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Abstract 

This paper presents a new mathematical perfect of fractional order to deal 

with the response of skin tissue subjected to ramp-type heating based on the 

refined Lord–Shulman generalized thermoelasticity model. Three different 

models; the classical, the simple Lord–Shulman as well as the refined Lord–

Shulman will be discussed. The governing equivalences of the present three 

models are attained. The general solution for the initial and boundary 

condition problem is found by employing the Laplace transform approach and 

its inverse. Numerical results are  represented in figures with a comparison to 

the different theories with different values of fractional order to discuss the 

impact of the fractional order on temperature, displacement, and dilatation 

distributions. The effect of ramp-type heat is studied numerically and 

graphically on distributions of temperature, displacement, and dilatation 

according to different theories. 

Keywords: Refined Lord–Shulman theory; fractional calculus; Laplace transforms; bio-heat response; 

skin tissue; ramp-type. 

1. Introduction 

In 1678, the scientist Robert Hooke defined the elastic body and the word elasticity, where he put the first law 
linking the force acting on an elastic body and the amount of elongation (strain) that happened in the body. The 

mathematician Cauchy established the theory of elasticity in the seventeenth century. This scientific field offered 

mathematicians a variety of difficulties throughout its historical growth, some of which helped to build or were the 

sole source of the creation of sophisticated mathematical theories like the variational calculus and the finite element 

method [1]. 

Over the past 50 years, the use of biothermal models has grown significantly. During medical and clinical 

procedures, heat carry must be applied to the skin. Numerous bioheat applications have made use of the straightforward 

dual-phase-lage (DPL) model. A thermal loading that is called ramp-type heat can be employed to replicate the 

influences on skin tissue of being exposed to a gradual rise or fall in temperature over time. There are numerous 

practical applications for ramp-type heating, including medical procedures. Cryotherapy, for instance, involves 

exposing the concerned area of the organization to extremely low temperatures for a brief period during cryotherapy 
sessions [2]. 

Duhamel and Neumann set the foundation for the thermoelastic hypothesis in the first part of the nineteenth 

century. They provided equations that included the known function for heat in the equation of motion independent of 
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mechanical forces. Biot developed the linked dynamical theory of thermoelasticity [3]. This theory is in agreement 

with practical investigations since it comprises the elasticity equations related to heat conductivity. The elastic body 

becomes tensed if there is a temperature change. A hyperbolic partial differential equation for the equation of motion 

and a parabolic partial differential equation for the equation of heat conduction make up the so-called conundrum in 

Biot's theory [3]. By Lord and Shulman (L–S) [4], one of the generalized thermoelasticity theories is produced. Green 

and Lindsay (G–L) [5] produce a further theory with two thermal relaxation time parameters. Then some articles 

appeared as Chandrasekharaiah [6] and Hetnarski and Ignaczak [7] to discuss such generalized theories. Also, the 

generalized thermoelasticity theory is elaborately realized in the book by Ignaczak and Martin [8]. Sherief [9] 

discussed the basic solution of the thermoelastic issue for a short time. The uniqueness and reciprocity theories for 
thermo-viscoelasticity with two relaxations were first presented by Ezzat and El-Karamany [10]. The underlying 

reason of electro-micro stretch viscoelastic solids and the transmission of plane waves were both investigated by 

Sharma et al. [11]. Othman and Abd-Elaziz [12], Sharma and Kumar [13], and Lata et al. [14] explored the plane 

waves, respectively in thermo-viscoelastic and elastic media. Hobiny and Abbas [15] looked at analytical answers for 

the rise in skin tissue temperature brought on by moving heating sources. For an infinite annular cylinder with 

temperature-dependent physical properties, Zenkour and Abbas [16] investigate the topic of generalized 

thermoelasticity with a single relaxation period. 

Green and Naghdi (G–N) [17–19] presented a distinct generalized thermoelasticity theory, which at the time was 

regarded as a different way to formulate heat transmission, and they very consistently incorporated thermal pulse 

transmission into their idea. Three models are included in this hypothesis, and they are afterward known as 

thermoelastic theories of types G–N I, G–N II, and G–N III. This theory's central idea is that an entropy balancing law 
is utilized in place of the conventional entropy production inequality, and the temperature gradient and thermal 

displacement gradient are supposed to be the constitutive quantities [7]. The G–N I type is plagued by the paradox of 

infinite heat propagation velocity because it is closely related to the classical thermoelasticity theory, whereas the first 

two models are specific examples of the G–N III model. The G–N II model does not exhibit thermal energy dissipation 

since there is no alteration in internal energy. As a result, it suggests that the internal rate of generation of entropy is 

virtually zero, which is inconsistent with the G–N III model's general case. Numerous studies have examined different 

theoretical and practical elements of thermoelasticity within the situation of G–N II or III theories. Chandrasekharaiah 

[20] utilized the energy approach, uniqueness theorems were proven.  

Kumar et al. [21] investigated PL effects in skin tissue midst temporary heating. Sharma et al. [22] studied the G–

N II and III theories to investigate how viscosity affected wave propagation in anisotropic thermoelastic materials. 

Chirita and Ciarletta [23] developed the reciprocal and variational concepts in linear thermoelasticity without energy 

dissipation. Ghazanfarian et al. [24] created a theory of micropolar thermoelasticity without energy loss. Phase-lagging 
heat transfer has received a lot of interest recently due to its promising performance in testing over a variety of lengths 

and time scales. By carefully selecting the parameters, Othman and Abbas [25] were able to resolve the thermal shock 

problem for hollow cylinders in generalized thermoelasticity, which was based on the G–N II and III theories. In the 

theory of thermoelasticity, a 2D problem for a sphere was resolved by Sherief and Raslan [26]. Zenkour et al. [27] 

evolved a new G–L theory of thermoelasticity that was created as a result of changes made to thermodynamics theories 

and their applications in biomathematics. The conveyances of field amounts are researched by utilizing the refined G–

L bio-heat move model. 

Fractional analytics has recently been used effectively in numerous fields to change many occurring models of 

physical activities, including chemistry, biology, modeling and identification, hardware, wave proliferation, and 

viscoelasticity [28-30]. Abbas [31] pondered the issue of fractional-order thermoelastic interaction in a medium 

subjected to a traveling heat source and magnetic field. Fractional-order models frequently perform incredibly well, 
especially for dielectrics and viscoelastic materials over wide time and recurrence ranges [32, 33]. Free convection 

effects on a viscoelastic boundary layer flow with one relaxation time over a porous media were developed by Ezzat 

and Abd-Elaal [34]. In addition to introducing a fractional formula for heat conduction, Sherief et al. [35, 36] also 

established an individuality theorem, deduced a reciprocity relation, and introduced a variational principle. Hendy et 

al. [37] presented a two-temperature fractional G–N III theory to discuss the magneto-thermo-viscoelastic response of 

a medium under a moving heat source. A theory of heat conduction on a deformable medium that depends on the 

conductive temperature and the dynamic temperature was devised by Chen and Gurtin [38]. Ezzat and Awad [39] 

devised the theory of micropolar-generalized two-temperature thermoelasticity, and the formulation is then applied to 

a thermal shock half-space issue. The current work aims to create a 1D refined Lord–Shulman (L–S) theory restraint 

of skin tissue with fractional-order subject to ramp-type heat. 

Fractional calculus is used to extend standard differentiation and integration to non-integer order. Integration and 

differentiation are included in the definition of a fractional derivative. Studies and findings derived from solutions to 
fractional differential equations are more widespread and equally stable as those derived from their counterparts of 

integer order. For scholars in a variety of disciplines, including physics, engineering, biology, etc., fractional calculus 
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has been a rich subject. It is crucial to the study of our lives [40, 41]. 

Fractional differential operators can be defined in a variety of ways, including Grunwald–Letnikov, Riemann–

Liouville, Caputo, and Hadamard. The two techniques most frequently employed in applications are Riemann–

Liouville and Caputo's. The first use of fractional derivatives was by Abel to solve an integral equation using fractional 

calculus. Caputo defined the fractional derivatives of order 0 < 𝛼 <
1

3
 for the continuous function. When using 

fractional derivatives to explain viscoelastic materials, Caputo and Mainardi found a connection between them and 

the theory of linear viscoelasticity [42]. 

1.1. Caputo–type fractional derivative 

Let 𝛼 > 0 ∈ ℛ, 𝑘 = ⌈𝛼⌉, and 𝑓 be a continuous function over (𝑎, 𝑏). Then, the Caputo fractional derivative is 

expressed as [43] 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(𝑛−𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝛼+1−𝑛 𝑑𝜏
𝑡

00
𝑐 ,     𝑛 − 1 < 𝛼 < 𝑛. (1) 

1.2. Laplace transform of Caputo–type fractional derivative 

The Caputo-derivative Laplace transform is stated as [44] 

ℒ{𝐷𝑡
𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑘𝑛

𝑘=1 [𝐷𝑡
𝛼𝑓(0)],        𝑛 − 1 < 𝛼 < 𝑛. (2) 

2. Governing equations 

According to [44], Fourier's law links the temperature gradient ∇𝜃 and the heat flux vector �⃑� as 

�⃑�(𝑥, 𝑡) = −𝑘𝑡𝛻𝜃(𝑥, 𝑡).   (3) 

Such that, 𝜃 = 𝑇 − 𝑇𝑏  is the essential temperature of the tissue. The energy equation is given by [45] 

𝜌𝑡𝑐𝑡
𝜕𝜃

𝜕𝑡
+ 𝛾𝑡𝑇0

𝜕

𝜕𝑡
(𝑑𝑖𝑣 �⃑⃑�) = −𝛻 ∙ �⃑� + 𝑄,  (4) 

where �⃑⃑� is displacement vector and div �⃑⃑� = 𝑒 = 𝑒𝑘𝑘 is volumetric strain, 𝑒𝑖𝑗 is the strain tensor, and 𝛾𝑡  is the thermal 

constant factor whose relation with the thermal expansion coefficient 𝛼𝑡 is 𝛾𝑡 = (2𝜇𝑡 + 3𝜆𝑡)𝛼𝑡. The heat source of 𝑄 

for biological tissue can be written as 

𝑄 = 𝑤𝑏𝜌𝑏𝑐𝑏(𝑇𝑏 − 𝑇) + 𝑄𝐿 + 𝑄𝑚,  (5) 

where 𝑤𝑏 is the rate of blood perfusion. 

The CTE theory, which uses Fourier's law to generate the heat conduction equation, is one of the core theories of 

linked thermoelasticity. The Fourier law was changed by the Cattaneo–Vernotte model of thermal conductivity. This 

model, which is described by Sobhy and Zenkour [46], includes a relaxation time, a heat flow, and its temporal 
derivatives 

(1 + ∑
𝜏𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) �⃑� = −𝑘𝑡𝛻𝜃.  (6) 

The simple Lord–Shulman theory, simple (L–S) is assigned by [46] 

𝑘𝑡𝛻
2𝜃 = (1 + 𝜏

𝜕

𝜕𝑡
) [

𝜕

𝜕𝑡
(𝜌𝑡𝑐𝑡𝜃 + 𝛾𝑡𝑇𝑏𝑒) + 𝑤𝑏𝜌𝑏𝑐𝑏𝜃 − 𝑄𝑚 − 𝑄𝑟], (7) 

and the refined L–S generalized thermoelasticity theory is granted by [46] 

𝑘𝑡𝛻
2𝜃 = (1 + ∑

𝜏𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) [

𝜕

𝜕𝑡
(𝜌𝑡𝑐𝑡𝜃 + 𝛾𝑡𝑇𝑏𝑒) + 𝑤𝑏𝜌𝑏𝑐𝑏𝜃 − 𝑄𝑚 − 𝑄𝑟] ,𝑁 ≥ 1, (8) 

Now, by taking the time-fractional heat conduction on equations (6)-(8), we obtain 
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(1 + ∑
𝜏𝑛+𝜈

(𝑛+𝜈)!

𝜕𝑛+𝜈

𝜕𝑡𝑛+𝜈
𝑁
𝑛=1 ) �⃑� = −𝑘𝑡𝛻𝜃,  (9) 

where 0 < 𝜈 < 1. 
The CTE theory is given by 

𝑘𝑡𝛻
2𝜃 =

𝜕1+𝜈

𝜕𝑡1+𝜈
(𝜌𝑡𝑐𝑡𝜃 + 𝛾𝑡𝑇𝑏𝑒) + 𝑤𝑏𝜌𝑏𝑐𝑏𝜃 − 𝑄𝐿 − 𝑄𝑚 . (10) 

The simple L–S theory is given in the form 

𝑘𝑡𝛻
2𝜃 = (1 +

𝜏1+𝜈

(1+𝜈)!

𝜕1+𝜈

𝜕𝑡1+𝜈) [
𝜕

𝜕𝑡
(𝜌𝑡𝑐𝑡𝜃 + 𝛾𝑡𝑇𝑏𝑒) + 𝑤𝑏𝜌𝑏𝑐𝑏𝜃 − 𝑄𝑚 − 𝑄𝐿], (11) 

and the refined L–S generalized thermoelasticity theory 

𝑘𝑡𝛻
2𝜃 = (1 + ∑

𝜏𝑛+𝜈

(𝑛+𝜈)!

𝜕𝑛+𝜈

𝜕𝑡𝑛+𝜈
𝑁
𝑛=1 ) [

𝜕

𝜕𝑡
(𝜌𝑡𝑐𝑡𝜃 + 𝛾𝑡𝑇𝑏𝑒) + 𝑤𝑏𝜌𝑏𝑐𝑏𝜃 − 𝑄𝑚 − 𝑄𝐿] ,     𝑁 ≥ 1, (12) 

It is to be noted that the CTE is obtained by sitting 𝜏 = 0 on (12) and the simple L–S by sitting  𝑁 = 1 in equation 

(12).  
For the sitting one-dimensional problem, the constitutive relations reduced to  

𝜎 = (𝜆𝑡 + 2𝜇𝑡)𝑒 − 𝛾𝑡𝜃,  (13) 

where 

𝑒 =
𝜕𝑢

𝜕𝑥
,  (14) 

and the equations of motion will be reduced to 

(𝜆𝑡 + 2𝜇𝑡)
𝜕2𝑢

𝜕𝑥2 − 𝛾𝑡
𝜕𝜃

𝜕𝑥
= 𝜌𝑡

𝜕2𝑢

𝜕𝑡2 .  (15) 

3. Mathematical approach to the issue 

Seeing the refined Lord–Shulman system, Equations (15), (12), and (13) will be stated in the system of fractional 

order as 

𝜕2𝑢

𝜕𝑥2 − 𝑐1
𝜕𝜃

𝜕𝑥
=

1

𝐶𝑃
2

𝜕2𝑢

𝜕𝑡2 ,  (16) 

𝐶𝑇
2 𝜕2𝜃

𝜕𝑥2 = (1 + ∑
𝜏1+𝜈

(1+𝜈)!

𝜕1+𝜈

𝜕𝑡1+𝜈
𝑁
𝑛=1 ) [(𝑤𝑏𝜌𝑐 +

𝜕

𝜕𝑡
)𝜃 + 𝜂

𝜕2𝑢

𝜕𝑡𝜕𝑥
] − 𝑄0, (17) 

𝜎

𝜆𝑡+2𝜇𝑡
=

𝜕𝑢

𝜕𝑥
− 𝑐1𝜃,  (18) 

where 

𝑐1 =
𝛾𝑡

𝜆𝑡+2𝜇𝑡
,   𝐶𝑃

2 =
𝜆𝑡+2𝜇𝑡

𝜌𝑡
,    𝐶𝑇

2 =
𝑘𝑡

𝜌𝑡𝑐𝑡
,    𝜌𝑐 =

𝜌𝑏𝑐𝑏

𝜌𝑡𝑐𝑡
,    𝜂 =

𝛾𝑡𝑇𝑏

𝜌𝑡𝑐𝑡
,   𝑄0 =

𝑄𝑚

𝜌𝑡𝑐𝑡
. (19) 

With the initial conditions  

𝑢(𝑥, 𝑡)|𝑡=0 =
𝜕𝑛+𝜈𝑢(𝑥,𝑡)

𝜕𝑡𝑛+𝜈
|
𝑡=0

= 0,   𝜃(𝑥, 𝑡)|𝑡=0 =
𝜕𝑛+𝜈𝜃(𝑥,𝑡)

𝜕𝑡𝑛+𝜈
|
𝑡=0

= 0,     𝑛 ≥ 1. (20) 

It is presumed that the biological tissue is adhered to both the top and bottom surfaces. The upper surface of the 
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skin tissue experiences thermal loading, and the bottom surface, which has already reached the rated temperature, 

vanishes. In light of this, the boundary conditions are described as 

𝜃(0, 𝑡) = 𝑔(𝑡),    
𝜕𝜃(𝑥,𝑡)

𝜕𝑥
|
𝑥=𝐿

= 0,     𝑢(0, 𝑡) = 0,     𝑢(𝐿, 𝑡) = 0, (21) 

where, as illustrated in Figure 1, 𝑔(𝑡) represents the thermal load function on the upper face of the skin tissue. Consider 

the plane 𝑥 = 0 of the tissue is labeled to ramp-type heat as 

 𝑔(𝑡) = 𝜃0 {

𝑡

𝑡0
     if       0 < 𝑡 < 𝑡0,

1            if            𝑡 ≥ 𝑡0,
 (22) 

where 𝑡0 > 0 is the ramp-type heating parameter and 𝜃0 > 0 is the constant that symbolizes thermal loading. 

 

 

Fig. 1: The one-dimensional skin tissue with thermal and mechanical boundary conditions 

 

4. Domain of the Laplace transform and its inversion 

With the homogeneous initial conditions (20) and the Laplace transform on both sides of Eqs. (16) through (18), 

we obtain 

(
𝑑2

𝑑𝑥2 − 𝑐2) �̅� − 𝑐1
𝑑�̅�

𝑑𝑥
= 0,  (23) 

(
𝑑2

𝑑𝑥2 − 𝑐3) �̅� = 𝑐4
𝑑𝑢

𝑑𝑥
− �̅�1,  (24) 

�̅�

𝜆𝑡+2𝜇𝑡
=

𝑑𝑢

𝑑𝑥
− 𝑐1�̅�,  (25) 

where 

𝑐2 =
𝑠2

𝐶𝑃
2 ,   𝑐3 =

𝑤𝑏𝜌𝑐+𝑠

𝐶𝑇
2 (1 + ∑

𝜏𝑛+𝜈

(𝑛+𝜈)!
𝑠𝑛+𝜈𝑁

𝑛=1 ) ,

𝑐4 =
𝜂𝑠

𝐶𝑇
2 (1 + ∑

𝜏𝑛+𝜈

(𝑛+𝜈)!
𝑠𝑛+𝜈𝑁

𝑛=1 ),   𝑄1 =
𝑄0

𝐶𝑇
2 .

  (26) 

It is observed that the above bar character means its Laplace transform, 𝑠 implies the Laplace parameter. Solving 

the system of Eqs. (23) and (24) in the Laplace field we get 

�̅� = ∑ (𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 + �̅�2,  (27) 

�̅� = ∑ 𝛽𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 − 𝐵𝑖  𝑒

−𝜉𝑖𝑥)3
𝑖=1 ,  (28) 

where �̅�2 = �̅�1/𝑐3 and 𝐴𝑖 and 𝐵𝑖 are constant coefficients that differ on s. The inputs 𝜉𝑖 and 𝛽𝑖  are provided by 
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𝜉1, 𝜉2 =
1

√2
√𝑐1𝑐4 + 𝑐2 + 𝑐3 ± 𝜉0,    𝜉0 = √(𝑐1𝑐4 + 𝑐2)

2 + 𝑐3[𝑐3 + 2(𝑐1𝑐4 − 𝑐2)], (29) 

𝛽𝑖 =
𝜉𝑖(𝜉𝑖

2−𝑐1𝑐4−𝑐3)

𝑐2𝑐4
.  (30) 

Besides, the dilatation in Eq. (14) is assumed in the Laplace space by 

�̅� = ∑ 𝛽𝑖𝜉𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 .  (31) 

Additionally, the axial stress corresponding to Eq. (25) develops into 

�̅� = ∑ 𝜁𝑖(𝐴𝑖  𝑒
𝜉𝑖𝑥 + 𝐵𝑖  𝑒

−𝜉𝑖𝑥)2
𝑖=1 − �̅�3,  (32) 

where 

𝜁𝑖 = (𝜆𝑡 + 2𝜇𝑡)(𝛽𝑖𝜉𝑖 − 𝑐1),     �̅�3 = (𝜆𝑡 + 2𝜇𝑡)𝑐1�̅�2. (33) 

The Laplace transform domain's boundary conditions (21) are provided by 

�̄�(𝑥, 𝑠)|
𝑥=0

=
𝜃0(1−𝑒−𝑡0𝑠)

𝑡0𝑠2 = �̄�𝑠,  (34) 

𝜕�̄�(𝑥,𝑠)

𝜕𝑥
|
𝑥=𝐿

= 0,    �̄�(𝑥, 𝑠)|𝑥=0,𝐿 = 0.  (35) 

The peculiar parameters 𝐴𝑖 and 𝐵𝑖 are stocked in the resolution of the substantial arrangement of direct conditions. 

Equations (27) and (28), by applying the aforementioned boundary conditions, get the following result: 

[
 
 
 

1 1
𝜉1𝑒

𝜉1𝐿 −𝜉1𝑒
−𝜉1𝐿

1 1
𝜉2𝑒

𝜉2𝐿 −𝜉2𝑒
−𝜉2𝐿

𝛽1 −𝛽1

𝛽1𝑒
𝜉1𝐿 −𝛽1𝑒

−𝜉1𝐿

𝛽2 −𝛽2

𝛽2𝑒
𝜉2𝐿 −𝛽2𝑒

−𝜉2𝐿]
 
 
 
{

𝐴1

𝐵1

𝐴2

𝐵2

} = {

�̄�𝑠 − �̅�2

0
0
0

}.  (36) 

We solved the aforementioned system of linear equations to get the following parameters to finish the solutions in 

the Laplace transform domain: 

𝐴1 =
1

∆
𝛽2(�̄�2 − �̄�𝑠)(𝑒

(𝜉1−𝜉2)𝐿 − 𝑒(𝜉1+𝜉2)𝐿),  (37) 

𝐵1 =
1

∆
𝛽2(�̄�2 − �̄�𝑠)(𝑒

(3𝜉1−𝜉2)𝐿 − 𝑒(3𝜉1+𝜉2)𝐿),  (38) 

𝐴2 =
1

∆
𝛽1(�̄�𝑠 − �̄�2)(𝑒

(𝜉1−𝜉2)𝐿 − 𝑒(3𝜉1−𝜉2)𝐿),  (39) 

𝐵2 =
1

∆
𝛽1(�̄�𝑠 − �̄�2)(𝑒

(𝜉1+𝜉2)𝐿 − 𝑒(3𝜉1+𝜉2)𝐿),  (40) 

in which 

∆= (𝛽1 + 𝛽2)(𝑒
(𝜉1+𝜉2)𝐿 − 𝑒(3𝜉1−𝜉2)𝐿) + (𝛽1 − 𝛽2)(𝑒

(𝜉1−𝜉2)𝐿 − 𝑒(3𝜉1+𝜉2)𝐿). (41) 

It has now been entirely resolved for the transform domain. Given the difficulty of the formulations in Eqs. (27) 
and (28), achieving the inverse transform in the time domain analytically is not an easy task. So, the numerical inverse 

Laplace transform approach will be treated to ascertain the responses of temperature, displacement, and stress in the 

real-time domain. Numerical results are generated in the physical domain using the Riemann-sum approximation 

technique. Using the well-known equation, any function 𝑓(𝑥, 𝑠) in the Laplace transform space is converted into a 

physical domain 𝑓(𝑥, 𝑡) in this approach [47] 
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𝑓(𝑥, 𝑡) =
𝑒𝜚𝑡

𝑡
[
1

2
𝑅𝑒{𝑓(𝑥, 𝜚)} + 𝑅𝑒 {∑ (𝑓 (𝑥, 𝜚 +

𝑖(𝑛+𝜈)𝜋

𝑡
) (−1)(𝑛+𝜈))𝑁

𝑛=0 }], (42) 

where Re is a function's real component, i = √−1, and 𝜚 ≈ 4.7/𝑡 [47]. 

5. Numerical outcomes 

Here, we'll talk about the numerical findings related to temperature, displacement, and dilatation across the skin 

tissue. It will be discussed how fractional order can be applied to the traditional CTE theory and the simple and refined 

L–S generalized thermoelasticity theories. Table 1 shows the elastic constants of the blood and tissue. 

 

Table 1: Elastic constants of skin biological tissue and blood. 

Property Value 

Lame constant 𝜆𝑡 8.27 × 108 kg/(m s2)  

Lame constant 𝜇𝑡 3.446 × 107  kg/(m s2)  

Tissue density 𝜌𝑡 1190 kg/m3   

Arterial blood temperature 𝑇𝑏 310 K  

Tissue-specific heat 𝑐𝑡  3600 J/(K kg)  

Tissue conductivity 𝑘𝑡 0.235 W/(m K)  

Blood density 𝜌𝑏 1060 kg/m3   

Blood specific heat 𝑐𝑏 3770 J/(K kg)  

Linear thermal expansion 𝛼𝑡 1 × 10-4 (1/K)  

Thickness of the skin tissue 𝐿 1 mm  

Metabolic heat source 𝑄𝑚  368.1 W/m3  

 

Numerical results are appeared and presented in Figures 2-7. Figure 2 displays the distributions of temperature 𝜃, 

displacement 𝑢, and dilatation 𝑒 across the skin tissue using the thermoelasticity CTE, simple L–S, and refined L–S 

models with fractional effects eliminated (𝜈 = 0). A direct decrease in temperature along the 𝑥-axis is predicted by 

both the simple L–S and CTE theories. The revised L–S model has changed how the behavior appears. The temperature 

oscillates in the 𝑥 direction due to the thickness of the skin tissue. The displacement achieves its maximum value for 

the CTE and simple L–S models at 𝑥 = 0.4. 

The simple L–S model produces the highest displacement at 𝑢 = 0.85 at 𝑥 = 0.4. Again, the new L–S line changes 

how displacement 𝑢 looks. The displacement reaches its maximum value, 𝑢 = 0.6, between 𝑥 = 0.3 and 𝑥 = 0.7. The 

dilatation reduces directly as 𝑥 grows for the CTE and simple L–S curves. The revised L–S model alters how the 

behavior of dilatation 𝑒 is seen. The dilatation 𝑒 vibrates in the 𝑥 direction. It's noteworthy to note that the dilatation 

𝑒 vanishes at 𝑥 = 0.4 for all hypotheses. 

 

 

Fig. 2: Distributions of temperature 𝜽, displacement 𝒖, and dilatation 𝒆 during the skin tissue without the effect of fractions. 

According to the thermoelasticity theories CTE, simple L–S, and refined L–S with fractional parameter 𝜈 = 0.8, 

Figure 3 displays the distributions of temperature 𝜃, displacement 𝑢, and dilatation 𝑒 across the skin tissue. For the 
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CTE model, the temperature 𝜃 appears to be falling straight along the 𝑥 direction. The temperature 𝜃 moves along the 

𝑥  axis for the simple L–S theory. When 𝑥 = 0.55, 𝜃  begins to disappear. The refined L–S line states that the 

temperature 𝜃 declines gradually as 𝑥 rises until 𝑥 = 0.5, at which point it decreases directly along the 𝑥 direction. 

The maximum displacement 𝑢 for the CTE and simple L–S models occurs at 𝑥 = 0.4, and the temperature 𝜃  is 

diminished at 𝑥 = 0.7. The improved L–S model, where 𝑢 = 0.9, has a maximum u value at 𝑥 = 0.6. For all theories, 

the dilatation e falls off immediately. As 𝑥 rises, the dilatation e reduces gradually until 𝑥 = 0.5, at which point it 

decreases directly. For CTE and simple L–S theories, the dilatation e vanishes at 𝑥 = 0.4, but it vanishes for the refined 

L–S theory at 𝑥 = 0.5. 

 

   
Fig. 3: Distributions of temperature 𝜽, displacement 𝒖, and dilatation 𝒆 during the skin tissue with fraction parameter 𝝂 = 𝟎. 𝟖. 

   

Fig 4: Distributions of temperature 𝜽 during the skin tissue according to (a) CTE, (b) Simple L–S and (c) Refined L–S with different 

fractional parameters. 

 

Fig 5: Distributions of displacement 𝒖 during the skin tissue according to (a) CTE, (b) Simple L–S and (c) Refined L–S with different 

fractional parameters. 
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Fig 6: Distributions of dilatation 𝒆 during the skin tissue according to (a) CTE, (b) Simple L–S and (c) Refined L–S with different 

fractional parameters. 

As a second instance, the impacts of the fractional parameter 𝜈 on the temperature, displacement, and dilatation 

according to different theories are considered in Figures 4-6. Different values of the fractional parameter are applied 

in these figures. Once again, Figure 4 shows that the temperature 𝜃, according to CTE, simple L–S and refined L–S 

through the skin tissue with different fractional parameters. The temperature 𝜃 in Figure 4(a), decreases directly for 

all values of 𝜈 and vanishes when 𝜈 = 0.9 as 𝑥 = 1. Furthermore, in Figure 4(b), the temperature 𝜃, decreases directly 

for 𝜈 = 0 and 𝜈 = 0.7 and vibrates for 𝜈 = 0.5 and 𝜈 = 0.9 and it vanishes when 𝜈 = 0.9 at 𝑥 = 0.5. In Figure 4(c), 

the temperature 𝜃 decreases directly when 𝜈 = 0.5 and 𝜈 = 0. It vibrates when 𝜈 = 0.9 and 𝜈 = 0.7 and it vanishes 

when 𝜈 = 0.9 at 𝑥 = 0.6 and as 𝜈 = 0.7, temperature 𝜃 vanishes at 𝑥 = 0.8. 
Figure 5 indicates that the displacement 𝑢, according to CTE, simple L–S and refined L–S theories through the 

skin tissue with different fractional parameters. Figure 5(a) shows that the displacement 𝑢 has maximum values when 

𝑥 = 0.4  for all values of 𝜈 . The maximum value of the displacement 𝑢  is 𝑢 = 0.7 when 𝜈 = 0 , whereas the 

displacement 𝑢 , in Figure 5(b) has maximum values when 𝑥 = 0.4 for 𝜈 = 0.9, 𝜈 = 0.7, and 𝜈 = 0  and has the 

maximum value at 𝑥 = 0.5 when 𝜈 = 0.5. The maximum value of the displacement 𝑢 is 𝑢 = 0.8  when  𝜈 = 0. Figure 

5(c) shows that the displacement 𝑢 has maximum values when 𝑥 = 0.6 for 𝜈 = 0.9 and 𝜈 = 0.7 and has maximum 

values at 𝑥 = 0.3 for 𝜈 = 0.5 and 𝜈 = 0. The maximum value of the displacement 𝑢 is 𝑢 = 1.20 when 𝜈 = 0.9. 

Figure 6 indicates that the dilatation 𝑒 according to CTE, simple L–S, and refined L–S theories through the skin 

tissue with different fractional parameters. In Figure 6(a), the dilatation 𝑒 directly decreases during the skin tissue and 

vanishes when 𝑥 = 0.4 for all values of 𝜈. The dilatation 𝑒 in Figure 5(b) directly decreases during the skin tissue for 

𝜈 = 0 and 𝜈 = 0.7 and vibrates for 𝜈 = 0.5 and 𝜈 = 0.9. Once again, the dilatation 𝑒 vanishes when 𝑥 = 0.5 for 𝜈 =
0.5 and vanishes at 𝑥 = 0.45 for other values of 𝜈. In Figure 5(c), dilatation 𝑒 directly decreases during the skin tissue 

for 𝜈 = 0.5 and 𝜈 = 0 and vanishes as 𝑥 = 0.35. The dilatation 𝑒 vibrates for 𝜈 = 0.9 and 𝜈 = 0.7 and vanishes at 

𝑥 = 0.6. 
 

 

Fig 7: Distributions of temperature 𝜽 during the skin tissue according to (a) CTE, (b) Simple L–S and (c) Refined L–S with 𝝂 = 𝟎. 𝟖. and 

different values of ramp-type heat 𝒕𝟎. 
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Fig 8: Distributions of displacement 𝒖 during the skin tissue according to (a) CTE, (b) Simple L–S and (c) Refined L–S with 𝝂 = 𝟎. 𝟖. and 

different values of ramp-type heat 𝒕𝟎. 

   

Fig 9: Distributions of dilatation 𝒆 during the skin tissue according to (a) CTE, (b) Simple L–S and (c) Refined L–S with 𝝂 = 𝟎. 𝟖. and 

different values of ramp-type heat 𝒕𝟎. 

Figures 7-9, show that the effect of ramp-type heat 𝑡0 on the behavior of temperature, displacement, and dilatation 

corresponding to distinct theories. In Figure 7 the difference between thermoelastic theories appeared on distributions 

of temperature 𝜃 during the skin tissue with different values of ramp–type heat 𝑡0. Figure 7(a) shows the impact of the 

ramp-type heat 𝑡0 on temperature 𝜃 according to CTE, such that the higher value of ramp–type heat causes the lowest 

value of temperature 𝜃. Furthermore, the impact of the ramp-type heat 𝑡0 on temperature 𝜃 according to Simple (L–

S) theory, shown in Figure 7(b). The temperature 𝜃 starts with different values and then gradually decreases until 𝑥 =
0.2, then it decreases rapidly to vanish at 𝑥 = 5.5, then the temperature 𝜃 for all three cases of the ramp-type heat 𝑡0 

oscillate at close values. The behavior of temperature 𝜃 in Figure 7(c) starts such that temperature 𝜃 decreases for all 

three cases of the ramp-type heat 𝑡0 gradually until it reaches zero at 𝑥 = 5.5, then the temperature 𝜃 which is affected 

by the smaller value of 𝑡0 decreasing faster than the one which is affected by the largest value of 𝑡0. 

As a second case, Figure 8 shows the difference between thermoelastic theories that appeared on distributions of 

displacement 𝑢 during the skin tissue with different values of the ramp-type heat 𝑡0. It is clear that in Figure 8 the 

higher value of 𝑡0 causes less displacement than the lower 𝑡0. Comparing the results of displacement 𝑢 between in 

thermoelastic theories in Figure 8, it is clear that the displacement 𝑢 according to CTE in Figure 8(a) has a maximum 

value at 𝑥 = 0.4 for all values of 𝑡0 such that 𝑢 = 0.455 at 𝑡0 = 35, 𝑢 = 0.545 at 𝑡0 = 30 and 𝑢 = 0.650 at 𝑡0 =
25. Furthermore, displacement 𝑢 according to Simple (L–S) theory in Figure 8(b) has a maximum value at 𝑥 = 0.4 

for all values of 𝑡0  such that 𝑢 = 0.754  at 𝑡0 = 35 , 𝑢 = 0.850  at 𝑡0 = 30  and 𝑢 = 1.05  at 𝑡0 = 25 . Finally, 

displacement 𝑢 according to refined (L–S) theory in Figure 8(c) has a maximum value at 𝑥 = 0.55 for all values of 𝑡0 

such that 𝑢 = 0.95 at 𝑡0 = 35, 𝑢 = 1.1 at 𝑡0 = 30 and 𝑢 = 1.35 at 𝑡0 = 25. 

Figure 9 shows the difference between thermoelastic theories that appeared on distributions of dilatation 𝑒 during 

the skin tissue with different values of the ramp-type heat 𝑡0 . Figure 9(a) shows the distribution of dilatation 𝑒  
according to CTE. It shows the direct decrease of dilatation until 𝑒 = 0 at 𝑥 = 0.4 for all values of 𝑡0 then dilatation 

is slowly decreasing for the large 𝑡0. In the same way, dilatation 𝑒  directly decreases according to simple L–S until 
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𝑒 = 0 at 𝑥 = 0.4, then it oscillates. Finally, dilatation 𝑒  according to refined L–S is directly decreasing in Figure 9(c) 

until 𝑥 = 0.55. then it slowly decreases for the higher value of 𝑡0. 

 

 

Fig 8: 3D Distributions of temperature 𝜽 during the skin tissue according to (a) CTE, (b) Simple (L–S) and (c) Refined (L–S) with 

fractional parameter 𝝂 = 𝟎. 𝟖. 

The 3D plot is given to show the distributions of temperature 𝜃(𝑥, 𝑡), displacement 𝑢(𝑥, 𝑡) and dilatation 𝑒(𝑥, 𝑡) 
during the skin tissue corresponding to numerous theories with the effect of fractional parameter 𝜈 = 0.8. Figure 10 

shows that the fractional parameter 𝜈 = 0.8 has a great effect on the distribution of the temperature 𝜃(𝑥, 𝑡) through 

the time 𝑡 on the simple L–S and refined L–S models.  

6. Conclusions 

This study considers a newly evolved model of thermoelasticity with a new consideration of heat conduction with 

fractional-order theory with the Caputo fractional derivative of order 𝜈. The present model is studied through one-

dimensional small-thickness skin tissue under a ramp-type heat. The Solutions are achieved by using Laplace integral 

transform to analyze the data of the model. The numerical solutions for temperature 𝜃, displacement 𝑢, and dilatation 

𝑒 are computed and clarified graphically. The outcome of the fractional order on the temperature 𝜃, displacement 𝑢, 

and dilatation 𝑒 according to different thermoelasticity theories CTE, simple L–S, and refined L–S appeared clearly 

in the figures. In the absence of the fractional operator's effect, it is noted that the CTE theory and the simple L–S 

behaviors due to temperature 𝜃, displacement 𝑢, and dilatation 𝑒 took the same shape. The influence of fractional 

derivatives is noted on the temperature 𝜃. It is clear that the temperature values decrease, especially in simple L–S and 

refined L–S.  In addition to that, displacement behavior is impressed, whereas it decreases according to CTE and 

increases according to Refined L–S. In all curves according to refined L–S, it is clear to note the difference in the 

shape of the curves of temperature 𝜃, displacement 𝑢, and dilatation 𝑒.  

Furthermore, comparing several values of 𝜈 on different theories of CTE, simple L–S and refined L–S, it is noted 

that the higher value of 𝜈 makes changes in the shape of temperature 𝜃 with lower values. That means the effect of 

fractional parameter on temperature causes weak conductivity and then it makes the change on displacement 𝑢, and 

dilatation 𝑒. 

Based on the previous results, the solutions of the nondimensional temperature, displacement, stress, and strain 

distributions are significantly affected by the fractional-order parameter in the current model. The application of this 
study could be helpful in the uses of intensity move through organic tissues on a large scale, such as the use of lasers 

which rely on waves transferring heat in the treatment of skin diseases, cleaning burns from ruptured tissues, actinic 

keratosis, squamous cell carcinoma, and plastic surgery. 
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