
Journal of Computational Applied Mechanics 2023, 54 (2): 309-322 

DOI: 10.22059/jcamech.2023.355809.812 

 

          RESEARCH PAPER   

 

Stability analysis of conveying-nanofluid functionally graded 
nanotube under based on nonlocal couple stress theory 

Rouzbeh Mahmoudi a, Mohammad Hosseini b,*, Ahmad soleimani c 

a Department of Mechanical Engineering, Yasouj University, Yasouj, Iran. 
b Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Iran. 

c Department of Mechanical Engineering, University of Jiroft, Jiroft, Iran. 

Abstract 

The dynamics behavior and stability of axially functionally graded fluid-conveying nanotube is 

investigated, in this paper. The simultaneous influence of both fluid flow and variation of modulus 

of elasticity on the behavior of simply–simply supported (S-S) and clamp-clamp (C-C) boundary 

conditions conveying fluid were studied. Small-scale effects are considered using nonlocal couple 

stress theory in the solid part and in the fluid part. Based on the nonlocal couple stress theory, 

Bernoulli-Euler beam theory, and Hamilton’s principle, the governing equation of motion, and 

associated boundary conditions were derived to explain fluid-structure interaction (FSI). These 

equations were solved using Galerkin numerical method and temporal differential equation 

analysis method. The effects of some parameters such as Knudsen number, density, size 

parameter, and … were investigated. According to the results, it can be seen that the present 

method has created an equilibrium for the effect of the size parameters (μ, l) on the critical 

velocity. The higher value of the Knudsen number caused sooner divergence and flutter 

instabilities to happen. The results show that if the parameters of the size effect are not considered, 

it causes errors in the calculations. The obtained results confirm the crucial effects of size. 

Keywords: size-dependent solid-fluid interaction; nonlocal couple stress theory; functionally graded 

materials; nanotube. 

1. Introduction 

Much research has been done in the field of nanomechanics in the last two decades [1-43]. Nanobiotechnology is 

an important and widely used branch of nanotechnology [44-56]. In the meantime, nanotubes have found wide 

applications in modern medicine, and they are widely used in drug delivery and biosensors. Since 2004, nanotubes 

have been widely investigated as drug carriers for intracellular delivery of chemotherapy drugs, proteins, and genes. 

In vivo, cancer treatment using carbon nanotubes has been proven in animal experiments by various research 

groups. Applications of nanotechnology in medical science include the use of self-exploding microcapsules in drug 

delivery, the role of carbon nanotubes in human bone repair, stop bleeding in less than 15 seconds, nanotechnology 

and cancer treatment, etc. The use of carbon nanotubes containing fluid as nanoscale fluid transfer units as well as 

their application in targeted drug delivery to a specific cell area in the tissue of living organisms has caused many 

researchers from different fields of science to engage in research in the advancement of related research. Carbon 

nanotubes are known to be the principal member of most nano-scale material transfer and transfer tools in the future. 

Many studies have been carried out in the field of carbon nanotubes conveying fluid, some of which will be 

reviewed below. 

In the frameworks of nonlocal strain gradient theory, Zhu et al. [1] investigated the vibration behavior of 

magnetically embedded spinning axially functionally graded nanotubes conveying fluid under axial loads. A new 

 

* Corresponding author.  

E-mail address: s.m.hssini@gmail.com  

 

mailto:s.m.hssini@gmail.com


310 Rouzbeh Mahmoudi et al. 

model for fluid-conveying nanotubes made of bi-directional functionally graded was proposed by Tang and Yang 

[2]. In the frameworks of nonlocal strain gradient theory, Nematollahi et al. [3] investigated fluttering and 

divergence instability of functionally graded viscoelastic nanotubes conveying fluid. Hu et al. [4] studied the 

nonlinear instability of a fluid-conveying radially functionally graded nanopipe based on the Euler-Bernoulli beam 

theory and nonlocal strain gradient theory. 

Shaat et al. [5] studied wettability and confinement size effects on the vibration and stability of water-conveying 

nanotubes. Gorbani et al. [6] investigated and studied carbon nanotubes (CNTs) using molecular dynamics 

simulation and nonlocal strain gradient continuum model. Longitudinal vibration behaviors of CNTs conveying 

viscous fluids was investigated by Oveissi et al. [7]. Rashidi et al. [8] presented an innovative model for coupled 

vibrations of nanotubes conveying fluid by considering the small-size effects on the flow field. Based on the 

molecular dynamics simulation, nonlocal strain gradient shell model for buckling analysis of nanotubes was 

calibrated by Mehralian et al. [9]. Jabbari et al. [10] investigated water-solid interaction and thermal resistance using 

molecular dynamics simulation. Ghanbari et al. [11] reappraised the vibration analysis of a double-walled carbon 

nanotube (DWCNT) conveying viscous flow based on the modified strain gradient. Nonlocal strain gradient shell 

model was calibrated for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation 

by Mohammadi et al. [12]. Bidgoli et al. [13] used orthotropic Mindlin shell theory to study nonlinear vibration and 

instability of embedded temperature-dependent uniform and FG cylindrical shell conveying viscous fluid resting on 

temperature-dependent orthotropic Pasternak medium are investigated. Based on the Eringen and Euler–Bernoulli 

beam theory, Bahaadini and Hosseini [14] Nonlocal divergence and flutter instability analysis of embedded 

fluid‑conveying carbon nanotube in a Winkler and Pasternak foundation under magnetic field. Mahinzare et al. [15] 

introduced a new model for vibration and instability analysis of a single-walled carbon nanotube (SWCNT) 

conveying viscous fluid flow based on the first-order shear deformation shell model and nonlocal strain gradient 

theory. In the frameworks of nonlocal strain gradient theory, Lee and Chang [16] investigated coupled vibration of 

fluid-conveying double-walled carbon nanotubes and the influences of nonlocal effect, aspect ratio and van der 

Waals interaction on the fundamental frequency. In the frameworks of strain gradient elasticity theory combined 

with inertia gradients, Wang [17] introduce a model for the vibration of fluid-conveying nanotubes using Euler-

Bernoulli or Timoshenko assumptions. Hashemnia et al. [18] investigate vibrational single-layered graphene sheets 

and single-wall carbon nanotubes based on the molecular structural mechanics approach. In addition to these, other 

valuable research have also been carried out [19-24]. 

Functionally graded materials (FGMs) are composite materials in which mechanical properties vary smoothly 

and continuously from one surface to the other [25, 26]. Functional grading of material can be used to achieve a 

variety of goals, including alleviation of residual stresses, reducing stresses during the lifetime of the structure, 

improvement of stability and dynamic response, preventing fracture and fatigue, etc [27]. Several papers considering 

various aspects of FGM have been published in recent years [28-33] 

Based on the nonlocal couple stress and Bernouli-Euler beam theory, the effects of some parameters were 

investigated in a conveying-fluid nanotube made of functionally graded materials. In this framework and Hamilton’s 

principle, the governing equation of motion was derived. 

 

 

 

2. Theory and formulation 

If ,  and  are components of the displacement vector for nano-beams based on Euler-Bernoulli beam 

theories, then they are defined by: 
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where, w(x,t) is the transverse displacement of any point of the beam. The non-zero component of strain tensor and 

curvature tensor based on the displacement field is defined by: 
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Based on the nonlocal couple stress theory, the constitutive equation is expressed as follows: 
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where the material properties (modulus of elasticity and density) are defined as; 
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Employing Hamilton’s principle, the governing equation of a nanotube conveying nanofluid is obtained. So; 
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In which, δU, δW and δK present variations of the strain energy, work and kinetic energy, respectively. According to 

the nonlocal couple stress theory, variation of the strain energy density function of an isotropic linear elastic material 

with volume V experiencing an infinitesimal displacement is obtained by: 
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where, N, M and Y are resultant stresses defined by: 
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The variation of kinetic energy can be written as: 
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where, ρ is the nanotube density, and; 
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(10) 
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The variation of work done by the external force, Fext, is as follows: 

(11) ext
V

W F wdV    
By substituting Eqs. (7), (9), (11) into Eq. (6) and through mathematical analysis, the governing equations yield 

as follows: 
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The surface integrals of Eq. (3) simplify the constitutive equation according to the resultant stress tensors as 

follows: 
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Therefore; 
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To derive the effect of flow on the vibration and instability of the nanotube, the momentum balance equation for 

the fluid flow is developed. The well-known Navier–Stokes equation for a fluid is stated as follows [34]: 

(16) 2Dv
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To obtain the force exerted on the nanotube by the fluid flow, the following assumptions are made 

(a) The fluid flow is fully developed in the flow direction, i.e:. 
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(b) The slender body theory is applied to the nanotube with a high aspect ratio Wang and Ni [35]. 
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where, vr is the average flow velocity in the direction of fluid flow. The force exerted on the nanotube induced by 

the fluid flow is directly related to the fluid pressure gradient. The Navier–Stokes equation in the r direction is 

developed as follows: 
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where, the terms multiplied by ρ and μ on the right-hand side of Eq. (19) are associated with the fluid inertia and the 

fluid viscosity, respectively. Since the first term is small, it can be dropped according to Wang and Ni [35]. Using 

Eq. (19), an equation for the forces induced by the fluid flow Fext is obtained as: 
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where, mf is the fluid mass per unit length. 

The flow behavior at the nano-scale is differ substantially from those at large scales, especially at low Reynolds 

number [36]. For this problem, it is assumed there is a slip boundary condition between the fluid flow and the 

nanotube walls. Therefore, we use the velocity correction factor (VCF) proposed by Rashidi et al. [8] to consider the 

slip boundary condition and the small size effects on the fluid flow: 
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where,  and U are the average flow velocities through the nanotube with and without considering the slip 

boundary condition, respectively. Kn is the Knudsen number,  is the tangential momentum accommodation 

coefficient and is considered to be equal to 0.7 [8], and  is a coefficient, which can be defined as a function of Kn 

using Eq. (22) [8] 
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where, and B are empirical parameters and are equal to 4 and 0.4, respectively [8].  is given by: 
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For the second-order term of slip boundary condition, b is set at one [37]. Therefore, the external force is equal to; 
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By substituting the external forces given by Eq. (24) into Eq. (13), and then applying the nonlocal elasticity and 

the couple stress theories, the fluid–structure interaction (FSI) governing equation for the nanotube can be written as 

follows: 
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Using dimensionless variables and parameters, Eq.(25) can be rewritten in a dimensionless form 

as: 
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To compute the complex eigenvalues of the nanotube vibrations, we employ the extended Galerkin method to 

solve the partial differential equation of motion, and the associated boundary conditions, by a finite dimensional 

system of coupled ordinary differential equations. Accordingly, the flexural displacement of the nanotube can be 

represented in the form of a series given by: 
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where, n is the number of vibrational modes, Ti(τ) represents the nth modal coordinate and ϕi( ) denotes the basis 

function for the nth eigenmode. For a simply supported nanotube, ϕI can be written as: 
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3. Validation 

Verification of the results of this research with those available in other research. Comparing the results shows 

that the presented method is very accurate 

Table 1: Verification of the results of this research with those available in other research. 

 ,nK    0,0   0.001,0   0.001,0.2  

Present results 3.142 3.119 2.641 

Sadeghi-Goughari et al. [37] 3.142 3.118 2.64 

Ni et al. [38] 3.142 3.118 2.64 

Mirramezani and Mirdamadi [39] 3.142 3.118 2.64 
 

4. Results and discussions 

 

The effect of different parameters on the dynamics of functionally graded nanotubes is studied, and numerical 

results are presented in this section. The effect of β changes on the modulus of elasticity is visible in fig. 1. It can be 

seen in figs. 1 and 2, nanotubes can be used for higher velocities, and instability will occur at higher fluid velocities. 

Therefore, increasing the modulus of elasticity has a positive effect on the structure’s efficiency. 
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Fig. 1: The effect of β on the modulus of elasticity. 

  
(a) simply–simply supported (S-S) boundary conditions  (b) simply–simply supported (S-S) boundary conditions 

 
(c) clamp-clamp (C-C) boundary conditions 

Fig.2: The effect of  on the imaginary part of the first frequency 

Fig. 2 shows the effect of the variation of  on the critical velocity. As the  value increases, the critical 

velocity increases. Therefore, the structure will be stable up to higher speeds by increasing . 
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(a) simply–simply supported (S-S) boundary conditions (b) simply–simply supported boundary 

conditions 

 
(c) clamp-clamp (C-C) boundary conditions 

Fig.3: The effect of density changes on dimensionless critical flow velocities. 

The effect of density changes on the critical velocity can be seen in Fig. 3. At low speeds (0<u<2), with 

increasing beta, the imaginary part of the frequency decreases. This effect fades for higher speeds. As can be seen, 

density changes do not affect on the critical velocity. 

 
Fig. 4: The effect of the Knudsen number on the dimensionless flow velocities. 

Fig. 4 demonstrates the effect of the Knudsen number on the dimensionless flow velocities and dynamic 
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response of a simply–simply supported (S-S) boundary conditions nanotube conveying a liquid. The effect of the 

Knudsen number is low at low velocities, and at high velocities, the effect of this number is more significant, in 

contrast to the effect of density. As the Knudsen number increases, the critical velocity decreases. 

 
Fig.5: The effect of size parameter μ on the dimensionless flow velocities. 

The effect of the size parameter μ on the dimensionless critical flow velocities on the simply–simply supported 

(S-S) boundary conditions nanotube is shown in Fig. 5. The critical velocity of the fluid and the size parameter are 

inversely related. The critical velocity will be observed sooner if the size effect parameter is larger. Therefore, 

increasing the size parameter μ has led to a softer structure. 

 
Fig.6: The effect of size parameter l on the dimensionless flow velocities of simply–simply supported (S-S) 

boundary conditions nanotube. 

Contrary to what was seen for the effect of size parameter μ, as the size parameter l increases, the critical 

velocity will be increased (The size parameter l and critical velocity are directly related). This fact is shown in Fig. 
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6. The effect of size parameter l on the critical velocity of the fluid is greater than the effect of the size parameter µ. 

Therefore, increasing size parameter l has led to a harder structure. 

 According to the results of Figs. 5 and 6, it can be seen that the present theory has created an equilibrium for the 

effect of the size parameters (μ, l) on the critical velocity. It can be seen that the dynamics of conveying fluid 

nanotubes has a considerable dependency on the size parameter l. 

 
Fig.7: The effect of β on the dimensionless critical flow velocities. 

Fig. 7 demonstrates the effect of β on the critical velocity of simply–simply supported (S-S) boundary conditions 

nanotube. At low speeds (0<u<2), with increasing Beta, the imaginary part of the frequency decreases. This effect 

fades for higher speeds. As can be seen, Beta changes do not affect on the critical velocity. 

5. Conclusion 

In the frameworks of nonlocal couple stress theory, and Bernoulli-Euler beam theory a size-dependent 

functionally graded nanotubes tube conveying fluid is studied to investigate the size effects on flutter and divergence 

instability. The dimensionless equation of motion and boundary conditions are derived using the variational 

approach. The frequency equation was derived as a function of small-scale parameters, Knudsen number, and 

inhomogeneity parameter of FGM. Results were compared with those of other researchers. 

According to the results, it can be seen that the present theory has created an equilibrium for the effect of the size 

parameters (μ, l) on the critical velocity. The smaller value of l may cause sooner divergence and flutter instabilities 

to happen. The opposite of this truth is true for µ. So, increasing the small-scale parameters l and μ will have 

stiffness-softening and stiffness-hardening effects, respectively. Also, a detailed investigation is conducted to 

elucidate the influence of key factors material distribution on the divergence and flutter instability. On the one hand, 

it is found that the density gradient parameter hasn’t a significant effect on the instability. On the other hand, by 

increasing the β, nanotubes can be used for higher velocities, and instability will occur at higher velocities of fluid. 

The presented results are expected to provide a way to guide the application of FG nanotubes as nanofluidic devices. 

By increasing , the divergence fluid velocities reduce; however, the flutter fluid velocity does not vary. 
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