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Abstract 

This article presents a mathematical analysis of thermoelastic skin tissue using 

an improved thermal conduction theory known as the refined three-phase-lag 

(TPL) theory. By accounting for the effects of multiple time derivatives, this 

advanced model provides a more accurate representation of how skin tissue 

behaves under different temperature conditions. The thin skin tissue is 

considered to have mechanically clamped surfaces, which are assumed to be 

one-dimensional. Furthermore, the skin tissue experiences a thermal shock 

load on its outer surface while maintaining a constant temperature on its inner 

surface. The proposed model has led to the derivation of certain generalized 

thermoelasticity theories in previous studies. The Laplace transform and its 

associated numerical inversion method are employed to calculate the 

distributions of temperature, displacement, dilatation, and stress in the 

system. The obtained outcomes are explicitly depicted to analyze the 

significant influences on the distributions of the field variables. These findings 

shed light on the behavior of skin tissue when subjected to a particular 

temperature distribution at the boundary condition, enhancing our knowledge 

in this area. 
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1. Introduction 

The temperature gradient is presumptively proportional to the heat flux in the traditional theory of heat conduction, 

which Fourier first proposed. The conventional Fourier heat conduction equation implies an infinite speed of heat 

propagation, which does not align with the observed phenomena in experiments [1]. Although Fourier's law is suitable 

for describing heat conduction in a steady state, it fails to capture the transient thermal response, high-temperature 
gradients, and intense heat flux. To accurately account for these phenomena, the non-Fourier effect must be 

incorporated. To overcome the issue of infinite heat propagation speed, an alternative approach was introduced through 

the development of the single-phase-lag (SPL) theory or Cattaneo–Vernott (C–V) theory [2, 3], which utilizes a 

hyperbolic heat equation as an alternative approach. Furthermore, Tzou [4] proposed the dual-phase-lag theory (DPL), 

which incorporates two relaxation times to effectively capture the phase-lagging behavior exhibited by both 

temperature gradient and heat flux. Later, scientists came up with the three-phase-lag model (TPL) to explain more 

complicated behavior by adding another phase lag to the thermal displacement gradient [5]. All of these non-Fourier 
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models rely on the expansion of Taylor's series with integer-order derivatives. To enhance the accuracy and realism 

of these models, further comprehensive research is required to experimentally measure the relaxation time for different 

materials. 

Furthermore, it is important to consider not only heat conduction but also the effects of heat-induced displacement 

and stress [6]. These factors have a significant impact on the response of biological tissues during treatment. By taking 

into account these additional factors, we can gain a more comprehensive understanding of thermal behavior and 

improve therapeutic outcomes. Biot advanced the classical thermoelastic theory by incorporating the impact of 

displacement on temperature using Duhamel–Neumann equations. This resulted in the establishment of a coupling 

relationship between temperature and elastic displacement, enhancing our understanding of thermal-mechanical 
interactions [7]. Biot's theory still relies on Fourier heat conduction, which assumes an infinite heat propagation 

velocity. To address this limitation, various generalized thermoelastic theories have been proposed and extensively 

investigated as potential solutions to overcome this drawback. Lord and Shulman were the pioneers in proposing the 

first generalized thermoelastic theory, known as the L–S model. This model is based on the SPL heat conduction 

approach [8]. Green and Lindsay (G–L) expanded upon Biot's theory by incorporating two-phase lags and introducing 

the concept of temperature rate [9]. Hetnarski and Ignaczak (H–I) proposed a non-linear relationship between 

temperature and elastic response, demonstrating their interdependence [10]. Green and Naghdi examined two distinct 

thermoelastic theories that incorporate the finite heat propagation velocity, namely the Green–Naghdi (G–N) theory 

type II and type III [11, 12]. 

In medical thermal therapeutic applications, it is important to accurately model and understand how heat is 

transported within biological tissues and organs and its consequences. By developing mathematical models and 
computational simulations based on principles of thermodynamics and fluid dynamics, researchers can gain insights 

into how heat spreads throughout the body during thermal therapies. Despite the significance of studying the 

mechanical effects on biological tissues, there is a prevailing tendency in many studies to solely focus on analyzing 

the thermal effects. This limited approach overlooks a comprehensive understanding of how mechanical factors 

contribute to tissue behavior. Marin et al. [13] investigated the nonlinear hyperbolic bioheat equation under different 

boundary conditions to analyze its application in medicinal treatments using the finite element technique. Al-Lehaibi 

[14] conducted a study using the DPL model to explore the response of skin tissue to a continuous flow of surface heat 

generated by a constant-voltage electrical current. The study revealed that key variables such as voltage, resistance, 

electric shock duration, and DPL play a crucial role in determining the distribution of temperature rise within the skin 

tissue. Sharma and Kumar [15] utilized a complex non-linear DPLBHT model to analyze the temperature distribution 

in skin tissues during hyperthermia treatment of infected cells. To solve this challenging non-linear problem, the 

researchers applied the FERK (4,5) method for accurate calculation of results. Youssef and Alghamdi [16] employed 
the TTDPL model to examine the response of skin tissue when subjected to a constant heat flux on its surface. Their 

investigation revealed that variations in the time parameter, heat flux value, and two-temperature parameter all exert 

significant influences on temperature changes within the tissue.  

Zhang et al. [17] examined the thermal response of skin tissue using a TPL model. An analytical solution was 

obtained by adopting the method of separation of variables, revealing that the temperature behavior predicted by the 

TPL model falls between that of the C–V model and the DPL model. Hobiny et al. [18] put forward an analytical 

approach utilizing Laplace transforms and experimental validation to assess thermal damage and temperature resulting 

from laser irradiation on the skin surface. Their study also demonstrates the effectiveness of the TPL bioheat 

mathematical model as a valuable tool for estimating bioheat transfer in skin tissue. Verma and Kumar [19] aimed to 

predict how temperature is distributed in biological tissue by using a TPL bioheat model. Employed the Gaussian 

radial basis function (RBF) and Crank–Nicolson (C–N) scheme as approximation methods for spatial and time 
derivatives, respectively. Also, the study analyzed the influence of phase lag and heating frequency on temperature 

distribution in tissue under different surface heating conditions. Kumara and Raia [20] employed the semi-analytical 

approach to solve the TPL bioheat transfer model, which was subsequently verified using experimental data. Verma 

and Kumar [21] utilized the TPL bioheat model to investigate the phase change occurring in skin tissue during 

cryosurgery and also developed an effective numerical algorithm based on heat capacity for solving the governing 

equation. The estimation of space derivatives was achieved using RBF, while time derivatives were computed using 

the finite difference method (FDM). Sur et al. [22] conducted a study on modeling the bioheat equation by 

incorporating the memory-dependent derivative (MDD) and a TPL model within the framework of the two-

temperature theory. Researchers also specifically examined how the MDD and velocity of a moving heat source impact 

skin tissue temperature using Laplace transform techniques. Kumari and Singh [23] formulated a mathematical model 

to investigate the thermal behavior within living tissue, employing the space-fractional approach and a TPL 

constitutive relation. Singh et al. [24] introduced a three-dimensional non-Fourier bio-heat transfer model specifically 
designed for cardiac ablation procedures based on a TPL approach and employed COMSOL multiphysics software to 

forecast temperature distributions and ablation volumes. The researchers further assessed the accuracy and reliability 
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of their model by comparing it with analytical findings from previous studies in the literature. 

Several researchers have explored the coupled heat transfer phenomena in biological tissues using Fourier, SPL, 

and DPL models. These investigations have considered the thermal and mechanical effects of tissue and incorporated 

various modeling assumptions. To the authors' knowledge, there are only a few articles in the literature that discuss 

the TPL bioheat model. Li et al. [25] investigated the thermo-mechanical behaviors of triple-layered skin tissue, 

considering the influence of a variable blood perfusion rate by employing generalized bio-thermoelastic theories. Their 

study emphasizes that it is crucial to account for the variability in blood perfusion rate when analyzing burn and 

thermal therapy effects on skin tissue. Neglecting this variability can result in an overestimation of field quantities. 

Hobiny and Abbas [26] utilized the fractional SPL model to investigate how fractional time derivatives impact the 
interaction between heat and mechanical behavior in living tissue during hyperthermia treatment. The study also 

involved applying both the eigenvalues approach and analytical techniques to obtain solutions for various field 

quantities. Sobhy and Zenkour [27] introduced a mathematical model that accounts for the thermoelastic behavior of 

skin tissue by utilizing a refined Lord–Shulman (L–S) heat conduction theory. Zenkour et al. [28] proposed a novel 

model for thermoelasticity in thin skin tissue, drawing inspiration from the G–L generalized thermoelasticity theory. 

Their refined model takes into account various factors that contribute to the behavior of heat and mechanical response 

in the skin tissue, providing a more comprehensive understanding of its thermomechanical properties. 

Li et al. [29] examined the behavior of biological tissue during cryosurgery and employed a DPL theory to 

investigate this phenomenon. The study aimed to gain insights into the complex dynamics associated with this process. 

Tiwari et al. [30] proposed a novel bio-heat transfer model for the thermal therapy of skin tissue, which incorporated 

memory-dependent derivatives and DPL to accommodate various thermal conditions like thermal shock and harmonic-
type heating. Their study revealed that integrating the memory effect into this unified model greatly improved its 

capability to accurately predict field quantity data during diverse thermal treatment procedures. Hu et al. [31, 32] 

developed a unique bioheat conduction model based on the time-fractional DPL approach. This model was employed 

to analyze the thermoelastic response of skin tissue under sudden temperature shocks. Additionally, they used the 

same model to investigate the response of biological tissue when subjected to hyperthermia treatment using laser 

heating that moves across the tissue. Ezzat [33] formulated a thermo-viscoelasticity theory by integrating fractional 

DPL with the rheological properties of the volume. The objective was to examine the effects of this theory on one-

dimensional bioheat transfer and analyze the resulting heat-induced mechanical response. Zenkour et al. [34] 

performed a mathematical analysis on thermoelastic skin tissue using a refined DPL theory that focused on one-

dimensional skin tissue with surfaces that are mechanically clamped. Zhang et al. [35] utilized a generalized 

thermoelasticity model with three phase lag times and employed the Laplace transform and numerical inverse 

transform methods to examine the dynamic response of biological tissues to sudden temperature changes. 
This article aims to investigate the thermoelastic response of biological tissue subjected to thermal shock using the 

refined TPL theory. The simple TPL, DPL, SPL, G–N III, and CTE theories are also shown. The objective is to provide 

an explanation for a 1D problem and advance a novel generalized bio-thermal model.  The impacts of various factors 

such as the thermal shock parameter, relaxation times, blood perfusion rate, time points, and thermal conductivity 

(including its rate) on different field quantities within skin tissue are investigated and illustrated through figures. 

2. Basic equations 

The model of classical coupled thermoelasticity (CTE) was presented by Biot [7], which is based on Fourier’s law 

and the energy conservation equation, 

𝑞𝑖(𝑥, 𝑡) = −𝑘𝑡𝜃,𝑖(𝑥, 𝑡),   (1) 

𝜌𝑡𝑐𝑡�̇� + 𝛾𝑡𝑇0�̇� = −𝑞𝑖,𝑖 + 𝑄.   (2) 

Fourier’s law connects the heat flux 𝑞𝑖(𝑥, 𝑡) to the temperature gradient 𝜃,𝑖(𝑥, 𝑡) at the arbitrary point of tissue and 

𝑘𝑡 denotes the thermal conductivity of the tissue. 𝜃 = 𝑇 − 𝑇0 represents the temperature increment, where 𝑇 and 𝑇0 

describe the absolute temperature and reference temperature of the ambient, respectively. Besides, the comma (, ) in 

the lower right position signifies differentiation with respect to spatial coordinates, while the dot (. ) in the upper 

position represents differentiation with respect to time. 

In the energy conservative equation Eq. (2), 𝜌𝑡 and 𝑐𝑡  are used to represent the mass density and specific heat 

capacity per unit mass of tissues, respectively. The thermal modulus 𝛾𝑡  is defined with the thermal expansion 

coefficient 𝛼𝑡 as 𝛾𝑡 = (2𝜇𝑡 + 3𝜆𝑡)𝛼𝑡, in which 𝜆𝑡 and 𝜇𝑡 are Lamé’s constants specific to the tissue. 𝑒 = 𝑒𝑘𝑘 denotes 

volumetric strain, 𝑒𝑖𝑗 represents the strain tensor, and 𝑄 is the term used to describe the heat input per unit volume. 

In Eq. (2) of the energy conservation equation, the impact of the rate at which volumetric strain occurs on 
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temperature (𝛾𝑡 𝑇0�̇�) is also accounted for. If we disregard the effect of the rate of volumetric strain (𝑒), the energy 

conservation equation mentioned above can be simplified to align with the classical heat conservation equation 

commonly utilized in Pennes' widely accepted heat transfer model [36]. 

While classical thermoelasticity theory is commonly employed in engineering for its simplicity and effectiveness, 

certain materials like sand and biological tissue exhibit non-Fourier phenomena. As a result, a coupled theory based 

on Fourier's conduction law has been developed to account for these thermal behaviors. To account for the occurrence 

of phase lag in the bioheat transfer process, Cattaneo [2] and Vernotte [3] introduced a relaxation time 𝜏𝑞 into the heat 

conduction equation as 

𝑞𝑖(𝑥, 𝑡 + 𝜏𝑞) = −𝑘𝑡𝜃,𝑖(𝑥, 𝑡).   (3) 

The modified model demonstrates that, at a specific location, the heat flux and temperature gradient occur at 

different times, where 𝜏𝑞 is the PL for the heat flux vector. Also, this theory is referred to as the L–S thermoelasticity 

theory. Afterward, Tzou [37, 38] suggested a DPL model by introducing two relaxation times. Under this theory, 

Fourier’s law is replaced with 

𝑞𝑖(𝑥, 𝑡 + 𝜏𝑞) = −𝑘𝑡𝜃,𝑖(𝑥, 𝑡 + 𝜏𝜃),   (4) 

in which the relaxation time 𝜏𝜃 in this context signifies the phase lag of the temperature gradient. and (0 ≤ 𝜏𝜃 < 𝜏𝑞). 

Without the need for a relaxation time, Green and Naghdi [11, 12] proposed another generalized thermoelasticity 
model that is capable of directly accommodating the non-Fourier effect of thermal propagation. Consequently, the G–

N II and G–N III thermoelastic theories were introduced as alternative models. These models introduce a new variable 

known as thermal displacement (𝜗) , which is defined by the equation �̇� = 𝜃  to describe its connection with 

temperature. In a manner akin to Fourier's law of heat conduction, the heat conduction equations for G–N II and III 

were established as follows 

𝑞𝑖(𝑥, 𝑡) = −𝑘𝑡
∗𝜗,𝑖(𝑥, 𝑡),   (5) 

𝑞𝑖(𝑥, 𝑡) = −[𝑘𝑡𝜃,𝑖(𝑥, 𝑡) + 𝑘𝑡
∗𝜗,𝑖(𝑥, 𝑡)],   (6) 

in these models, the parameter 𝑘𝑡
∗ represents the rate of thermal conductivity. Using the G–N III thermoelasticity as a 

foundation, Choudhuri [5] proposed a new model that incorporates a three-phase lag. As a result, the generalized 

equation for heat conduction can be expressed as 

𝑞𝑖(𝑥, 𝑡 + 𝜏𝑞) = −[𝑘𝑡𝜃,𝑖(𝑥, 𝑡 + 𝜏𝜃) + 𝑘𝑡
∗𝜗,𝑖(𝑥, 𝑡 + 𝜏𝜗)],  (7) 

where 𝜏𝜗 represents a PL of thermal displacement gradient with (0 ≤ 𝜏𝜗 < 𝜏𝜃 < 𝜏𝑞). 

Now, if we expand the above equation by applying Taylor's series up to the higher-order terms in 𝜏𝑞, 𝜏𝜃, and 𝜏𝜗 

[39-42], we yield 

− [𝑘𝑡 (1 + ∑
𝜏𝜃

𝑚

𝑚!

𝜕𝑚

𝜕𝑡𝑚

𝑀1
𝑚=1 ) 𝜃,𝑖 + 𝑘𝑡

∗ (1 + ∑
𝜏𝜗

𝑚

𝑚!

𝜕𝑚

𝜕𝑡𝑚

𝑀1
𝑚=1 ) 𝜗,𝑖] = (1 + ∑

𝜏𝑞
𝑚

𝑚!

𝜕𝑚

𝜕𝑡𝑚

𝑀2
𝑚=1 ) 𝑞𝑖. (8) 

Equation (8) is considered an extension to the generalized heat conduction equation devoid of a mechanical term. 

Taking the divergence followed by the time derivative of the two sides of Eq. (8), we get 

−𝑘𝑡 [(1 + ∑
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𝑚
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𝜕𝑚
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𝜏𝑞
𝑚
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𝜕𝑡𝑚

𝑀2
𝑚=1 )

𝜕

𝜕𝑡
𝑞𝑖,𝑖, (9) 

or 

−𝑘𝑡𝐿1𝜃,𝑖𝑖 = 𝐿2
𝜕

𝜕𝑡
𝑞𝑖,𝑖,   (10) 

where 𝐿1 and 𝐿2 are higher-order time derivative differential operators 
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𝐿1 = (1 + ∑
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𝜕𝑚

𝜕𝑡𝑚
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𝑚=1 , (11) 

replacing the energy equation, Eq. (2), with the above equation tends to 

𝑘𝑡𝐿1𝜃,𝑖𝑖 = 𝐿2( 𝜌𝑡𝑐𝑡�̈� + 𝛾𝑡𝑇0�̈� − �̇�).   (12) 

Thus Eq. (12) represents the refined TPL generalized thermoelasticity theory, that will be used for this paper with 
the motion equilibrium equations without body force and the constitutive relations, given as 

𝜇𝑡𝑢𝑖,𝑗𝑗 + (𝜆𝑡 + 𝜇𝑡)𝑢𝑗,𝑗𝑖 − 𝛾𝑡 𝜃,𝑖 = 𝜌𝑡�̈�𝑖,    (13) 

𝜎𝑖𝑗 = 2𝜇𝑡𝑒𝑖𝑗 + 𝛿𝑖𝑗(𝜆𝑡𝑒𝑘𝑘 − 𝛾𝑡𝜃),   (14) 

where 𝑢𝑖 are the component of the displacement, 𝛿𝑖𝑗 the Kronecker delta function, and 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).    (15) 

From Eq. (12), one can obtain the following models: 

• CTE model 

It appears by setting 𝜏𝜃 = 𝜏𝑞 = 𝜖 = 0 

𝑘𝑡𝜃,𝑖𝑖 = 𝜌𝑡𝑐𝑡�̇� + 𝛾𝑡𝑇0 �̇� − 𝑄.   (16) 

• G–N III model 

It appears by omitting all relaxation times, i.e., 𝜏𝜃 = 𝜏𝜗 = 𝜏𝑞 = 0, 𝜖 = 1 

(𝑘𝑡
𝜕

𝜕𝑡
+ 𝑘𝑡

∗) 𝜃,𝑖𝑖 =  𝜌𝑡𝑐𝑡�̈� + 𝛾𝑡𝑇0 �̈� − �̇�.   (17) 

• SPL model 

This model will appear when 𝜏𝜃 = 𝜖 = 0 and 𝑀2 = 1 

𝑘𝑡𝜃,𝑖𝑖 = (1 + 𝜏𝑞
𝜕

𝜕𝑡
) (𝜌𝑡𝑐𝑡�̇� + 𝛾𝑡𝑇0 �̇� − 𝑄).   (18) 

• DPL model 

This model will be given by setting 𝜖 = 0 and 𝑀1 = 𝑀2 = 1 

𝑘𝑡 (1 + 𝜏𝜃
𝜕

𝜕𝑡
) 𝜃,𝑖𝑖 = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (𝜌𝑡𝑐𝑡�̇� + 𝛾𝑡𝑇0�̇� − 𝑄).  (19) 

• Simple TPL model 

Now, the simple TPL model is given by taking the first-order derivatives for each of three phase lags, i.e., 𝑀1 =
𝑀2 = 1 and 𝜖 = 1 

[𝑘𝑡 (1 + 𝜏𝜃
𝜕

𝜕𝑡
)

𝜕

𝜕𝑡
+ 𝑘𝑡

∗ (1 + 𝜏𝜗
𝜕

𝜕𝑡
)] 𝜃,𝑖𝑖 = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (𝜌𝑡𝑐𝑡�̈� + 𝛾𝑡𝑇0 �̈� − �̇�).  (20) 

All of the above models used the equations of motion and the constitutive relations which are given in Eqs. (13)-

(15). 

When studying the thermoelastic responses of biological tissue to thermal loads, researchers [43-45] often use a 

heat source term written as 𝑄 = 𝑤𝑏𝜌𝑏𝑐𝑏(𝑇𝑏 − 𝑇) + 𝑄𝑚 + 𝑄𝐿. The first component refers to the heat exchange that 

occurs between the biological tissue and the blood, where 𝑇𝑏 represents the temperature of the blood. 𝑄𝑚 represents 

the heat generated by metabolic processes in tissue cells [46], while 𝑄𝐿 refers to the external thermal load applied to 
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the tissue [47]. 

An inhomogeneous boundary condition replaces the external heat source 𝑄𝐿. This substitution results in the setting 

𝑄𝐿 equal to zero. The analysis in this study does not include the consideration of metabolic heat generation 𝑄𝑚 within 

the tissue and assumes that 𝑇𝑏 = 𝑇0 . Therefore, the remaining source of volumetric heat in the system is given as 

𝑄 = −𝑤𝑏𝜌𝑏𝑐𝑏𝜃,   (21) 

where 𝑤𝑏 represents the rate at which blood flows through tissue and the symbol 𝜌𝑏 refers to the density of blood, 

while 𝑐𝑏 represents the specific heat capacity of the blood. 

Due to the challenges of solving the complex equations of three-dimensional thermoelasticity, researchers often 

use a simplified one-dimensional approximation to investigate the properties of thermoelastic responses in biological 

tissue. This approximation is sufficient for understanding these responses without facing the computational difficulties 

associated with the full three-dimensional model. 

Therefore, Eqs. (12)-(15) can be rewritten in the one-dimensional form 

𝑘𝑡𝐿1
𝜕2𝜃

𝜕𝑥2 = 𝐿2 [
𝜕2

𝜕𝑡2 (𝜌𝑡𝑐𝑡𝜃 + 𝛾𝑡 𝑇𝑏
𝜕𝑢
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],  (22) 
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𝑚

𝑚!

𝜕𝑚

𝜕𝑡𝑚
𝑀
𝑚=0 .  (26) 

3. Analytical solution 

Let us take a look at the modified TPL model, which is depicted by Eqs. (22)-(24) and can be expressed as 

𝜕2𝑢

𝜕𝑥2 − 𝑐1
𝜕𝜃

𝜕𝑥
=

1

𝐶𝑃
2

𝜕2𝑢

𝜕𝑡2 ,  (27) 

𝐶𝑇
2 𝜕2𝜃

𝜕𝑥2 = (𝑤𝑏𝜌𝑐 +
𝜕

𝜕𝑡
)

𝜕𝜃

𝜕𝑡
+ 𝜂

𝜕3𝑢

𝜕𝑡2𝜕𝑥
,  (28) 

𝜎

𝜆𝑡+2𝜇𝑡
=

𝜕𝑢

𝜕𝑥
− 𝑐1𝜃,  (29) 

where 

𝑐1 =
𝛾𝑡

𝜆𝑡+2𝜇𝑡
,     𝐶𝑃

2 =
𝜆𝑡+2𝜇𝑡

𝜌𝑡
,     𝐶𝑇

2 =
𝑘𝑡𝐿1

 𝜌𝑡𝑐𝑡𝐿2
,     𝜌𝑐 =

𝜌𝑏𝑐𝑏

𝜌𝑡𝑐𝑡
,     𝜂 =

𝛾𝑡𝑇𝑏

𝜌𝑡𝑐𝑡
.  (30) 

Now, we will proceed to present the initial and boundary conditions of the problem. The initial conditions for the 

issue under consideration are assumed to be homogeneous, which can be described in the following manner 

𝜃(𝑥, 𝑡)|𝑡=0 = 0,     
𝜕𝑛𝜃(𝑥,𝑡)

𝜕𝑡𝑛
|

𝑡=0
= 0,     𝑢(𝑥, 𝑡)|𝑡=0 =

𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑡𝑛
|

𝑡=0
= 0,     𝑛 ≥ 1. (31) 

The biological tissue is not subjected to any forces on both its internal and external surfaces. Only the outer surface 

of the skin tissue experiences thermal loading, while the inner surface remains insulated with no heat transfer occurring 

between it and the surrounding tissue. Therefore, the boundary conditions of the biological tissue being studied are 

expressed as 
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𝜃(0, 𝑡) = 𝑔(𝑡),     𝜃𝑥(𝐿, 𝑡) = 0,     𝜎(0, 𝑡) = 0,     𝜎(𝐿, 𝑡) = 0, (32) 

where 𝑔(𝑡) represents the thermal load function applied to the upper surface of the skin tissue at 𝑥 = 0, as depicted in 

Fig. 1. Next, we assume that the tissue's plane 𝑥 = 0 is exposed to the thermal shock as follows: 

𝑔(𝑡) = 𝜃0 𝐻(𝑡 − 𝜈),     𝑡 ≥ 𝜈,  (33) 

where the parameter 𝜃0 > 0 represents the strength of the thermal loading, which indicates how much heat is applied 

to the system. 𝐻(∗) is the Heaviside unit step function that accounts for the timing of the loading, and the parameter 

𝜈 ≥ 0 is known as the thermal shock parameter. 

 

 

Fig. 1: A model of skin tissue that is one-dimensional and incorporates boundary conditions. 

 

4. Laplace transforms 

Utilizing the Laplace transform as explained in the context of 

𝑓(𝑥, 𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑥, 𝑡)
∞

0
d𝑡.   (34) 

By incorporating homogeneous initial conditions (31) and considering Eqs. (27)-(29) on both sides, we derive field 

equations in the Laplace transform domain as follows. 

(
𝑑2

𝑑𝑥2 − 2𝑐2) �̅� − 𝑐1
𝑑�̅�

𝑑𝑥
= 0,   (35) 

(
𝑑2

𝑑𝑥2 − 2𝑐3) �̅� = 2𝑐4
𝑑𝑢

𝑑𝑥
,  (36) 

�̅�

𝜆𝑡+2𝜇𝑡
=

𝑑𝑢

𝑑𝑥
− 𝑐1�̅�,  (37) 

where 

𝑐2 =
𝑠2

2𝐶𝑃
2 ,   𝑐3 =

(𝑤𝑏𝜌𝑐𝑠+𝑠2)

2𝐶�̅�
2 �̅�2,   𝑐4 =

𝜂𝑠2

2𝐶�̅�
2 �̅�2,

�̅�𝑇
2 =

𝑘𝑡�̅�1

 𝜌𝑡𝑐𝑡
=

1

 𝜌𝑡𝑐𝑡
(𝑘𝑡 ∑

𝜏𝜃
𝑚

𝑚!
𝑠𝑚+1𝑀

𝑚=0 + 𝑘𝑡
∗ ∑

𝜏𝜗
𝑚

𝑚!
𝑠𝑚𝑀

𝑚=0 ),   �̅�2 = ∑
𝜏𝑞

𝑚

𝑚!
𝑠𝑚𝑀

𝑚=0 .
 (38) 

The over bar symbol in this context signifies the Laplace transform, while the small letter s serves as an indicator 

for the Laplace parameter. To obtain the desired results, Equations (35) and (36) are solved within the context of the 

Laplace domain to obtain 

�̅� = ∑ (𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 ,  (39) 

�̅� = ∑ 𝛽𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 − 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 ,  (40) 
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where 𝐴𝑖 and 𝐵𝑖 are constant coefficients that differ with respect to s, while the parameters 𝜉𝑖 and 𝛽𝑖  are specified as 

𝜉1, 𝜉2 = √𝑐1𝑐4 + 𝑐2 + 𝑐3 ± 𝜉0,     𝜉0 = √(𝑐1𝑐4 + 𝑐2)2 + 𝑐3[𝑐3 + 2(𝑐1𝑐4 − 𝑐2)], (41) 

𝛽𝑖 =
𝜉𝑖(𝜉𝑖

2−2𝑐1𝑐4−2𝑐3)

4𝑐2𝑐4
.  (42) 

Furthermore, the dilatation in Eq. (25) is expressed in the Laplace domain as 

�̅� = ∑ 𝛽𝑖𝜉𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 .  (43) 

Moreover, the axial stress is obtained from Eq. (37) as 

�̅� = ∑ 𝜁𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 ,  (44) 

where 

𝜁𝑖 = (𝜆𝑡 + 2𝜇𝑡)(𝛽𝑖𝜉𝑖 − 𝑐1).  (45) 

Within the domain of the Laplace transform, the boundary conditions (16) can be formulated as 

�̄�(𝑥, 𝑠)|
𝑥=0

=
𝜃0𝑒−𝜈𝑠

𝑠
= �̄�𝑠,  (46) 

𝜃�̄�(𝑥, 𝑠)|
𝑥=𝐿

= 0,     �̄�(𝑥, 𝑠)|𝑥=0,𝐿 = 0.  (47) 

By successfully solving the intricate arrangement of direct conditions, we are able to determine the values for the 

elusive parameters 𝐴𝑖 and 𝐵𝑖. By imposing these boundary conditions on Eqs. (39) and (40), we arrive at 

[

1 1
𝜉1e𝜉1𝐿 𝜉1e−𝜉1𝐿

1 1
𝜉2e𝜉2𝐿 𝜉2e−𝜉2𝐿

𝜁1 𝜁1

𝜁1e𝜉1𝐿 𝜁1e−𝜉1𝐿

𝜁2 𝜁2

𝜁2e𝜉2𝐿 𝜁2e−𝜉2𝐿

] {

𝐴1

𝐵1

𝐴2

𝐵2

} = {

�̄�𝑠

0
0
0

}. (48) 

By solving the system of linear equations mentioned previously, we can find the values of the parameters that lead 

to the desired solutions in the Laplace transform domain 

𝐴1 =
1

𝛥
𝜁2�̄�𝑠(𝛬1e(𝜉1+𝜉2)𝐿 − 𝛬2e(𝜉1−𝜉2)𝐿 − 2𝜁1𝜉2e2𝜉1𝐿), (49) 

𝐵1 = −
1

𝛥
𝜁2�̄�𝑠(𝛬1e(3𝜉1−𝜉2)𝐿 − 𝛬2e(3𝜉1+𝜉2)𝐿 − 2𝜁1𝜉2e2𝜉1𝐿), (50) 

𝐴2 =
1

𝛥
𝜁1�̄�𝑠(𝛬1e(3𝜉1−𝜉2)𝐿 + 𝛬2e(𝜉1−𝜉2)𝐿 − 2𝜉1𝜁2e2𝜉1𝐿), (51) 

𝐵2 = −
1

𝛥
𝜁1�̄�𝑠(𝛬1e(𝜉1+𝜉2)𝐿 + 𝛬2e(3𝜉1+𝜉2)𝐿 − 2𝜉1𝜁2e2𝜉1𝐿), (52) 

where 

𝛬1, 𝛬2 = 𝜉1𝜁2 ± 𝜉2𝜁1,  (53) 

 𝛥 = (𝜁1 − 𝜁2)[𝛬1(e(3𝜉1−𝜉2)𝐿 − e(𝜉1+𝜉2)𝐿) + 𝛬2(e(𝜉1−𝜉2)𝐿 − e(3𝜉1+𝜉2)𝐿)].  (54) 

The issue in the transformation domain has been effectively addressed. However, due to the formidable complexity 

of Equations (39) and (40), achieving an analytical inverse transform in the time domain becomes a highly intricate 
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and challenging task. Accordingly, we will make use of the Laplace transform numerical inversion method to examine 

the behaviors of field variables in the time domain. To obtain numerical results in the physical domain, we utilize the 

Riemann-sum approximation method as a computational approach for estimation. In this method, the conversion of 

any function 𝑓(𝑥, 𝑠) from the Laplace transform space to the physical domain 𝑓(𝑥, 𝑡) is achieved by employing a well-

known equation [48] 

𝑓(𝑥, 𝑡) =
e𝜚𝑡

𝑡
[

1

2
Re{𝑓(𝑥, 𝜚)} + Re {∑ (�̄� (𝑥, 𝜚 +

𝑛𝜋𝐼

𝑡
) (−1)𝑛)𝑁

𝑛=0 }].  (55) 

The symbol Re represents the real part of a function, while I denotes the imaginary unit (I = √−1). Several 

numerical experiments have demonstrated that the value of 𝜚 approximately follows the relation 𝜚𝑡 ≈ 4.7 to achieve 
rapid convergence. 

5. Numerical findings and discussions 

In the subsequent part, we present a comprehensive overview and analysis of the numerical findings for all 

variables concerning skin tissue. The influence of the thermal shock parameter and phase lag times is investigated 

with various generalized thermoelastic theories, with a focus on understanding their effects on both thermal and elastic 

responses. Table 1 presents a compilation of the thermophysical characteristics of blood and biological tissue, as 

documented in references [49-51]. To simulate the conditions, a temperature load of 𝜃0 = 80 K is imposed on the skin 

surface, with the skin tissue having a thickness of 𝐿 = 1 mm. The quantities of temperature (𝜃), displacement (𝑢), 

volumetric strain (𝑢), and axial stress (𝜎) are determined using Eq. (55). The numerical results are then analyzed 
extensively and presented in Figures 2-17. 

 

Table 1: Key material characteristics of skin tissue for bioheat transfer analysis. 

Parameter Value Uint 

𝜆𝑡 8.27 × 108  kg/(m s2) 

𝜇𝑡 3.446 × 107   kg/(m s2) 

𝜌𝑡 1190  kg/m3  

𝑐𝑡  3600  J/(K kg) 

𝑘𝑡 0.235  W/(m K) 

𝜌𝑏 1060  kg/m3  

𝑐𝑏 3770  J/(K kg) 

𝛼𝑡 1 × 10-4  (1/K) 

𝑇𝑏 310  K 

𝑤𝑏 1.87 × 103 1/𝑠 

 

5.1. Contrasting the refined TPL model with previous generalized theories 

Figures 2-5 show the field quantities that can be gotten from different coupling theorems when the fixed relaxation 

times at time 𝑡 = 4 are 𝜏𝜗 = 0.09, 𝜏𝜃 = 0.29, and 𝜏𝑞 = 0.69. 

Figure 2 displays a comparison of different theories, showing how temperature (𝜃) is distributed across the 

thickness of the skin tissue. The temperature exhibits a clear inverse relationship with x in the CTE, G–N III, DPL, 

and simple TPL generalized thermoelastic theories. As x increases, the temperature decreases accordingly. The SPL 

and refined TPL thermoelastic theories both produce responses that appear different from one another. Along with the 

skin tissue thickness, the temperature vibrates. Another obvious difference in thermal response is that the refined TPL 

model predicts the highest temperature than other models at 𝑥 = 0.058, while the SPL model predicts the lowest 

temperature at 𝑥 = 0.18. 

In Fig. 3, the displacement distributions (𝑢) across the thickness of the skin tissue are depicted for different 

theories. The displacement shows a direct increase with x in all cases. However, for CTE, G–N III, DPL, and simple 

TPL generalized theories, there is an additional displacement along the x direction due to thermal expansion. On the 

other hand, refined TPL and SPL models show slight oscillations along the thickness of the skin tissue after an initial 

increase with 𝑥. 
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Fig. 2: Exploring the differences in temperature variation (𝜽) across skin tissue by considering multiple theories. 

 

 

Fig. 3: Exploring the differences in displacement variation (𝒖) across skin tissue by considering multiple theories. 

 

 

Fig. 4: Exploring the differences in dilatation variation (𝒆) across skin tissue by considering multiple theories. 

Figure 4 illustrates the different dilatation distributions (𝑒) across the skin tissue resulting from the application of 

various theories. In the CTE, G–N III, DPL, and simple TPL generalized thermoelastic theories, there is a clear inverse 

relationship between dilatation and x. As x increases, the dilatation decreases accordingly. However, both SPL and 

refined TPL thermoelastic theories exhibit distinct responses. The dilatation oscillates along with the thickness of the 

skin tissue in these models. Additionally, at 𝑥 = 0.058, the refined TPL model predicts higher dilatation compared to 
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other models, while at 𝑥 = 0.18, the SPL model predicts lower dilatation than other models. 

 

 

Fig. 5: Exploring the differences in stress variation (𝝈) across skin tissue by considering multiple theories. 

Figure 5 shows how various theories predict variations in stress distribution (𝜎) across the thickness of the skin 

tissue. The stress distribution in the skin tissue is characterized by zero values at the boundary plane 𝑥 = 0 and a 

gradual decrease to zero as we move towards the other side of the tissue, 𝑥 = 𝐿, which adherence to mechanical 

boundary conditions on both sides suggests. The stress is no longer increasing directly as 𝑥 increases, and there is a 

maximum value for each of the generalized thermoelastic models. Furthermore, in the SPL theory, it is observed that 

the stress curve exhibits a distribution that is different from the rest; the pressure vibrates along the depth of the tissue. 

The stresses obtained from the refined TPL generalized thermoelastic model are the lowest among all the models 
considered. 

5.2. The influence of the thermal shock parameter 

Figures 6-9 show the temperature, displacement, dilatation, and stress distributions for the G–N III, simple TPL, 

and refined TPL models for different values of the thermal shock parameter (𝜈). Specifically, 𝜈 = 3.48, 3.54, 3.60, 

and 3.66 with 𝑡 = 4 are investigated to understand their effects on these distributions. 

 

 

Fig. 6: Temperature profiles (𝜽) across the skin tissue with different values of the thermal shock parameter. 

Once again, Fig. 6 demonstrates that the temperature distribution (𝜃) decreases directly across the skin tissue for 

both the G–N III and simple TPL generalized thermoelastic models. However, there is a distinct difference in how 𝜃 

behaves concerning the refined TPL generalized thermoelastic model. Along with the skin tissue thickness, the 

temperature vibrates; generally, as 𝜈 increases, 𝜃 exhibits a decreasing trend. 
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Fig. 7: Displacement profiles (𝒖) across the skin tissue with different values of the thermal shock parameter. 

In Fig. 7, the variations in displacement (𝑢) across the thickness of the skin tissue are depicted for G–N III, simple 

TPL, and refined TPL models using different values of the thermal shock parameter. The displacements are equal at 

𝑥 = 0.35, 0.27, and 0.15 for the G–N III, simple TPL, and refined TPL models, respectively. Before reaching these 

positions, the displacement shows an increasing trend as 𝜈 increases. Conversely, after passing these positions, the 

displacement exhibits a decreasing pattern as 𝜈 increases. It is interesting to see that the displacement due to the refined 

theory oscillates after 𝑥 = 0.15. 

 

 

Fig. 8: Dilatation profiles (𝒆) across the skin tissue with different values of the thermal shock parameter. 

Figure 8 once again confirms that the dilatation distribution (𝑒) decreases directly across the skin tissue in both 

the G–N III and simple TPL generalized thermoelastic models. However, there is a clear distinction in how 𝑒 behaves 

with the refined TPL generalized thermoelastic model. In addition to varying with skin tissue thickness, 𝑒 also exhibits 

oscillations; generally, as 𝜈 increases, there is a decreasing trend observed for 𝑒. 

In Figure 9, the fluctuations in stress (𝜎) across the thickness of the skin tissue are presented for G–N III, simple 

TPL, and refined TPL models using various values of thermal shock parameters. The stress at the boundaries of the 

skin tissue is effectively nullified, in agreement with the mechanical boundary conditions imposed on both surfaces. 

We have a different stress curve shape in each model, noting that the refined TPL generalized thermoelastic model 
exhibits the lowest stress magnitudes, while the G–N III thermoelastic model shows the highest stress levels obtained. 

In general, the stress magnitude exhibits a positive correlation with the thermal shock parameter, indicating that higher 

values of the parameter result in increased stress levels. 

5.3. The role of the thermal relaxation times 

In TPL thermoelasticity, relaxation times play a crucial role in determining the thermal characteristics of organic 

tissue. Figures 10-13 present graphical representations of how temperature, displacement, dilatation, and stress for 

refined TPL vary under different phase lags while keeping the thermal shock parameter constant at 𝜈 = 3.4 and time 

𝑡 = 4. The graph showcases three scenarios: 
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• Different values of 𝜏𝑞 with fixed values of 𝜏𝜗 = 0.09 and 𝜏𝜃 = 0.28. 

•  Different values of 𝜏𝜃 with fixed values of 𝜏𝜃 = 0.09 and 𝜏𝑞 = 0.76. 

•  Different values of 𝜏𝜗 with fixed values of 𝜏𝜃 = 0.28 and 𝜏𝑞 = 0.76. 

 

 

Fig. 9: Stress profiles (𝝈) across the skin tissue with different values of the thermal shock parameter. 

 

 

Fig. 10: Temperature (𝜽) distributions for the refined TPL model under (a) different 𝝉𝒒 (b) different 𝝉𝜽 (c) different 𝝉𝝑. 

In Fig. 10, the temperature variations (𝜃) resulting from the refined TPL model are depicted under three different 

scenarios. In Fig. 10a, the effect 𝜏𝑞 is being studied, which represents a lag phenomenon in the heat flux, indicating 

that thermal energy does not transfer instantaneously. Up until 𝑥 = 0.083, an increase in 𝜏𝑞 causes the temperature to 

rise. However, beyond 𝑥 = 0.083, an increase in 𝜏𝑞  leads to a decrease in temperature. The temperature exhibits 

oscillations in conjunction with the thickness of the skin tissue. Additionally, as 𝜏𝑞 increases, the amplitude of these 

temperature waves also increases. 

Quite the opposite happens in Fig. 10b: when 𝑥 is less than 0.104, an increase in 𝜏𝜃 results in a temperature drop. 

Conversely, when 𝑥 is greater than 0.104, an increase in 𝜏𝜃 leads to an increase in temperature. Furthermore, with an 

increase in 𝜏𝜃, the amplitude of temperature oscillations diminishes. 

In a similar vein, Fig. 10c exhibits the temperature profiles along the depth direction under different phase lag 

times of the thermal displacement gradient. Once again, the temperature in the biological tissue shows oscillations that 

are linked to the thickness of the skin tissue. Moreover, as 𝜏𝜗  increases, these temperature waves become more 

pronounced with larger amplitudes. In general, as 𝜏𝜗 increases, there is a corresponding increase in temperature. 
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Fig. 11: Displacement (𝒖) distributions for the refined TPL model under (a) different 𝝉𝒒 (b) different 𝝉𝜽 (c) different 𝝉𝝑. 

Figure 11 illustrates the variations in displacement (𝑢) resulting from the refined TPL model across three different 

scenarios. Fig. 10a focuses on analyzing the effect of 𝜏𝑞 on the system. At 𝑥 = 0.18, the displacements are almost 

equal. However, before this position, the displacement increases with an increase in 𝜏𝑞 and decreases vice versa after 

this point. Additionally, beyond 𝑥 = 0.18, the displacement exhibits oscillations according to the refined theory, and 

as 𝜏𝑞 increases further, these oscillations have larger amplitudes. 

On the contrary, Fig. 11b demonstrates a contrasting behavior: At 𝑥 = 0.285, the displacements are almost equal. 

However, before this position, the displacement decreases as 𝜏𝜃 increases, and vice versa after this point. Furthermore, 

beyond 𝑥 = 0.285, according to the refined theory, there are oscillations observed in displacement where amplitudes 

decrease as 𝜏𝜃 increases further. 

Continuing similarly, Fig. 11c presents the displacement profiles along the depth direction for varying phase lag 
times of the thermal displacement gradient. Once more, the displacement within the biological tissue exhibits 

oscillations that are correlated with the thickness of the skin tissue. Furthermore, as 𝜏𝜗 increases, these displacement 

waves display larger amplitudes. Overall, there is a decrease in displacement as 𝜏𝜗 increases. 

 

 

Fig. 12: Dilatation (𝒆) distributions for the refined TPL model under (a) different 𝝉𝒒 (b) different 𝝉𝜽 (c) different 𝝉𝝑. 

Figure 12 illustrates the variations in dilatation (𝑒) predicted by the refined TPL model across three different 

scenarios. In Fig. 12a, the influence of 𝜏𝑞 is examined on dilatation. Until 𝑥 = 0.083, an increase in 𝜏𝑞 results in a rise 

in dilatation. However, beyond 𝑥 = 0.083, increasing 𝜏𝑞  leads to a decrease in dilatation instead. The dilatation 

demonstrates oscillations that correspond with the thickness of the skin tissue as well; furthermore, as 𝜏𝑞 increases 

further, these oscillations exhibit larger amplitudes. 

Figure 12b presents a contrasting pattern: for 𝑥 values less than 0.104, an increase in 𝜏𝜃  causes a decrease in 

dilatation. Conversely, for 𝑥 values greater than 0.104, an increase in 𝜏𝜃 leads to an increase in dilatation instead. 

Additionally, as 𝜏𝜃 increases further, the amplitude of dilatation oscillations diminishes. 

Similarly, Fig. 12c demonstrates the expansion patterns along the depth axis for various phase lag times of the 
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thermal displacement gradient. Once again, the dilatation in biological tissue exhibits oscillatory patterns that are 

correlated with the thickness of the skin tissue. Furthermore, as 𝜏𝜗 increases, these waves of dilatation become more 

prominent with larger amplitudes. In general, an increase in 𝜏𝜗 corresponds to an increase in overall dilatation within 

the tissue. 

 

 

Fig. 13: Stress (𝝈) distributions for the refined TPL model under (a) different 𝝉𝒒 (b) different 𝝉𝜽 (c) different 𝝉𝝑. 

Figure 13 displays the stress variations (𝜎) across the thickness of the skin tissue, presenting three different 

scenarios based on the refined TPL model. The stress becomes zero at the edges of the skin tissue, aligning with the 

mechanical boundary conditions on both surfaces. Figure 13b shows that the refined TPL generalized thermoelastic 

model shows a uniform rise in stress as the relaxation time of the temperature gradient 𝜏𝜃 goes up. However, this 

uniform increase does not occur when considering the relaxation times of both the heat flux 𝜏𝑞  and the thermal 

displacement gradient 𝜏𝜗, as shown in Figs. 13a,c. These findings suggest that the refined model exhibits distinct 

behaviors when subjected to changes in relaxation times. 

5.4. The impact of the times and blood perfusion rate 

Figures 14(a–f) illustrate the variations in temperature (𝜃) and displacement (𝑢)distributions across different time 

points for the G–N III, simple TPL, and refined TPL models. Specifically, we examine time intervals 𝑡 = 4.4, 4.5, 

4.6, and 4.7 with a thermal shock parameter 𝜈 = 3.95 to analyze their impact on these distributions. 

 

 

                                   (a)                                                         (b)                                                         (c)                         
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                                   (d)                                                         (e)                                                         (f)                         

Fig. 14: Distribution of temperature (𝜽) and displacement (𝒖) across skin tissue at various time points (𝒕) for G–N III, simple TPL, and 

refined TPL. 

 

 

                                   (a)                                                         (b)                                                         (c)                         

 

                                   (d)                                                         (e)                                                         (f)                         

Fig. 15: Distribution of temperature (𝜽) and displacement (𝒖) across skin tissue for the G–N III, simple TPL, and refined TPL models at 

different values of blood perfusion rate (𝒘𝒃). 

Figures 14a-c show that the temperature drops straight across the skin tissue in both the G–N III and simple TPL 

generalized thermoelastic models. However, there is a noticeable distinction in how 𝜃 behaves when considering the 

refined TPL generalized thermoelastic model. In addition to vibrating for skin tissue thickness, temperature waves 
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also exhibit an increase in amplitude as time progresses. Overall, these findings suggest that as time elapses, 

temperatures rise while decreasing with increasing tissue depth. 

Figures 14d-f illustrate the variations in displacement (𝑢) across the thickness of the skin tissue for G–N III, simple 

TPL, and refined TPL models at different time points. At 𝑥 = 0.384, 0.31, and 0.187 positions within the tissue, the 

displacements are nearly equal for the G–N III, simple TPL, and refined TPL models, respectively. 

Before reaching the positions mentioned above, the displacement demonstrates a decreasing trend as time 

increases. However, on passing these positions, the displacement exhibits an increasing pattern with increasing time. 

It is intriguing to observe that after 𝑥 = 0.187, the displacement resulting from refined theory oscillates. 

To illustrate the impact of blood perfusion rate (𝑤𝑏), Figures 18a-f showcase the temperature and displacement 

distributions in the G–N III, simple TPL, and refined TPL models at two distinct time points: 𝑡 = 9.2 and 𝑡 = 10.2. 

The thermal relaxation times are 𝜏𝜗 = 0.1, 𝜏𝜃 = 1.3, and 𝜏𝜃 = 5.4, while 𝜈 = 8 for all models considered in this 

analysis. 

In Figs. 15a-c, it is observed that at time 𝑡 = 9.2, the effect of the change in blood perfusion rate (𝑤𝑏) seems to be 

relatively weak. However, when considering a longer time (𝑡 = 10.2), the difference becomes more pronounced. 

Specifically, an increase in the rate of blood perfusion results in lower temperature values. 

In the same way, in displacement (Figs. 15d-f), changing the blood perfusion rate (𝑤𝑏) doesn't seem to have much 

of an effect at 𝑡 = 9.2, but when we look at 𝑡 = 10.2, the difference is much clearer. 

 

 

                                   (a)                                                         (b)                                                         (c)                         

 

                                    (d)                                                          (e)                                                         (f)                         

Fig. 16: Distributions of temperature (𝜽) and displacement (𝒖) across skin tissue for the G–N III, simple TPL, and refined TPL models 

at numerous values of heat conductivity (𝒌𝒕). 

5.5. The significance of thermal conductivity and its rate 

The thermal conductivity 𝑘𝑡 of a tissue is an inherent property that measures its ability to conduct heat, while the 

rate of thermal conductivity 𝑘𝑡
∗ refers to how quickly heat is conducted through the tissue. These two factors play a 
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significant role in understanding and analyzing thermoelastic behavior in organic tissues. 

Figures 16a-f depict the temperature distribution (𝜃) and displacement distribution (𝑢) across the skin tissue using 

different values of heat conductivity 𝑘𝑡. In contrast, Figs. 17a-f illustrate the same distributions but with varying rates 

of thermal conductivity 𝑘𝑡
∗, within the context of G–N III, simple TPL, and refined TPL models. 

 

 

                                  (a)                                                          (b)                                                        (c)                         

 

                                   (d)                                                         (e)                                                          (f)                         

Fig. 17: Distributions of temperature (𝜽) and displacement (𝒖) across skin tissue for the G–N III, simple TPL, and refined TPL models 

at numerous values of heat conductivity (𝒌𝒕
∗). 

When considering the impact on temperature distribution, it is evident that thermal conductivity has a greater effect 

compared to the rate of thermal conduction. Increasing values for both 𝑘𝑡 and 𝑘𝑡
∗ lead to elevated temperatures within 

the tissue. According to the refined theory, there are oscillations in temperature with the thickness of the skin tissue, 

where amplitudes increase as 𝑘𝑡
∗ increases further, and the opposite happens concerning 𝑘𝑡. 

Similarly, when considering the impact on displacement distribution, it becomes evident that thermal conductivity 

has a greater influence compared to the rate of thermal conduction. Furthermore, as depicted in Figs. 17d-f, we observe 

that before reaching 𝑥 = 0.3, 0.24, and 0.146 positions for the G–N III, simple TPL, and refined TPL models, 

respectively, an increase in 𝑘𝑡
∗ leads to a decrease in displacement (𝑢). However, after surpassing these positions along 

the thickness direction 𝑥, there is an opposite trend where increasing 𝑘𝑡
∗ results in an increase in displacement (𝑢). 

This behavior does not hold for changes in 𝑘𝑡 in Figs. 16d-f. 

6. Conclusions 

In this study, we propose a newly utilized thermoelasticity model based on a higher-order time derivative of the 

TPL approach. We apply this model to analyze the thermal conduction equation in skin tissue subjected to a thermal 

shock. The refined TPL thermoelasticity model offers a distinct perspective by considering the influence of multiple 

time derivatives on thermo-mechanical phenomena. This sets it apart from conventional generalized thermoelasticity 

theories, making it a valuable tool for studying complex thermal behavior in materials. We considered a one-
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dimensional skin tissue with a thin profile, where the outer surface was free from traction and the inner surface 

experienced no change in temperature or traction.  The proposed model's governing equations are derived from the 

principles of generalized thermoelasticity theory. To analyze the data, Laplace transform techniques were employed. 

Subsequently, the Tzuo method was utilized to invert the transformed data and obtain numerical results in the time 

domain. This methodology allowed for a comprehensive examination of various quantities of interest within our 

system and facilitated accurate calculations for further analysis. The previously established generalized thermoelastic 

theories can be derived as special cases from the model presented in this study. A comprehensive comparison was 

conducted between the refined TPL generalized thermoelastic model and existing generalized thermoelastic theories. 

Both the analytical and numerical analyses of the governing equations reveal a substantial impact from various factors, 
including the thermal shock parameter, relaxation times, blood perfusion rate, heat conductivity, rate of heat 

conductivity, and time parameters. These findings highlight the importance of considering these variables when 

studying thermoelastic behavior in skin tissue. This investigation is crucial for addressing skin tissue problems, as the 

material parameters in such cases are temperature-dependent. Ultimately, the proposed model can be utilized in various 

bioheat transfer applications. 
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