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Abstract 

This paper presents a novel and low-cost formula based on the first-order 

shear deformation theory and Eringen’s nonlocal elasticity theory for the 

stability analysis of tapered Timoshenko nanobeams with axially varying 

materials. The coupled governing differential equations of the problem, 

involving both the transverse displacements and rotations, stem from the 

energy method. Based on a mathematical manipulation, the system of 

equilibrium equations is converted to a novel single fifth-order differential 

equation with variable coefficients in terms of the vertical deflection, which is 

solved numerically to obtain the axial buckling load. The accuracy of the 

proposed formulation is first verified against the available literature, with the 

additional advantage related to its reduced computational effort, compared to 

other formulations. A systematic investigation is, thus, performed to check for 

the influence of the non-local parameter, power-law index, tapering ratio and 

length-to-thickness aspect ratio on the linear buckling strength of simply 

supported functionally graded nano-tapered Timoshenko beams. Due to the 

generality of the derived formula, it can be adjusted for the optimal design of 

Timoshenko nanobeams with favorable axial changes in material properties 

as well as the geometrical features. 

Keywords: Axially functionally graded materials; Differential quadrature method; Nonlocal elasticity 
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1. Introduction 

In recent years, the expansion of nanoscience and nanotechnology has received considerable interest. The 

micro/nano-scaled structural elements such as beams, shells, and plates are extensively adopted as key components in 

different modern engineering devices, including sensors, actuators, transistors, probes, and nano-electromechanical 

systems (NEMS). It is important to note that properties of materials, such as electrical conductivity, thermal 

performance, stiffness, and strength, can change by decreasing the size scale. Such an important aspect is well known 

as the size effect. Since this property cannot be taken into account through classical elastic theories, due to the 

neglecting the material length scale parameter in their mathematical formulation, various higher order continuum 

theories have been proposed in the literature to account for any small-size effect, such as the modified couple stress 

theory, the strain gradient elasticity theory [1], the surface energy theory [2], and the nonlocal elasticity theory [3, 4]. 

Among them, the nonlocal elasticity theory [3] proposed by Eringen is widely employed by many researchers due to 
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its practicality and computational simplicity. This theory assumes that the stress state at an arbitrary point in an elastic 

body is considered as a function of strains of all other points in that continuum. 

With the development of high technology and fabrication processes, the practical application of micro- and 

nanoscale structural components made of functionally graded materials (FGMs) in most innovative and sensitive 

engineering systems and devices, such as atomic force microscopes, sensors, oscillators, nano/micro electro-

mechanical systems (NEMS/MEMS) and actuators, has become very common in the last decades. Due to their 

desirable characteristics, indeed, FGMs are capable to eliminate or minimize the interfacial stress concentrations, as 

well as the multifunctionality thermal resistance and optimal distribution of weight. In such a context, various studies 

have been conducted in literature to investigate the mechanical response of nanobeams made of isotropic and/or 

composite materials, as briefly overviewed in the following.  

In the field of nonlocal differential elasticity methodologies, Reddy [5] proposed some analytical solutions for the 

static, buckling, and vibration analyses of beams by considering different shear deformation theories. With the help 

of Eringen’s non-local elasticity theory, deformation, instability, and vibrational analyses of the Euler-Bernoulli beam 

with variable geometrical and material properties were comprehensively inspected by Pradhan and Sarkar [6]. 

Similarly, Aydogdu [7] applied Eringen’s elasticity model and different beam theories to derive a generalized nonlocal 

beam theory for the mechanical analysis of nano-size beams. A numerical formulation based on the differential 

quadrature method was proposed by Civalek and Akgöz [8] to study the free vibration characteristics of microtubules 

according to Eringen's non-local elasticity theory and Euler-Bernoulli beam hypotheses. Moreover, a modified couple 

stress theory was applied by Ke et al. [9], together with a first-order shear deformable beam model, to study the size-

dependent dynamic stability of microbeams made from FGMs. Mohanty et al. [10], instead, applied the Timoshenko 

beam basics to study the statics and dynamics of simply supported beams made of transversely FGMs.  Danesh et al. 

[11] obtained the motion equations for the longitudinal vibration of nanorods with tapered cross-sections and solved 

them via the differential quadrature method. To carry out the linear stability resistance of micro-columns with linearly 

varying cross-sections, Akgöz and Civalek [12] applied a Rayleigh-Ritz method. The surface impact on the nonlinear 

free vibration of elastically restrained non-local beams with variable cross-section was, also, examined by Malekzadeh 

and Shojaee [13]. In the further work by Ghannadpour et al. [14], the Ritz method was similarly employed to study the 

bending, buckling, and vibration of beams with arbitrary supports by assuming a nonlocal continuum theory. Through 

the strain gradient theory, Akgöz and Civalek [15] studied the instability of micro-beams with a material variation and 

subjected to various types of end supports. Among coupled problems, Ke and Wang [16] assessed the free vibrations 

of magneto-electro-elastic (MEE) nanobeams, based on a nonlocal theory and the Timoshenko beam model. At the 

same time, Rahmani and Pedram [17] adopted the nonlocal Timoshenko beam theory to exploit the size effect on the 

vibrational characteristics of nanobeams made of FGMs. In another research, the stability analysis of double nanobeam 

systems was carried out by Hosseini and Rahmani [18] in closed form, accounting for the surface effect via the theory 

of first-order shear deformation and nonlocal elasticity theory. Ebrahim et al. [19-22] performed some comprehensive 

investigations on the vibration and buckling response of nano-scale FG beams under different circumstances and 

through different beam theories. A novel numerical solution procedure was proposed by Fang and Zhou [23] including 

the Chebyshev polynomials and Ritz’s method into to analyze the free vibration of rotating non-prismatic Timoshenko 

beams with a varying material from ceramic to metal in the axial direction. Different shear deformation beam theories 

were accomplished by Ghasemi and Mohandes [24-26] to study the free vibration behavior of multilayer composite 

beam whose equations of the problem were solved numerically according to the differential quadrature approach. 

Within the context of first-order shear deformation theory and von Kármán-type geometrical nonlinearity, Ansari and 

Gholami [27] explored the impact of small-scale sizes on the buckling and post-buckling strength of nanoplates 

subjected to a magneto-electro-thermo-mechanical loading condition. Pradhan and Chakraverty [28] considered six 

different patterns of the shear deformation to study the vibration of beams made of FGMs under different types of 

boundary conditions, while employing the Rayleigh–Ritz method to solve the problem. Following the nonlocal 

elasticity assumptions, Arefi and Zenkour [29] studied the impact of the mechanical, electrical and magnetic loads on 

the mechanical response of sandwich nanobeams. Chen and Chang [30] also performed a vibration analysis of FG 

beams with a rectangular section using a transformed-section approach and a first-order shear deformation beam 

model. For further numerical-based investigations on the bending, vibration, and buckling behaviors of nano-size 

structural elements made of different materials and subjected to various loadings, the reader is referred to [11, 14, 31-

70]. In another study presented by Arefi [71], the mechanical response of laminated doubly curved nanoshells made of 

two piezoelectric layers and a homogeneous core loaded by a transverse electro-mechanical force was investigated in 

detail. Considering the effects of thermal environment, Jena et al. [72] proposed the Navier’s method to study the 

buckling behavior of different types of Single Walled Carbon Nanotubes (SWNTs) lying on Winkler elastic 

foundation and subjected to simply supported end conditions. Soltani et al. [73, 74] applied the differential quadrature 
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method to assess the sustainable buckling load of axially FG nanobeams with a varying I-section, subjected to 

uniformly distributed load and/or compressive axial force. Moreover, in the context of different shear deformation 

patterns together with classical and/or nonlocal beam theories, several numerical studies about the static and dynamic 

analyses of nano-scale structures with different shapes and geometries exposed to different loading conditions can be 

found in Refs. [69, 75-87]. 

A literature review indicates that the stability behavior of nano-scale tapered Timoshenko beams with axially 

varying materials under compressive axial loading is usually governed by two differential equations coupled in terms 

of the vertical displacement and the rotation angle. Through different solution methodologies including numerical 

and/or analytical techniques, the endurable buckling of tapered AFG Timoshenko nanobeams has been investigated 

before by different authors. For instance, Ritz’s method, the power series approximation and the differential quadrature 

method have been previously utilized to simulate the problem, as well as the finite element solution. Although such 

methods are capable of predicting the critical buckling loads with the desired precision, they need a considerable 

amount of time to be accomplished due to the simultaneous solution of a pair of differential equations. Based on these 

facts, the main objective of this paper is to introduce a simple approach for discussing the linear buckling behavior of 

nano-size first-order shear deformation beams with varying cross-sections as well as material properties, rather than 

solving the conventional system of non-local equilibrium equations. In this regard, the usually coupled differential 

equations for the mentioned beam element are thus condensed to a single equation. Indeed, the present approach is 

inspired by the easy-implementation mathematical approach, recently introduced by Soltani et al. [88, 89] for the 

buckling analysis of non-prismatic classical Timoshenko beams with axially varying materials. 

Based on non-local elasticity theory and the Timoshenko beam model assumption, a pair of coupled equilibrium 

equations are first established using the energy principle for an axially compressed AFG tapered beam in the context 

of linear and elastic behavior. In the next step, the resulting two coupled differential equations with variable 

coefficients for the flexural displacement and the angle of rotation of the cross-section due to bending are reduced into 

a new single fifth-order differential equation, only in terms of the transverse displacement through the general and 

straightforward procedure suggested by Soltani et al. [88, 89]. As far as authors aware, the unique non-local equilibrium 

equation for buckling analysis AFG non-prismatic Timoshenko nanobeam has never been derived before. Owing to 

the presence of the variable coefficients in the resulting differential equation, the generalized differential equation is 

here employed for solving the equilibrium equation and calculating the critical loads. After verifying the accuracy and 

performances of the present procedure, a large numerical investigation checks for the impact of several essential 

parameters, such as the tapering ratio, nonlocal parameter, power-law exponent, and slenderness ratio, on the linear 

stability strength of size-dependent AFG Timoshenko beams with variable cross-sections, providing useful insights 

for further scientific investigations on the problem.  

2. The equilibrium equations 

Let consider an axially compressed non-prismatic straight beam element of length L  whose height and width vary 

arbitrarily along the longitudinal direction (see Fig. 1). It is also assumed that the material properties of the beam with 

rectangular cross-section vary gradually in the axial direction. The orthogonal right-hand Cartesian coordinate system 

(x, y, z) is adopted, where x  denotes the longitudinal axis and y  and z  refer to the first and second principal bending 

axes parallel to the width and thickness, respectively. The origin of these axes O  is located at the centroid of the cross-

section.  

 
Fig. 1. Geometrical scheme for AFG Timoshenko beam with a non-uniform cross-section. 
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In this study, Timoshenko beam theory is applied to describe the displacement field of a point on the section 

contour. This classical theory contains the effects of rotary inertia, transverse shear deformation along with the flexural 

displacement. It is further admitted that the cross-section does not change any shape during deflection. Based on these 

assumptions and using a small displacement theory, the longitudinal and vertical displacement components, 𝑈 and 𝑊, 

can be expressed as 

0( , , ) ( ) ( )U x y z u x z x= +  (1a) 

( , , ) ( )W x y z w x=  (1b) 

where u0 is the axial displacement at the midplane, which occurs only in presence of an external axial loading, w 

represents the vertical displacement (in z-direction), and 𝜃 is the angle of rotation of the cross-section due to bending. 

The Green’s strain tensor components in large displacements, involving both the linear and non-linear strain parts are 

defined as 
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where 𝜀𝑖𝑗
𝑙   and 𝜀𝑖𝑗

∗

 
stand for the linear and quadratic non-linear parts, respectively. Using the displacement field 

given in Eq. (1), the non-zero constituents of linear and non-linear parts of strain-displacement are derived as 
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The resultants of classical stresses for Timoshenko beam can be expressed as follows [5] 

xx
A

N dA=   (4a) 

xx
A

M zdA=   (4b) 

xz
A

Q dA=   (4c) 

where 𝑁  is the axial force applied at end member, 𝑀  is the bending moments about major axis, 𝑄 is the shear 

force at any point of the beam, and 𝜎𝑖𝑗 is the Piola–Kirchhoff stress tensor component. 

As previously stated, for modelling the behavior of a non-scale element, the nonlocal elasticity theory introduced 

by Eringen is utilized in the current study. According to this theory [3], the stress at a point within a body depends not 

only on the strain state at that point but also on strain states at all other points throughout the body. For homogenous 

and isotropic elastic solids, the nonlocal stress tensor 𝜎 at point 𝑥 can be thus defined as 
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( ) ( , ) ( ) ( )l

ij ijkl kl
V

x x x C x dV x  = −     (5) 

in which, 𝜀𝑘𝑙
𝑙  and 𝐶𝑖𝑗𝑘𝑙  denote the components of linear strain and elastic stiffness coefficients, respectively. 

Additionally, 𝛼(|𝑥 ′ − 𝑥|, 𝜏) refers to the nonlocal kernel function, and |𝑥 ′ − 𝑥| is the Euclidean distance. In addition, 

the term 𝜏 = 𝑒0𝑎/𝑙  stands for the material parameter, in which 𝑎 is an internal characteristic length (e.g., lattice 

parameter, C–C bond length and granular distance), l  represents an external characteristic length of the nanostructures 

(e.g., crack length, wavelength), as well as 𝑒0 denotes a material constant which is determined experimentally or 

approximated by matching the dispersion curves of plane waves with those of atomic lattice dynamics. It is possible 

to express the integral constitutive equation presented in Eq. (5) in the form of the following differential constitutive 

equation 

2(1 ) l

ij ijkl klC  −  =  (6) 

where 
2  is the Laplacian operator and 𝜇 = (𝑒0𝑎)

2  denotes the non-local parameter. For Timoshenko 

nanobeams, the nonlocal stress-strain relations can be rewritten as [90] 
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
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 (7) 

𝐸 and 𝐺 are the elastic and shear moduli of the beam, respectively. Since the material properties vary arbitrarily in 

the longitudinal direction, the mentioned elastic properties are functions of the axial coordinate x , as  

( )
( )

2(1 )

E x
G x =

+
 (8) 

where 𝜈 is the Poisson’s ratio and maintains constant through the longitudinal direction [85, 86]. By substituting 

Eqs. (3a-b) into Eq. (8) and the subsequent results into Eq. (5), the nonlocal stress resultants are obtained as [5] 
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In the previous expressions, 𝑘 is the shear correction factor and assumed to be 5/6 for rectangular cross-section [5]. 

Moreover, 𝐴 is the cross-section area, and 𝐼 denotes the area moment of inertia about the y-axis which are defined as 

( ) ( )2, 1,
A

A I z dA=   (10) 

In this research, the equilibrium equations and associated boundary conditions are derived from the stationary 

conditions of the total potential energy. Based on this principle, the following relation is considered: 

0 0l eU U W =  +  − =  (11) 
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In this formulation, 𝛿 denotes a variational operator, 𝑈𝑙 and 𝑈0 represent the elastic strain energy and the strain 

energy due to effects of the initial stresses, respectively. Also, 𝑊𝑒 denotes the work done by the external loading 

applied on the structure. In the special case of the field of flexural stability, where the beam is not subjected to any 

external force, this parameter is equal to zero. In this context, 𝛿𝑈𝑙 can be computed using the following equation 

0 0 0
2 2

L L L
l l l l

l ij ij xx xx xy xy xz xz
V A A A

U dV dAdx dAdx dAdx= = + +                (12) 

in which 𝐿 expresses the element length, 𝛿𝜀𝑖𝑗
𝑙  is the variation of the linear parts of the strain tensor. Using the Eq. 

(3), the variation of the components of linear strain tensor is defined as 

0

l
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u z   = +  (13a) 

( )
1

2xz

l w = +    (13b) 

0
xy
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Substituting Eqs. (13a-c) into Eq. (12) and integrating over the beam’s cross-sectional area, the following 

expression is extracted: 

( ) ( )

( ) ( )

0
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0
        ( )

L L

l xx xz
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   
 (14) 

In addition, the variational form of the strain energy due to initial stresses is defined as 

0 * 0 * 0 * 0 *

0
0 0 0

2 2
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ij ij xx xx xy xy xz xz
V A A A

U dV dAdx dAdx dAdx= = + +                (15) 

where 𝜎𝑥𝑦
0  and 𝜎𝑥𝑧

0  refer to the mean values of the shear stress and 𝜎𝑥𝑥
0  stands for the initial normal stress in the 

cross-section. In this study, the beam is initially subjected to an axial compression load 𝑃0 acting at the end beam 

without any eccentricity. The most general case of the pre-buckling normal and shear stresses associated with the axial 

force applied at the beam supports 𝑃0 are considered as 

0

0 0 0,  0.
xx xz xy

P

A
  = = =  (16a, b) 

Based on Eq. (3c), the first variation of non-linear strain-displacement relation can be written as 

*

xx
w w =   (17) 

In this stage, by substituting Eqs. (16) and (17) into Eq. (15), and integrating the expression over the cross-section 

area of the beam, the variation of strain energy due to the initial stresses takes the following form 

( ) ( )
0

0

0
0 0

( )
L L

A

P
U w w dAdx P w w dAdx

A
   = =      (18) 

After combination of Eqs. (14), (18) into Eq. (11), the expression for the first variation of total potential energy can 
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be written as 

( ) ( ) ( )0

0
( ) ( ) 0

L L L
N u M dx Q w dx P w w dx     = + + + + =         (19) 

By equating the coefficients of the virtual displacements (𝛿𝑢0, 𝛿𝑤, 𝛿𝜃) to zero and integrating by parts, we obtain 

the following relations  

0N − =  (20a) 

0( ) 0P w Q  − =  (20b) 

0M Q− + =  (20c) 

together with the following boundary conditions 

0N =  Or 0
0u =  (21a) 

0 0P w Q− + =  Or 0w =  (21b) 

0M =  Or 0 =  (21c) 

By substituting the nonlocal resultant components (Eq. (9)) into Eq. (20), the final equilibrium equations in terms 

of primary displacement field are obtained as follows 

0 0
: ( ) 0u EAu   =  (22a) 

( ): ( ) 0ivw kGA w Pw Pw   + − + =  (22b) 

( ): ( ) 0EI kGA w   − + =  (22c) 

The boundary conditions of the beam can be also expressed as 

0N =  Or 0
0u =  

(23) ( ) 0kGA w Pw Pw  + − + =   Or 0w =  

0EI Pw + =   Or 0 =  

In these differential equations, the successive 𝑥 −derivatives are denoted by (•)′, (•)′′. In this stage, it is important 

to note that the 1st differential equation Eq. (22a) is uncoupled and does not affect the linear stability analysis of an 

elastic nanobeam subjected to compressive axial load. As in presence of axial force 𝑃0, the rotation of the cross-

section 𝜃, as well as the vertical displacement 𝑤, the two other equilibrium equations (22b-c) have a coupled structure.  

Based on the straightforward methodology presented by Soltani et al. [88, 89], the governing equilibrium equation 
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for the vertical displacement (22b) can be rewritten as 

( )Pw P kGA w

kGA

 − + −
=


  (24) 

whose substitution in the third equilibrium Eq. (22c) enables its redefinition in an uncoupled form just dependent 

on the deflection w , independently from the rotation 𝜃, i.e. 

( )
2

( )( ( ) ) ( ) ( ( ) ) 0
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kGA Pw P kGA w kGA Pw P kGA w Pw Pw
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 
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 
    (25) 

By setting the nonlocality parameter   equal to zero, the following formulations in the context of the classical 

beam theory are obtained in line with the equilibrium equations by Soltani et al. [88, 89]  

( )
2

( )(( ) ) ( ) (( ) ) 0
( )

EI
kGA P kGA w kGA P kGA w Pw

kGA

 
    − − − − = 

 
 (26) 

or equivalently [82, 83] 

( )( ) ( ( ) ) 0kGA EI P kGA EI   + − =    (27) 

Based on the authors’ knowledge, the resulting single fifth-order differential equation for stability analysis of AFG 

Timoshenko nanobeam having non-uniform cross-section has not been acquired previously. Due to the uncoupling 

the system of equilibrium equations, the formula developed herein could simplify the essential computational effort 

to calculate the critical axial load. Therefore, the execution time of the analysis is reduced and the procedure can be 

accomplished with low computational cost. 

In the current work, the geometric and material properties can vary arbitrarily in the axial direction, and 

consequently, all stiffness quantities of the AFG tapered Timoshenko nanobeam are functions of the 𝑥 −coordinate. 

Accordingly, the closed-form solution of the resulting fifth-order differential equation in function of the section 

rotation (25) is not straightforward, but required some numerical procedures. 

3. Solution Methodology 

In this section, the numerical solution of a resulting fifth-order differential equation is developed. Thus, the 

Generalized Differential Quadrature Method (GDQM) is here employed to calculate the axial critical loading. This 

methodology is based on the approximation of a derivative of a function at a specified point by the sum of the weighted 

factors and the values of the function at any set points in the problem-solving range. According to GDQM, the 𝑟𝑡ℎorder 

derivative of a function 𝑓(𝑥) at an arbitrary point is described as [91, 92] 

( )

1

( )         1,2,...,

p

Nr
r

jijr
jx x

d f
A f x for i N

dx ==

= =  (28) 

where 𝑁 is the number of grid points along the x  direction; 𝑥𝑗 refers to the position of each sample point and  

𝑓(𝑥𝑗)  is the corresponding function value. Moreover, 𝐴𝑖𝑗
(𝑟)

denotes the weighting coefficient for the 𝑟𝑡ℎ −order 

derivative. The first-order derivative weighting coefficient (𝐴𝑖𝑗
(1)

) is computed by the following algebraic formulations 

which are based on Lagrangian interpolation polynomials 
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where  

1,

( ) ( )          1,2,...,

N

i i j

j j i

M for i N

= 

 =  −  =  (30) 

The higher-order GDQM weighting coefficients can be computed from the first-order weighting coefficient as  

( ) (1) ( 1)
           2 1

r r
ij ij ijA A A r N

−
=   −  (31) 

In this study, a Chebyshev–Gauss–Lobatto discretization is used to define the position of each sample point [93] 

1
1 cos ,  

2 1

if   0 x L        1,2,...,

i

L i
x

N

i N

 − 
= −   

−  

  =

 (32) 

To simplify the numerical solution procedure of the equilibrium equation utilizing the GDQM, a non-dimensional 

variable ( /x L= ) is adopted. Thus, the final stability equation (25) and Eq. (32) can be transformed into the 

following non-dimensional form 
5 4 4
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1 1
1 cos ,            if   0 1        1,2,...,

2 1
i

i
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By applying the differential quadrature discretization to the non-dimensional governing Eq. (33b)  leads to the 

following expression 
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The matrix form of the resulting formulation can be written as 
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and 
jk  is Kronecker delta function.  

The simple form of the resulting expression (Eq. (35)) can be stated as 

 ( ) * 0GK P K w  + =   (37) 

in which 
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 [KG] and [K*] are 𝑁 × 𝑁  matrices. As mentioned previously, N denotes the number of grid points along the 

computation domain ( 0 1   ). In this research study, the numerical solutions for a simply supported nanobeam are 

obtained using the differential quadrature technique. The corresponding boundary conditions of a simply supported 

Timoshenko nanobeam can be expressed as 
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After accomplishment associated boundary conditions of a simply supported given by Eq. (39), the buckling load 

for nanotapered Timoshenko beams with axially varying materials along with the vertical deformation is derived using 

the eigenvalue solution of Eq. (37). 

4. Numerical results and discussions 

This section explores the effect of different predominant parameters such as FG power index, aspect ratio, non-

locality parameter, and tapering ratios on the linear buckling strength of simply supported AFG double-tapered 

nanobeams based on the first-order shear deformation theory. Both tabular and graphical outcomes are illustrated in 

this context. We utilize the subscripts of ()0 and ()1 to represent the mechanical specifications including the material 

and geometrical ones of the beam element at the left support (x=0, =0) and the right one (x=L, =1), respectively.  

Through this example, the linear buckling analysis is performed for a simply supported width and thickness tapered 

Timoshenko beam under a concentrated compressive axial load. In this regard, it is supposed that the width (𝑏0) and 

the height (𝑑0) of the rectangular profile at the left end vary linearly to 1 0(1 )b b= +  and 1 0(1 )d d= + at the right 

side. Therefore, the rates of cross-section change along the width and thickness are defined as 1 0/ 1b b = −  and 

1 0/ 1d d = − , respectively;  is the height and  is the width tapering ratio, respectively, which can vary in the range 

of 0 9. ,−    . This means that the width and thickness increase by increasing the tapering ratios for all positive values 

0 ,   . Additionally, the width and thickness of the rectangular profile decrease linearly when the tapering parameters 

are negative 0 9 0. ,−     . Note that by equating these two mentioned parameters ( ) to zero, a prismatic 

Timoshenko beam is achieved. Moreover, the non-uniformity parameters ( ) can change concurrently or separately.  

In this benchmark example, it is also considered that the beam is made of axially varying materials. The material 

properties vary along the beam length from a pure ceramic at the left end to a pure metal at the right one using a simple 

power-law function. Hence, the modulus of elasticity in the local coordinate is expressed as [94, 95] 

0 1 0( ) ( )( )mx
E x E E E

L
= + −  (40) 

It should be stated that the power-law index m , is a positive parameter and by setting it equals zero, the beam becomes 

a fully metal member. Moreover, the following non-dimensional expression is used in the figures and tables 

2

0 0

cr
nor

P L
P

E I
=  (41) 

in which 𝐴0 and 𝐼0 represent the cross-sectional area and moment of inertia at the left support, respectively, defined as 

𝐼0 = 𝑏0𝑑0
3/12 and 𝐴0 = 𝑏0𝑑0. 
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The current part is divided in two different subsections; the first one checks for the convergence and verification 

of the formulation proposed herein, and the latter aims to peruse the influence of the above-mentioned factors on the 

linear buckling behavior of the considered member. 

4.1. Convergence of DQ methodology 

The aim of the first section of the current example is to define the minimum number of sampling points along the 

longitudinal direction while using the methodology of differential quadrature employed herein, to obtain accurate 

results. To this end, we consider an AFG double tapered beam with the following parameters: 𝐸0 = 200𝐺𝑃𝑎, 𝐸1 =
70𝐺𝑃𝑎, 𝐿/𝑏0 = 20. The lowest values of the non-dimensional axial load of the selected nano-tapered Timoshenko 

beam with a fixed Eringen’s parameter (𝜇 = 2.0) and two different tapering ratios (𝛽 = 𝛼 = 0.2, and 0.8) by setting 

the power-law index 𝑚 equal to one, are evaluated versus the number of sampling points adopted in DQ methodology 

and the outcomes are presented in Fig. 2.  

  

Fig. 2. Normalized buckling load of a nanotapered AFG beam vs. the number of grid points. 

 

It is visible from Fig. 2 that by increasing the number of points 𝑁 from 15 to 20, the predicted buckling load tends 

to converge. In the following computations, we take 𝑁 = 20 to calculate the first buckling loads, unless otherwise 

stated. 

4.2. Verification 

After performing the convergence studies, it turns to investigate the accuracy and validity of the developed 

formulation in the present work. Thus, the validation of the developed procedure for buckling analysis of simply 

supported AFG tapered Timoshenko beam in the context of classical elasticity theory is checked by comparing our 

results with predictions by Soltani et al. [88] and Shahba et al. [96]. Once again, it is assumed that the FG beam is made 

of Zirconium dioxide (ZrO2) and Aluminium (Al) with the following properties (ZrO2: E0=200GPa; Al: E1=70GPa). 

The other corresponding geometric parameters are: L =1, I0/A0 = 0.01, m=1. Non-dimensional buckling loads assessed 

using the GDQM with 20 grid points are illustrated in Table 1 for different negative values of height and width tapering 

parameters (𝛼, 𝛽). In this section, two different types of variation in the cross-section profile are considered, namely, 

a thickness tapered beam, and a double-tapered beam.  

Table 1. Variation of the normalized buckling loads of AFG tapered local beam with the tapering ratios and different FG power-

exponents. 

Variation 

 of cross-section 

m=1 m=3 

Tapering 

parameter 
Present 

Ref. 

[96] 
(%)  

Tapering 

parameter 
Present Ref. [88] (%)  

Thickness 

tapered beam 

= = − 4.7422 4.7632 0.4409 = =− 4.2483 4.434 4.1881 

= =− 4.0066 4.0176 0.2738 = =− 2.8736 2.9396 2.2452 

= =− 3.3050 3.3093 0.1299 = =− 1.6339 1.6461 0.7411 

= =−    = =−    

Double tapered ==− 4.4276 4.4532 0.5746 ==− 3.6184 3.8388 5.7414 
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beam ==− 3.4570 3.4735 0.4749 ==− 1.9896 2.0824 4.4564 

==− 2.6020 2.6104 0.3199 ==− 0.8459 0.8649 2.2003 

==− 1.8686 1.8702 0.0881 ==− 0.2105 0.1937 8.6526 

Table 1 shows that the critical load values computed using the proposed technique are in good agreement with the 

results from [88, 96] so that the error rate is less than 10%. The efficiency and performance of the proposed solution 

are, thus, confirmed. 

In the next step, to validate the analysis in the context of nonlocal elasticity theory, the estimated results by the 

suggested formula for simply supported homogenous Timoshenko nanobeams with uniform cross-sections are 

compared with [5]. The numerical outcomes for non-dimensional buckling loads are listed in Table 2 for different 

slenderness ratios L/b0=10, L/b0=20, and L/b0=100. To make the comparison possible, the corresponding parameters 

are: L =10, E =
630 10 , =0.3.  

Table 2. Variation of the dimensionless buckling load of homogenous prismatic Timoshenko beam with simply supported end conditions 

for different slenderness ratios (L/b0). 

 
L/b0=10 L/b0=20 L/b0=100 

Reddy [5] Present Reddy [5] Present Reddy [5] Present 

0.0 9.6228 9.6228 9.8067 9.8067 9.8671 9.8671 

0.5 9.1701 9.1701 9.3455 9.3455 9.4031 9.4031 

1 8.7583 8.7583 8.9258 8.9258 8.9807 8.9807 

1.5 8.3818 8.3818 8.5421 8.5421 8.5947 8.5947 

2.0 8.0364 8.0364 8.1900 8.19 8.2405 8.2405 

2.5 7.7183 7.7183 7.8659 7.8659 7.9143 7.9143 

3.0 7.4244 7.4244 7.5664 7.5664 7.613 7.613 

3.5 7.1521 7.1521 7.2889 7.2889 7.3337 7.3337 

4.0 6.899 6.899 7.0310 7.031 7.0743 7.0743 

4.5 6.6633 6.6633 6.7907 6.7907 6.8325 6.8325 

5.0 6.4431 6.4431 6.5663 6.5663 6.6068 6.6068 

It is observed that the employed numerical methodology of solution in the current study gives the same results as the 

analytical ones reported in [5]. 

4.3. Parametric Study 

After the validation step, an exhaustive parametric investigation is now performed to assess the sensitivity of the 

linear buckling strength to various key parameters such as in-homogeneous index, nonlocal parameter, slenderness 

ratio and thickness and breadth tapering parameters. Note that in this section, the ceramic-metal FG nanoscale beam 

is made of Alumina (Al2O3) and Aluminium (Al) with the following properties (Al2O3: E0=380GPa; Al: E1=70GPa). 

Based on the suggested approach, the normalized critical loads of simply supported nanoscale tapered AFG beam with 

a fixed aspect ratio (L/b0 = 20) for various values of tapering ratios (i.e. 0,0.3,0.6,0.9= =  ), FG power-law indices, 

and five different nonlocal parameters are listed in Table 3. In this case, the values of Eringen’s nonlocality parameter 

are taken as 0, 1, 2, 3, 4 nm2. Note that the compressive axial load is located at the beam extremities without any 

eccentricity. 

Table 3. Effect of the tapering parameter and material composition on the dimensionless buckling load of simply supported nano-size 

Timoshenko beams with L/b0 = 20 under a compressive axial load with five different nonlocal parameters. 

Material 

composition 
 

Nonlocal parameters 

= = = = = 

m=0.7 

0.0 4.3093 3.8547 3.4826 3.1746 2.9169 

0.3 5.3863 4.8366 4.3824 4.0029 3.6828 

0.6 6.6120 5.9562 5.4106 4.9512 4.5605 

0.9 7.9940 7.2228 6.5790 6.0344 5.5687 

m=3.0 
0.0 8.0668 7.2686 6.5792 5.9729 5.4355 

0.3 9.9447 8.9986 8.2030 7.5252 6.9424 
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0.6 12.0218 10.9030 9.9724 9.1871 8.5165 

0.9 14.2977 12.9769 11.8815 10.9580 10.1685 

Homogeneous 

(Alumina) 

0.0 9.8067 8.9258 8.1900 7.5664 7.0310 

0.3 16.5361 14.9764 13.6731 12.5676 11.6179 

0.6 19.1607 17.2959 15.7367 14.4133 13.2756 

0.9 21.9744 19.7572 17.9018 16.3255 14.9697 

Next, in Figs. 3-5 we plot the influence of nonlocality parameters (varying in the range between 0 and 4) on the 

variations of normalized buckling loads of ceramic-metal functionally graded double tapered beam with respect to 

non-uniformity parameters (ranging from 0 to 1) with different power-law exponents, respectively for L/b0 = 10, L/b0 

= 50, and L/b0 = 100. In this stage, the nano-tapered Timoshenko beam having equal thickness and breadth tapering 

ratios (=) is perused.  

  

  

Fig. 3. Variation of the non-dimensional buckling load for nano-tapered Timoshenko beams with the tapering and nonlocality 

parameters for different material indexes (L/b0=10): (a) Homogeneous (Alumina); (b) m=0.7; (c) m=1.4; (d) m=3. 
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Fig. 4. Variation of the non-dimensional buckling load of nano-tapered Timoshenko beams with the tapering and nonlocality 

parameters for different material indexes (L/b0=50): (a) Homogeneous (Alumina); (b) m=0.7; (c) m=1.4; (d) m=3. 

 

  

  

Fig. 5. Variation of the non-dimensional buckling load of nanotapered Timoshenko beams with the tapering and nonlocality 

parameters for different material indexes (L/b0=100): (a) Homogeneous (Alumina); (b) m=0.7; (c) m=1.4; (d) m=3. 

Also, the lowest axial buckling load parameters of nano-size double-tapered FG Timoshenko beams with L/b0=50 

are reported Table 4 to check for the effect of power-law indices, nonlocal parameters, and non-uniformity ratio on 

the stability resistance of the considered nanoscale beam element. 

Table 4. Lowest buckling parameters of Timoshenko nanobeam with fixed L/b0=50 and different power-law indices (m), tapering ratios, 

and nonlocality parameter. 

Nonlocal 

parameters 
𝛼 = 𝛽 

Material composition 

m=0.5 m=1 m=1.5 m=2 m=2.5 m=3 

= 

0.0 3.9245 5.3073 6.3244 7.0872 7.6640 8.1032 

0.3 4.8873 6.6258 7.8826 8.8078 9.4945 10.0083 

0.6 5.9722 8.1112 9.6315 10.7305 11.5320 12.1215 

0.9 7.1823 9.7670 11.5735 12.8569 13.7769 14.4430 
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= 

0.0 3.5401 4.7739 5.6892 6.3829 6.9129 7.3200 

0.3 4.4270 5.9912 7.1299 7.9745 8.6053 9.0794 

0.6 5.4242 7.3593 8.7410 9.7443 10.4777 11.0175 

0.9 6.5332 8.8790 10.5221 11.6904 12.5268 13.1304 

= 

0.0 3.2189 4.3255 5.1516 5.7844 6.2737 6.6539 

0.3 4.0424 5.4593 6.4970 7.2728 7.8566 8.2979 

0.6 4.9664 6.7301 7.9950 8.9178 9.5944 10.0930 

0.9 5.9910 8.1368 9.6429 10.7150 11.4815 12.0330 

= 

0.0 2.9463 3.9414 4.6860 5.2615 5.7130 6.0697 

0.3 3.7162 5.0061 5.9550 6.6701 7.2132 7.6271 

0.6 4.5781 6.1954 7.3599 8.2136 8.8421 9.3061 

0.9 5.5312 7.5070 8.8964 9.8866 10.5940 11.1014 

Similarly, Figs. 6-8 are devoted to show the impact of FG power-law exponent and Eringen’s nonlocal parameter 

(i.e. 0,1,2,3=  nm2) on the buckling strength of the selected axially compressed nanoscale beam with respect to 

variations of tapering parameter, under the assumption =  , and for different aspect ratios. Each figure shows six 

different plots relating to m=0.5, 1, 1.5, 2, 2.5 and 3.  

  

  

Fig. 6. Variation of the non-dimensional buckling load of nano-tapered Timoshenko beams with the tapering and 

material indexes for different nonlocality parameters (L/b0=10): (a) =0; (b) =1; (c) =2; (d) =3. 
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Fig. 7. Variation of the non-dimensional buckling load of nano-tapered Timoshenko beams with the tapering and 

material indexes for different nonlocality parameters (L/b0=20): (a) =0; (b) =1; (c) =2; (d) =3. 

   

  

  

Fig. 8. Variation of the non-dimensional buckling load of nano-tapered Timoshenko beams with the tapering and 

material indexes for different nonlocality parameters (L/b0=100): (a) =0; (b) =1; (c) =2; (d) =3. 
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In addition, Fig. 9 shows the influence of simultaneous variations of width and height tapering ratios ( ), 

Eringen’s parameters (= 0, 1 and 3, nm2), and two different aspect ratios (L/b0= 10, and 100) on the endurable 

buckling load of the homogeneous nano-tapered beam in the context of first-order shear deformation theory. 

 

 
Fig. 9. Variation of the non-dimensional buckling load of homogeneous nano-tapered Timoshenko beams for 

various depth and width tapering ratios and different Eringen’s parameters: (a) L/b0= 10; (b) L/b0= 100 

Graphical results are presented in Fig. 10 where the variation of non-dimensional buckling loads of ceramic-metal 

FG nanoscale double tapered beam at constant slenderness ratio L/b0=50 with respect to width and thickness tapering 

parameters ( ) for different non-locality parameters (= 0, 1, 2 and 3 nm2) and gradient indices (m= 1.5, and 3) is 

investigated. 
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Fig. 10. Variation of the non-dimensional buckling load of AFG nano-tapered Timoshenko beams for 

various depth and width tapering ratios and different Eringen’s parameters: (a) m=1.5; (b) m=3.0. 

The tables and figures indicate that non-uniformity parameters have a considerable impact on the dimensionless 

buckling load. The negative tapering parameter weakens the nano-tapered beam due to the decreased geometrical 

characteristics including the cross-sectional area and moment of inertia, while the other results relating the positive 

tapering ratios do not follow a similar pattern. In other words, the linear stability strength is enhanced for an increased 

tapering ratio. This sensitivity of the response is more noticeable for depth tapering parameter (), while becoming 

even more insignificant for the breadth tapering parameter (). The reason is attributed to the fact that the first buckling 

mode shape occurs with respect to the minor axis moment of inertia. This could yield a different beneficial effect on 

the overall structural response of many nano-engineering components such as nonuniform scanning tunnelling 

microscopes, oscillators or sensors 

It can be seen that with the increase in FG power exponent, the material features continuously change from alumina 

to Aluminum, and as a result, the bending stiffness of the nano-scale beam increases greatly, yielding a higher buckling 

capacity. One can also conclude that with the increment of power-law index m , the endurable critical load increases 

obviously for 0.5 1.5 m . For greater values of in-homogeneous index m>1.5, the stability strength increases 

slightly.  

As observed in the above illustrations and tables, it is noticed that the dimensionless critical load is enhanced by 

increasing the slenderness ratio. This means that the shear deformation loses its impact on the total deflections, as the 

value of the slenderness ratio increases. In other words, by eliminating the transverse shear deformation, the stability 

of the nanoscale structure is improved.  

It is concluded that the non-dimensional buckling loads decrease significantly with the increase of the nonlocality 

parameter related to Eringen’s nonlocal elasticity theory. For the cases considered in Table 3, the axial buckling 

parameter (𝑃𝑛𝑜𝑟) of double-tapered ceramic-metal FG beam with ==0.6 and m=3.0 decreases approximately 30%, 

when   increases from 0 to 4. This statement can be explained by the fact that the bending stiffness, as well as the 

shear stiffness, of the tapered Timoshenko beam in the nanoscale, are inversely proportional to Eringen’s parameter. 

In general, the inclusion of the nonlocal effect increases the deflection, which in turn leads to a decrease in the 

member’s stiffness quantity, resulting in a weaker member. Since the linear buckling resistance of beam is proportional 

to the stiffness of the member, a significant reduction in the critical load of the beam is observed. This confirms the 

findings from the literature, for which classical formulations overestimate the results compared to nonlocal 

formulations. 

5. Conclusions 

In this paper, a simple and novel method is introduced for discussing the linear stability strength of AFC nanoscale 

beams with varying cross-sections in the context of the first-order shear deformation theory. The Eringen nonlocal 

elasticity theory and the energy method are employed to establish a system of two-coupled differential equations in 

terms of the flexural displacement and the angle of rotation due to bending. In the next stage, the obtained coupled 

fourth-order governing differential equations are transformed into a fifth-order order differential equation with 

variable coefficients only in terms of the vertical deflection. The GDQM is here adopted as efficient numerical strategy 

to solve the resulting equation, and to compute the critical buckling load. To show the exactness of the present 

methodology, the obtained results have been compared to those ones based on classical elasticity theory and nonlocal 

elasticity from literature. Subsequently, the impact of thickness and/or width tapering ratios, FG power exponent, 

nonlocal parameter and slenderness ratio on buckling capacity of simply supported Timoshenko tapered nanobeam 
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with axially varying materials has been exhaustively surveyed through a parametric study. Besides the outcomes 

presented in the text, the following remarks can be expressed:  

• By comparing the attained outcomes with the exciting exact results, the fast convergence and effectiveness of the 

suggested approach are confirmed. 

• It is believed that the methodology proposed herein facilitates the stability analysis of axially loaded AFG nano-

tapered Timoshenko beams, and represents a very efficient way to reduce the computational effort.  

• The proposed formultion is comprehensive and feasible and could proceed with various practical problems 

dealing with different types of variation in material and geometric properties of the cross-section profile along 

the longitudinal direction.  

• For the whole cases analysed herein, it is found that the stability strength decreases as the nonlocality parameter 

gets larger, whereas the endurable buckling load increases as ceramic phase increases. 

• It can also be stated that the effects of linear variation in the width and height of rectangular cross-section play 

noticeable roles on the linear stability strength of tapered Timoshenko nanobeam. 

• Finally, it can be concluded that AFG Timoshenko nanobeams with nonuniform cross-section feature some 

engineering characteristics that can be controlled in accordance with the greadient index, non-uniformity 

parameter along with the aspect ratio. Engineers can thus design small-scale structural elements with favorable 

stability and optimal distribution of strength and weight. 
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