐿, 𝑡) = 0,  (14) 

and that the tissue is only subjected to harmonic heating at the beginning of tissue, whereas no temperature exists on 

the plane 𝑥 = 𝐿 

𝜃(0, 𝑡) = 𝜃0 𝑠𝑖𝑛(𝜔𝑡),     𝑡 ≥ 0,     𝜃(𝐿, 𝑡) = 0.  (15) 

To treat the problem, consider the refined G–L model, dividing both sides of Eq. (12) by 𝜌𝑡𝑐𝑡 with 𝑄𝐿 = 0, hence 

it gets 

𝐶𝑇
2 (𝜖1 +∑

𝜏2
𝑛−1

(𝑛−1)!

𝜕𝑛−1

𝜕𝑡𝑛−1
𝑁
𝑛=1 )(

𝜕2𝜃

𝜕𝑥2
) = (1+ ∑

𝜏1
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )

𝜕𝜃

𝜕𝑡
+   

+(𝜖2 + ∑
𝜏1
𝑚−1

(𝑚−1)!

𝜕𝑚−1

𝜕𝑡𝑚−1
𝑀
𝑚=1 ) ( 𝜂

𝜕2𝑢

𝜕𝑡𝜕𝑥
+𝑤𝑏𝜌𝑐𝜃 − 𝑄0), (16) 

where 

𝐶𝑇
2 =

𝑘𝑡

𝜌𝑡𝑐𝑡
,     𝜂 =

𝛾𝑡𝑇𝑏

𝜌𝑡𝑐𝑡
,     𝜌𝑐 =

𝜌𝑏𝑐𝑏

𝜌𝑡𝑐𝑡
,     𝑄0 =

𝑄𝑚

𝜌𝑡𝑐𝑡
. (17) 

In Eq. (10), dividing both sides by 𝜆𝑡 + 2𝜇𝑡 to get 

𝜕2𝑢

𝜕𝑥2
− 𝑐1 (1+ ∑

𝜏2
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )

𝜕𝜃

𝜕𝑥
=

1

𝐶𝑝
2

𝜕2𝑢

𝜕𝑡2
,  (18) 

where 

𝑐1 =
𝛾𝑡

𝜆𝑡+2𝜇𝑡
,     𝐶𝑝

2 =
𝜆𝑡+2𝜇𝑡

𝜌𝑡
.  (19) 

Equation (9) also by dividing both sides by 𝜆𝑡 + 2𝜇𝑡 gives 

𝜎

𝜆𝑡+2𝜇𝑡
=

𝜕𝑢

𝜕𝑥
− 𝑐1 (1 + ∑

𝜏2
𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 )𝜃.  (20) 

5. Solution of the problem 

To obtain a solution to the coupled problem between heat and motion and to obtain the numerical quantities of 

temperature, displacement, stress, and dilatation, the Laplace transform will be applied to the system of Eqs. (16), 

(18), and (20) to transform it from a system of partial differential equations that are difficult to solve into a system of 

ordinary differential equations that can be solved, the Laplace transform characterized by 
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𝑓(𝑥, 𝑠) = ∫ 𝑒−𝑠𝑡
∞

0
𝑓(𝑥, 𝑡)𝑑𝑡.  (21) 

Apply the Laplace transform to Eq. (18), and using the initial conditions Eq. (13) 

𝑑2𝑢

𝑑𝑥2
− 𝑐1 (1+ ∑

𝜏2
𝑛

𝑛!
𝑠𝑛𝑁

𝑛=1 ) =
1

𝐶𝑝
2 𝑠

2𝑢̅,  (22) 

it is important to remember that the over-bar image signifies the Laplace transform, 

(
𝑑2 

𝑑𝑥2
− 2𝑐3) 𝑢̅ = 𝑐2

𝑑𝜃̅

𝑑𝑥
,  (23) 

where 

𝑐2 = 𝑐1 (1 + ∑
𝜏2
𝑛

𝑛!
𝑠𝑛𝑁

𝑛=1 ),     𝑐3 =
𝑠2

2𝐶𝑃
2.  (24) 

Again, applying the Laplace transform in Eq. (16) and using the initial conditions in Eq. (13) 

𝐶𝑇
2 [𝜖1 + ∑

𝜏2
𝑛−1

(𝑛−1)!
𝑁
𝑛=1 𝑠𝑛−1]

𝑑2𝜃̅

𝑑𝑥2
= [𝑠 (1 + ∑

𝜏1
𝑛

𝑛!
𝑁
𝑛=1 𝑠𝑛) +  

+𝑤𝑏𝜌𝑐 (𝜖2+ ∑
𝜏1
𝑚−1

(𝑚−1)!
𝑀
𝑚=1 𝑠𝑚−1)] 𝜃̅ + 𝜂𝑠 [𝜖2 +∑

𝜏1
𝑚−1

(𝑚−1)!
𝑠𝑚−1𝑀

𝑚=1 ]
𝑑𝑢

𝑑𝑥
−𝑄0. (25) 

Let 

𝑐4 =
1

2𝐶𝑇
2[𝜖1+∑

𝜏2
𝑛−1

(𝑛−1)!
𝑁
𝑛=1 𝑠𝑛−1]

[𝑠 (1 + ∑
𝜏1
𝑛

𝑛!
𝑁
𝑛=1 𝑠𝑛) + 𝑤𝑏𝜌𝑐(𝜖2+ ∑

𝜏1
𝑚−1

(𝑚−1)!
𝑀
𝑚=1 𝑠𝑚−1)],  

𝑐5 =
𝜂𝑠[𝜖2+∑

𝜏1
𝑚−1

(𝑚−1)!
𝑠𝑚−1𝑀

𝑚=1 ]

2𝐶𝑇
2[𝜖1+∑

𝜏2
𝑛−1

(𝑛−1)!
𝑁
𝑛=1 𝑠𝑛−1]

,     𝑄1 =
𝑄0

𝑠𝐶𝑇
2[𝜖1+∑

𝜏2
𝑛−1

(𝑛−1)!
𝑁
𝑛=1 𝑠𝑛−1]

, (26) 

then 

(
𝑑2

𝑑𝑥2
− 2𝑐4) 𝜃̅ = 2𝑐5

𝑑𝑢

𝑑𝑥
− 𝑄1.  (27) 

Once more, taking the Laplace transform of both sides of Eq. (20) and using initial conditions by Eq. (13), then 

𝜎̅

𝜆𝑡+2𝜇𝑡
=

𝑑𝑢

𝑑𝑥
− 𝑐2𝜃̅.  (28) 

Laplace transform for boundary conditions 

𝜎̅(0, 𝑠) = 0,     𝜎̅(𝐿, 𝑠) = 0,     𝜃̅(0, 𝑠) = 𝜃0
𝜔

𝑠2+𝜔2
,     𝜃̅(𝐿, 𝑠) = 0. (29) 

By solving the system of equations shown in Eqs. (23) and (27) in the Laplace field to obtain the solution as 

𝜃̅ = ∑ (𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 + 𝑄2,  (30) 

𝑢̅ = ∑ 𝛽𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 −𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 ,  (31) 

where 
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𝜉1, 𝜉2 = √𝑐2𝑐5 + 𝑐3 + 𝑐4 ± 𝜉0,     𝑄2 =
𝑄1

2𝑐4
,   

 𝜉0 = √(𝑐2𝑐5 + 𝑐3)
2 + 𝑐4[𝑐4 + 2(𝑐2𝑐5 − 𝑐3)], 

𝛽𝑖 =
𝜉𝑖(𝜉𝑖

2−2𝑐2𝑐5−2𝑐4)

4𝑐3𝑐5
,  (32) 

where 𝐴𝑖 and 𝐵𝑖 are constant coefficients that vary with 𝑠. 
Moreover, the dilatation is given in the Laplace domain 

𝑒̅ = ∑ 𝛽𝑖𝜉𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 .  (33) 

Substituting from Eqs. (30) and (31) in Eq. (28), thus the stress will be in the form 

𝜎̅ = ∑ 𝜁𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 −𝑄3,  (34) 

where 

𝜁𝑖 = 𝛽𝑖𝜉𝑖(𝜆𝑡 + 2𝜇𝑡) − 𝛾𝑡 (1+ ∑
𝜏2
𝑛

𝑛!
𝑠𝑛𝑁

𝑛=1 ),     𝑄3 = 𝛾𝑡 (1 + ∑
𝜏2
𝑛

𝑛!
𝑠𝑛𝑁

𝑛=1 )𝑄2. (35) 

The solution to the overflowing arrangement of direct conditions provides the unknown parameters 𝐴𝑖 and 𝐵𝑖. By 

using Eqs. (30), (34), and (29), and applying the above boundary conditions, one obtains 

[

1 1
𝑒𝜉1𝐿 𝑒−𝜉1𝐿

1 1
𝑒𝜉2𝐿 𝑒−𝜉2𝐿

𝜁1 𝜁1
𝜁1𝑒

𝜉1𝐿 𝜁1𝑒
−𝜉1𝐿

𝜁2 𝜁2
𝜁2𝑒

𝜉2𝐿 𝜁2𝑒
−𝜉2𝐿

]{

𝐴1
𝐵1
𝐴2
𝐵2

} =

{
 
 

 
 

𝜔𝜃0

𝑠2+𝜔2
− 𝑄2

−𝑄2
𝑄3
𝑄3 }

 
 

 
 

. (36) 

For the solution to be complete in the domain of the Laplace transform, the preceding system of linear equations 

is solved to get the following parameters 

𝐴1 =
(𝑄2𝜁2+ 𝑄3)𝑒

𝜉1𝐿−[ ( 𝑄2−𝜃0
𝜔

𝑠2+𝜔2
)𝜁2+ 𝑄3]

(𝜁1−𝜁2)(𝑒
2𝜉1𝐿− 1)

,  (37) 

𝐵1 =
−{𝑄2𝜁2+ 𝑄3−[(𝑄2−𝜃0

𝜔

𝑠2+𝜔2
)𝜁2+ 𝑄3]𝑒

𝜉1𝐿}𝑒𝜉1𝐿

(𝜁1−𝜁2)(𝑒
2𝜉1𝐿− 1)

,  (38) 

𝐴2 =
−(𝑄2𝜁1+𝑄3)𝑒

𝜉2𝐿+(𝑄2−𝜃0
𝜔

𝑠2+𝜔2
)𝜁1+ 𝑄3

(𝜁1−𝜁2)(𝑒
2𝜉2𝐿− 1)

,  (39) 

𝐵2 =
{𝑄2𝜁1+ 𝑄3−[( 𝑄2−𝜃0

𝜔

𝑠2+𝜔2
)𝜁1+ 𝑄3]𝑒

𝜉2𝐿}𝑒𝜉2𝐿

(𝜁1−𝜁2)(𝑒
2𝜉2𝐿− 1)

.  (40) 

The transform domain problem has now been completely resolved. Due to the complexity of the formulations in 

Eqs. (30) and (31), achieving the inverse transform in the time domain analytically is relatively difficult. As a result, 

the numerical inverse Laplace transform technique will be used to determine the impacts on temperature 𝜃 , 

displacement 𝑢, strain 𝑒, and stress 𝜎 in the real-time domain. To obtain numerical results in the physical domain, the 

Riemann-sum approximation method can be employed. Every function 𝑓̅(𝑥, 𝑠) in the Laplace transform space is 

translated into a physical domain 𝑓(𝑥, 𝑡) in this manner by utilizing the famous equation [44, 45] 

𝑓(𝑥, 𝑡) =
𝑒𝜚𝑡

𝑡
[
1

2
𝑅𝑒{𝑓(𝑥, 𝜚)} + 𝑅𝑒 {∑ (𝑓 (𝑥, 𝜚 +

𝑖𝑟𝜋

𝑡
) (−1)𝑟)𝑅

𝑟=0 }], (41) 
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where Re denotes a function's real part, 𝑟 ∈ 𝑁, and i = √−1 and 𝜚 ≈ 4.7/𝑡 [45]. 

6. Numerical results 

To display the numerical results of temperature 𝜃 , displacement 𝑢, dilatation 𝑒 , and stress 𝜎 under harmonic 

heating on the surface of the skin tissue have thickness 𝐿 = 1 mm, 𝜃0 = 80 K, and 𝑁 = 𝑀 = 3, and the following 

constants are used. 

 

Table 1: Elastic constants of skin biological tissue and blood. 

Property Value 

𝜆𝑡 8.27 × 108   

𝜇𝑡 3.446 × 107   

𝑐𝑡  3600   

𝛼𝑡 1 × 10-4   

𝛾𝑡  (2𝜇𝑡 + 3𝜆𝑡)𝛼𝑡 

𝜌𝑡 1190 

𝑘𝑡 0.235  

𝜌𝑏 1060  

𝑐𝑏 3770  

𝑤𝑏 0.00187   

𝑇𝑏 310  

𝑄𝑚  368.1   

 

Convection, as it relates to the harmonic heating burden on tissue, will be covered in this section. To validate the 

results of the new model's predictions and the scope of its applicability, the values of the four variables (temperature 

𝜃, displacement 𝑢, strain 𝑒, and stress 𝜎) arising from the refined G–L model with time derivatives of order three will 

first be compared with those of their equivalents in three fundamental coupled and uncoupled thermoelasticity models 

of bioheat transfer, noting that the following values are used, the angular frequency parameter ω = 0.9 rad s−1,  the 

time 𝑡 = 10 s, and the relaxation times are 𝜏1 = 0.1 s, 𝜏2 = 0.14 s. 

 

  
Fig. 2: 2D plots of different thermoelasticity theories, (a) temperature 𝜽 distributions in coupled models, (b) temperature 𝜽 distributions 

in uncoupled models. 

As shown in Fig. 2, a comparison of the temperature distributions in the different models is shown. It is evident 

that the thermal behavior resulting from the use of the Pennes' model closely resembles that of the CTE model, a 

similarity also observed in the C–V and L–S models. The temperature 𝜃 distributions show that the temperature 𝜃 
curve in the refined G–L theory follows the same behavior as the classical theories of thermoelasticity, where all the 

temperature 𝜃 distributions start from the same point at the edge of the skin and then the temperature rises through the 

depth of the tissue until it reaches its highest values at the position 𝑥 = 0.15 mm, then it starts to descend until it 

reaches zero at the end of the biological tissue, thus achieving the boundary condition of the problem, the refined G–

L theory gave the least temperature 𝜃 curve followed by the CTE theory and then the temperature 𝜃 distribution in the 

L–S theory approach to the temperature 𝜃 distribution in the simple G–L theory, and when zoomed in, it found that 

simple G–L theory gave a higher temperature at all. 
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To clarify the differences between the different theories and their effect on temperature, Table 2 presents the 

temperature distributions in three positions along the biological tissue 𝑥 = 0.1,0.5,0.9 mm. At 𝑥 = 0.1, the coupled 

theories give a higher temperature compared to their uncoupled theories counterparts, and with increasing depth, the 

opposite happens. The refined G–L theory of order 3 recorded the lowest temperature at all locations. 

 

Table 2: Temperature 𝜽 distributions observed at various places under different thermoelasticity models elastic constants. 

𝑥(mm) Pennes CTE C–V L–S DPL 
Simple G–L Refined G–L 

𝑁 = 1 𝑁 = 2 𝑁 = 3 

0.1 39.196528 39.200112 40.941968 40.947226 37.888769 40.951150 38.662772 38.379469 

0.5 19.554126 19.454862 20.526712 20.413305 18.7642901 20.418548 19.159487 19.076184 

0.9 2.322900 2.290969 2.328081 2.291099 2.342097 2.292293 2.323554 2.275442 

 

       

Fig. 3: 2D plots of different coupled thermoelasticity theories (a) displacement 𝒖 distributions, (b) dilatation 𝒆 distributions, and (c) stress 

𝝈 distributions. 

It is noted that the different distributions of displacement 𝑢 in Fig. 3 are very close to each other and there is no 

difference in the general behavior of the curves as the displacement increases with increasing depth. The refined G–L 

theory gives a higher displacement curve than the other models until position 𝑥 = 0.3 mm, after which the situation 

changes and the displacement generated by the refined G–L model becomes the lowest. 

As for the dilatation 𝑒 distributions, it is found that the lowest value of 𝑒 resulting from the simple G–L theory up 

to 𝑥 = 0.1 mm, after that, the distribution of 𝑒 resulting from the refined G–L theory is the lowest until 𝑥 = 0.4 mm 

then different curves approach each other until reach to zero. 

For the stress 𝜎 distribution resulting from the refined G–L theory, it increases with increasing skin depth until it 

reaches the highest value at 𝑥 = 0.16 mm and then decreases until it reaches zero at 𝑥 = 𝐿 mm. In the CTE theory 

and the simple G–L theory, it takes negative values and then increases again until it reaches zero. 

To characterize the temperature 𝜃, displacement 𝑢, dilatation 𝑒, and stress 𝜎 distributions in the four theories and 

ascertain the impact of the angular frequency parameter, four different values of the angular frequency parameter are 

chosen, and the time is fixed 𝑡 = 10 s and 𝜏1 = 0.1 s, 𝜏2 = 0.14 s. The results are presented in Figs. 4-7. 

The effect of changing the values of the angular frequency parameter 𝜔 appears clear on the different temperature 

𝜃 distributions, where the smaller 𝜔 values give higher temperature curves with the different behavior of the curve 

depending on the change in 𝜔 values, as described in Fig. 4. The distributions of 𝜃 in the refined G–L theory are 

affected similarly to the temperature 𝜃 distributions in the CTE theory. While the temperature 𝜃 curves in simple G–

L theory and L–S theory are similar in behavior and response to change in 𝜔. This is due to the similarity in the two 

theories to the common denominator between them in the effect on temperature in the heat conduction equation by 

adding a relaxation time with a first-order time derivative. 

The displacement 𝑢 distributions in the four models showed similar behavior when changing the values of the 

angular frequency parameter, with some minor differences in each model at the two edges of the biological tissue, as 

shown in Fig. 5. 
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Fig. 4: Effect of angular frequency parameter 𝝎 on temperature 𝜽 (a) refined G–L theory, (b) simple G–L theory, (c) L–S theory, and (d) 

CTE theory. 

  

  
Fig. 5: Effect of angular frequency parameter 𝝎 on displacement 𝒖 (a) refined G–L theory, (b) simple G–L theory, (c) L–S theory, and 

(d) CTE theory. 
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Fig. 6: Effect of angular frequency parameter 𝝎 on dilatation 𝒆 (a) refined G–L theory, (b) simple G–L theory, (c) L–S theory, and (d) 

CTE theory. 

  

  
Fig. 7: Effect of angular frequency parameter 𝝎 on normal stress 𝝈 (a) refined G–L theory, (b) simple G–L theory, (c) L–S theory, and 

(d) CTE theory. 
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The dilatation 𝑒 distributions in the simple G–L theory showed a different behavior from the other three models at 

the beginning of the biological tissue, while the response of the dilatation 𝑒 distributions to the change in 𝜔 values in 

the refined G–L theory is similar to that of the CTE theory and the L–S theory as in Fig. 6. 

The effect of the angular frequency coefficient 𝜔 on stress 𝜎 is shown in different theories of thermoelasticity as 

in Fig. 7, and it turns out that its effect is similar in the four models as higher 𝜔 values give higher stress 𝜎 curves 

while the distribution curves maintain the boundary conditions of the case, noting that greater 𝜔, the closer the curves 

are to each other, with the difference in stress resulting from the refined G–L theory which showed the curve did not 

maintain its shape but rather changed at largest 𝜔. 

As depicted in Figs. 8-11, the second relaxation time is fixed at 𝜏2 = 0.25 s, 𝑡 = 10 s, and 𝜔 = 0.9 rad s−1 while 

four various values for the first relaxation time 𝜏1 are examined for their effects. 

Figure 8 shows the effect of the first relaxation time 𝜏1 on the temperature 𝜃 distributions in the refined G–L theory, 

the simple G–L theory, and the L–S theory. It is noted that the effect appears clear at the beginning of the biological 

tissue and decreases with the thickness of the skin until it vanishes at 𝑥 = 𝐿 mm. It can be seen that the distributions 

of 𝜃 in the three models are affected by changing the first relaxation time in the same way, where higher 𝜏1values give 

higher temperature curves. The effect in the refined G–L theory is slightly different in behavior than in the simple G–

L theory and the L–S theory for temperature distributions. 

As for the displacement 𝑢 distributions shown in Fig. 9, the displacement in the refined G–L theory is affected by 

changing the different values of 𝜏1, especially at the larger values of 𝜏1, unlike the displacement in the simple G–L 

theory, the effect is regular and clear at both ends of the biological tissue and almost faded in the middle, this 

description also applies to displacement in the L–S theory with the difference being that the displacement curves are 

less affected by changing 𝜏1, values than the previous two models. 

 

       

Fig. 8: Effect of first relaxation time 𝝉𝟏 on temperature 𝜽 under harmonic heating (a) refined G–L theory, (b) simple G–L theory, and (c) 

L–S theory. 

       

Fig. 9: Effect of first relaxation time 𝝉𝟏 on displacement 𝒖 under harmonic heating (a) refined G–L theory, (b) simple G–L theory, and 

(c) L–S theory. 
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Fig. 10: Effect of first relaxation time 𝝉𝟏 on dilatation 𝒆 under harmonic heating (a) refined G–L theory, (b) simple G–L theory, and (c) 

L–S theory. 

       

Fig. 11: Effect of first relaxation time 𝝉𝟏 on normal stress 𝝈 under harmonic heating (a) refined G–L theory, (b) simple G–L theory, and 

(c) L–S theory. 

The dilatation 𝑒 distributions in the refined G–L theory are affected by the increase in the values of 𝜏1, as the higher 

the values, the curve becomes more wavy, as shown in Fig. 10. The same behavior appears in the dilatation curves in 

the simple G–L theory, but in a weaker way than the previous one, while the dilatation distributions shown in the L–

S theory similar effect on temperature distributions for the same theory (see Fig. 8). 

Figure 11 shows the different stress 𝜎 distributions. The effect of the change in the values of the first relaxation 

time is large and clear in the refined G–L theory, as the lowest value of 𝜏1 gave the largest stress curve, and as the 

values of 𝜏1 increased, the stress curve went down with an increase in ripple. As for the effect in the simple G–L 

theory, the stress curves maintained the unified shape and are affected by the increase and decrease according to 

changing the values of 𝜏1, while the stress curves in the L–S theory are affected very weakly and it is hardly clear 

except between the two positions 𝑥 = 0.1 mm and 𝑥 = 0.5 mm. 

To investigate the effect of the second relaxation time of G–L, the first relaxation time is fixed by 𝜏1 = 0.1 s, the 

time 𝑡 = 10 s, 𝜔 = 0.9 rad s−1, and assigned four different values the second time, as shown in Figs. 12-15. 

Figure 12 shows the clear effect of the second relaxation time 𝜏2 on the temperature 𝜃 distributions in the refined 

G–L theory, where the temperature decreases as the value of 𝜏2 increases, while the effect seems weak on the 

distributions of 𝜃 in the simple G–L theory, but when enlarged, the effect is that the larger the value of 𝜏2, the higher 

the temperature. 

Figure 13 shows the effect of the second relaxation time 𝜏2 values on displacement 𝑢 appear clearer in the refined 

G–L theory than in the simple G–L theory, where at the beginning of the tissue the displacement curves resulting from 

the largest 𝜏2values are the least until the position 𝑥 = 0.43 where all curves intersect and the effect of 𝜏2 fades at this 

point after which it is reflected so the higher displacement curves are those resulting from larger 𝜏2 values. As for the 
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simple G–L theory, the displacement at the beginning of the biological tissue, it found that the larger 𝜏2 values gave a 

higher displacement until the curves approached each other with the increase in skin thickness. 

Figure 14 shows the distributions of the dilatation 𝑒 increasing with the increase in the value of 𝜏2 in the refined 

G–L theory. It is also evident that the difference between the curves increases accordingly. As for its counterpart in 

the simple G–L theory, the opposite occurs, and it is seen that the largest dilatation curve is that resulting from the 

lower values of 𝜏2 from the beginning of the biological tissue to the point 𝑥 = 0.37 mm, where the curves intersect 

and invert, and it gets higher dilatation curves than the larger 𝜏2 values. 

The stress 𝜎 distributions also increase due to the increase in the values of 𝜏2 in refined G–L theory noticeably, as 

shown in Fig. 15. Contrary to what happened in the simple G–L theory, the distance between the curves is almost the 

same, and the increase in the values of 𝜏2 gave fewer stress curves. 

  
Fig. 12: Effect of second relaxation time 𝝉𝟐 on temperature 𝜽 under harmonic heating (a) refined G–L theory and (b) simple G–L theory. 

  
Fig. 13: Effect of second relaxation time 𝝉𝟐 on displacement 𝒖 under harmonic heating (a) refined G–L theory and (b) simple G–L 

theory. 

  
Fig. 14: Effect of second relaxation time 𝝉𝟐 on dilatation 𝒆 under harmonic heating (a) refined G–L theory and (b) simple G–L theory. 
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Fig. 15: Effect of second relaxation time 𝝉𝟐 on stress 𝝈 under harmonic heating (a) refined G–L theory and (b) simple G–L theory. 

To figure out how the blood perfusion rate 𝑤𝑏 [46] effects on the different distributions consider that the time is 

𝑡 = 10 s, the angular frequency parameter is 𝜔 = 0.86 rad s−1, with relaxation times 𝜏1 = 0.1 s, 𝜏2 = 0.14 s. Table 

3 shows the effect of the blood perfusion 𝑤𝑏 on the distributions of temperature 𝜃̃ ≡ 𝜃 × 10−2, displacement 𝑢̃ ≡
𝑢 × 106, dilatation, 𝑒̃ ≡ 𝑒 × 102 and stress  𝜎̃ ≡  𝜎 × 106 in the CTE theory, the L–S theory, the simple G–L theory, 

and different higher-order refined G–L theory at the position 𝑥 =  0.5 mm where 𝑤̃𝑏 ≡ 𝑤𝑏 × 10
3. The table 

demonstrates that across all theories, the values of the four variables decrease as 𝑤𝑏 increases. 

 

Table 3: Effect of blood perfusion 𝒘𝒃 indifferent thermoelastic theories under harmonic heating. 

 
𝑤̃𝑏 CTE L–S 

Simple G–L Refined G–L 

𝑁 = 1 𝑁 = 2 𝑁 = 3 

𝜃 1.00 0.168555 0.170953 0.170974 0.168312 0.167419 

1.87 0.168504 0.170909 0.170950 0.168259 0.167367 

3.87 0.168388 0.170806 0.170893 0.168135 0.167247 

𝑢̃ 1.00 0.834960 0.869513 0.836875 0.779717 0.785431 

1.87 0.834607 0.869136 0.836496 0.779372 0.785087 

3.87 0.833796 0.868268 0.835627 0.778581 0.784298 

𝑒̃ 1.00 0.479731 0.486557 0.538602 0.519113 0.510770 

1.87 0.479588 0.486431 0.538453 0.518893 0.510555 

3.87 0.479256 0.486139 0.538109 0.518384 0.510058 

𝜎̃ 1.00 0.620938 0.736144 0.638544 -0.192973 0.596579 

1.87 0.620781 0.736005 0.638383 -0.193224 0.596461 

3.87 0.620416 0.735683 0.638009 -0.193804 0.596187 

 

As depicted in Fig. 16, three alternative values of the thermal conductivity 𝑘𝑡 [47] are chosen to represent the 

distributions of temperature 𝜃 in the four theories of thermoelasticity to determine 𝑘𝑡 effects. The temperature 

distributions in the refined G–L theory are affected by the different thermal conductivity values of the tissue 𝑘𝑡 in a 

similar way to those in the remaining three models (CTE, simple G–L, L–S) where larger values of 𝑘𝑡 give higher 

temperature curves. 

The results are shown in Fig. 17 to clarify the distributions of temperature 𝜃 in different theories of thermoelasticity 

along the skin tissues over time from zero until after the passage of 15 seconds and relaxation times are taken by 𝜏1 =
0.1 s, 𝜏2 = 0.14 s and 𝜔 = 0.9 rad s−1. As the figure shows, the temperature values when applying harmonic heating 

to living tissues in the four models range between 75 K and -75 K, which is a periodic motion at the beginning of the 

biological tissue and decreases with the depth of the skin until it reaches zero at the end of the tissue, depending on 

the boundary condition of the issue under study, in which the temperature distribution differs according to refined G–
L theory at the beginning of the tissue, where the curve takes a vibratory form at the beginning of time, and soon the 

shape of the curve stabilizes with the passage of a time and is similar to the rest of the distributions of other theories. 
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Fig. 16: Effect of thermal conductivity 𝒌𝒕 on temperature 𝜽 under harmonic heating (a) refined G–L theory, (b) simple G–L theory, (c) 

L–S theory, and (d) CTE theory. 

  

  
Fig. 17: 3D plots of temperature 𝜽 under harmonic heating along the 𝒙-axis of the skin tissue due to different theories of thermoelasticity 

(a) refined G–L theory, (b) simple G–L theory, (c) L–S theory, and (d) CTE theory. 
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7. Conclusions 

The current article presents an analysis of the biothermal response of skin tissues in one dimension based on a 

refined Green–Lindsay theory of order three and compares it with the CTE theory, the L–S theory, and the simple G–

L theory of thermoelasticity. The numerical solution, which includes the distributions of each of temperature 𝜃 , 

displacement 𝑢, strain 𝑒, and stress 𝜎, has been shown graphically under the influence of harmonic heating on the 

outer surface of the skin. The temperature 𝜃 distributions resulting from the refined G–L theory are the lowest and had 
the same behavior as the rest of the heat curves resulting from the CTE theory, the L–S theory, and the simple G–L 

theory. Note that the displacement 𝑢 curves resulting from the various theories of thermoelasticity had the same 

behavior and are close to each other. The dilatation 𝑒 resulting from the refined G–L theory became the least. The 

stress 𝜎 curve resulting from the refined G–L theory is greater stress, but it falls in the same range as the remaining 

stress curves of other theories. 

On the subject of angular frequency parameter 𝜔, the temperature 𝜃 is affected in the refined G–L theory in the 

same way in the (CTE, L–S, and simple G–L) theories, the effect is summarized in that the smaller the value of 𝜔, the 

higher the temperature at the outer surface of the skin and then decreases through the depth, and the greater 𝜔, the 

lower the temperature on the outer surface and the curve convexed through the depth of the skin and then begins to 

descend until it reaches the inner surface and is equal to zero. The different 𝜔 values showed different displacement 

distributions, whereas with the decrease in 𝜔 the displacement curve became more convex. The dilatation distributions 

in the refined G–L theory are affected by changing the 𝜔 values in a pattern similar to the (CTE, L–S, and simple G–

L) theories, noting that the refined G–L theory gives the highest dilatation at the outer surface of the skin, and an 

increase in 𝜔 gives greater stress and smaller 𝜔 values affect the stress curve more in the refined G–L theory. 

The effect of different relaxation times is also studied, an increase in 𝜏1 raises the temperature 𝜃, an increase in 𝜏1 

gives a wavy displacement 𝑢 curve, and dilatation 𝑒. The lowest value of 𝜏1 gave the highest stress 𝜎. An increase in 

𝜏2 decreases the temperature 𝜃, The increase in 𝜏2 gave a regular decrease in the displacement 𝑢 curves in the first 

half of the tissue, then the curves intersect and the effect is reversed. An increase in 𝜏2 gives a higher dilatation 𝑒. An 

increase in 𝜏2 gives higher stress 𝜎. 

Some biological parameters such as blood perfusion 𝑤𝑏 and thermal conductivity 𝑘𝑡 of the skin have also been 

studied. The increase in perfusion of blood 𝑤𝑏 gives a decrease in temperature 𝜃, displacement 𝑢, strain 𝑒, and stress 

𝜎. An increase in the skin's thermal conductivity 𝑘𝑡 raises the temperature 𝜃. Possible of increasing the time and its 

effect has been discussed, with time, the outer surface is affected more than the rest of the biological tissue by harmonic 

heating, and the temperature 𝜃 takes the form of waves, and the waves begin to descend through the depth of the tissue 

until they reach zero at the inner surface. 
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