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Abstract 

   In this article, shear buckling analysis of functionally graded porous 

annular sector plate reinforced with graphene nanoplatelets (GPLs) are 

investigated for the first time. The plate is consisting of a layered model with 

uniform or non-uniform dispersion of graphene platelets in a metallic matrix 

including open-cell interior pores. The extended rule of mixture and the 

modified Halpin-Tsai models and are employed to obtain the effective 

mechanical properties of the porous nanocomposite plate. Three different 

porosity distributions in conjunction with five patterns for dispersion of 

GPL nanofiller are considered through the thickness of plate. Governing 

equations derived according to the principle of minimum total potential 

energy based on 3D elasticity theory and generalized geometric stiffness 

concept. Finally, finite element method is applied for solving the governing 

equations of structure. The influence of different parameters including 

various porosity distribution, porosity coefficient, patterns of GPL 

dispersion, weight fraction of GPL nanofiller, boundary conditions and 

sector angles on shear buckling loads of the annular sector plate has been 

surveyed. For instance, by increasing the weight fraction of GPLs, the shear 

buckling loads of the structure approximately 33% increase. 
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1. Introduction 

Porous materials, due to their very low density, relatively high stiffness to weight ratio, great specific 

permeability, high strength and electrical conductivity, have been used in many engineering structures and 

applications such as in the aerospace, submarine and sea structures. Porous structures have low weight, internal 

pores and holes in the metal matrix considerably reduce the overall stiffness of structures [1-10]. Consequently, the 

capacity of these structures subjected to buckling loads isn’t so ideal. To compensate for  this limitation, 

reinforcement with GPLs [11-18] into materials with lighter weight is taken into account as a great and useful method 

to strengthen their mechanical features and increasing their buckling strength. Thus, many investigations have been 
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performed about the buckling behavior of functionally graded (FG) porous and FG-GPL porous structures. For 

instance, Kiarasi et al. [19] investigated the buckling analysis of saturated FG porous rectangular plate based on 3D 

elasticity and by using the finite element- generalized differential quadrature method (FE-GDQM) as novel solution.  

Babaei et al. [20] applied higher order shear deformation theory (HSDT) and FEM to obtain the critical buckling 

loads of FG saturated porous beams. Magnucka-Blandzi [21] investigated the problem of axisymmetrical deflection 

and buckling of circular porous–cellular plate with the geometric model of nonlinear hypothesis. Jabbari et al. [22] 

presented an analytical solution for buckling analysis of thin circular FG plates made of saturated porous-soft 

ferromagnetic materials in transverse magnetic field based on classical plate theory (CLPT). A closed form solution 

for axisymmetric buckling of saturated circular porous-cellular plate based on first-order shear deformation theory 

was presented by Mojahedin et al. [23]. Mojahedin et al. [24] presented an analytical solution for buckling analysis of 

functionally graded circular plates made of saturated porous materials based on higher order shear deformation 

theory. Rezaei and Saidi [25] presented an analytical solution for buckling response of moderately thick fluid-

infiltrated porous annular. Rad et al. [26] presented an analytical solution for elastic buckling of fluid infiltrated 

porous plates based on shear deformation theories. Arshid et al. [27] applied GDQ procedure to investigate the 

bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich 

plates integrated by FGPEM nano-Composite layers based on modified couple stress theory (MCST) in conjunction 

with first order shear deformation theory (FSDT). Sharifian and Jabbari [28] applied Ritz method to investigate 

mechanical buckling analysis of saturated porous functionally graded elliptical plates subjected to inplane force 

resting on two parameters elastic foundation based on HSDT. Zhou et al. [29] presented an accurate nonlinear 

buckling analysis of FG porous graphene platelet reinforced composite cylindrical shells based on Donnell's shell 

theory and HSDT. Shahgholian-Ghahfarokhi et al. investigated buckling [30]and torsional buckling [31] analyses of 

FG porous cylindrical shell reinforced by GPLs based on FSDT and by applying Rayleigh-Ritz method. Based on 

FSDT and by employing Chebyshev polynomials based Ritz method, buckling response and natural frequencies of 

FG porous rectangular plates reinforced by GPLs were presented by Yang [32]. Dong [33]presented an analytical 

solution for buckling of spinning cylindrical shells made of FG-GPL-reinforced porous nanocomposite based on 

FSDT and by applying Galerkin approach. Ansari et al[34]applied a novel numerical DQ-FEM solution to 

investigate buckling and post-buckling of FG porous plates reinforced by GPLs with different shapes and boundary 

conditions. Kitipornchai [35]employed Timoshenko beam to analyze natural frequencies and elastic buckling of FG 

porous beams reinforced by GPLs by applying Ritz method. Twinkle et al. [36] studied the impact of grading, 

porosity and non-uniform edge loads on buckling and natural frequency analyses of FG porous cylindrical panel 

reinforced by GPLs based on HSDT and applying Galerkin method. Nguyen [37] applied a three-variable HSDT and 

isogeometric analysis (IGA) to investigate natural frequency, buckling and instability analysis of FG porous plates 

reinforced by GPLs. Based on FSDT, free vibration and buckling behavior of FG porous plates reinforced by GPLs 

using spectral Chebyshev approach were presented by Rafiei Anamagh and Bediz[38]. Yaghoobi and Taheri [39] 

presented an analytical solution for buckling analysis of sandwich plates with uniform and non-uniform porous core 

reinforced with GPLs based on HSDT.  

A survey on the previous studies denotes that shear buckling analysis of FG porous annular sector plate 

reinforced by graphene platelet hasn’t been studied so far. Due to the practical application of plate –type structures 

as a part of complex structures in aerospace industry and possibility of applying shear loads on these components, it 

is necessary to know the response of these structures made of lightweight material such as FG –GPL porous material 

under shear loads. Hence, in this research, shear buckling analysis of FG porous annular sector plate reinforced by 

GPLs is investigated for the first time. The annular sector plate is considered with uniform and non-uniform patterns 

of GPLs in a metallic matrix containing open-cell internal pores as well as three various porosity distributions that 

are assumed across the thickness plate including uniform and two types of symmetric functionally graded patterns. 

In addition, five various patterns of GPL dispersion pattern are assumed through the plate thickness such as: FG 

GPL-X, A, V, UD and O. 3D elasticity finite element method based on principle of virtual work is applied to obtain 

governing equations in pre-buckling state. Although 3D elasticity theory consumes more time, it considers thickness 

stretching unlike other simple shell theories and gives more accurate results. The displacement varies along with the 

thickness, and it is appropriate for thick structure as same as the structure used in this paper. Shear buckling loads 

are obtained using nonlinear Green strain tensor and based on a generalized geometric stiffness concept. The effect 

of different factors such as porosity coefficient, various porosity distributions in conjunction with different GPL 

patterns, weight fraction of GPLs, sector angle and various boundary conditions on shear buckling loads of FG 

porous annular sector plate reinforced by GPLs have been investigated.  
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2. Obtaining the governing equation  

2.1. Description of geometry: 

An annular sector plate as shown in Fig. 1 is considered. h, R0=a, R1=b and θ0 are thickness, inner radius, outer 

radius and sector angle of the plate, respectively. r, θ and z are cylindrical coordinate axes, which are located at the 

mid-plane of the plate. u, v and w are the displacement components of the mid-plane in the r, θ and z directions, 

respectively.  

 

 
Fig 1: Geometry and coordinate system of porous annular sector plate reinforced by GPLs 

2.2. Estimation of effective material properties of porous nanocomposite plates reinforced by GPLs: 

Three different porosity distributions are assumed through the plate thickness (Fig. 2). Two kinds of non-

uniform symmetric distribution of porosity and a uniform porosity distribution are considered. In distribution 1, the 

porosity is symmetric nonlinear, and around the mid-plane is higher rather than the upper and lower surfaces. In 

distribution 2, non-uniform symmetric porosity is considered, and the top and bottom surfaces are higher rather than 

the mid-plane. The distribution of material properties considering the effect of porosity for distributions 1 and 2 are 

shown in Eqs. (1) and (2), respectively. The mathematical representation of mechanical properties for the uniform 

distribution of porosity is shown in Eq. (3). Simultaneously, three GPL distribution patterns along the plate 

thickness are described in Fig. 2 and given in Eq. (15)[13, 40]. 
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Fig 2: Patterns of porosity and GPL distributions 
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Porosity distribution 1 (Non-uniform symmetric I): 
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Porosity distribution 2 (Non-uniform symmetric II): 
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Uniform porosity distribution: 
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Where ( )E z , ( )G z  and ( )z are modulus of elasticity, rigidity modules and mass density of porous 

nanocomposite plates. *E , *G  and *  are the same properties of GPL plate without interior cavities. Also, 0e  

and * *

0 0 0(0 ( ) 1e e e   are the coefficients of porosity for distribution 1 and 2, respectively. me  and 
*

me  are the 

corresponding coefficients of mass density for distributions 1 and 2, respectively.   and 
'  are the variables for 

uniform porosity distribution. As the size and density of interior cavities increases, the porosity increase, and 

consequently, causes a decrease in the material properties.  

The material properties of open-cell metal foams in Eq. (4) is applied to derive relationship between the porosity 

coefficients and mass density coefficients for porosity patterns in Eq. (5)  
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(5) 

The mass of plates with different porosities and GPL dispersions are assumed to be identical, therefore, we have: 
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Which may be applied to estimate 
*

0e  and   with a known value of 0e , as given in Table 1. It is evident that 
*

0e  

enhances by increasing 0e . When 0e  reaches 0.6, *

0 )  0.9 2( 61e =  is near to the upper bound. Thus,  0 0,0.6 e  is 

applied in the present analyses. 

 

Table 1: Coefficients of porosity for different distributions 

 

0e  
*

0e  α 

0.1 0.1738 0.9361 

0.2 0.3442 0.8716 

0.3 0.5103 0.8064 
0.4 0.6708 0.7404 

0.5 0.8231 0.6733 

0.6 0.9612 0.6047 
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Modulus of elasticity of the nanocomposite without interior cavities *E  is estimated based on Halpin-Tsai 

micromechanics model as: 
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where
GPLE  and 

mE are modulus of elasticity of GPLs and the metallic matrix. 
GPLl , 

GPLW  and 
GPLt  are length, 

width and thickness of nanofiller platelets, and 
GPLV is the volume content of GPLs. The rule of mixture [41]is 

applied to estimate the mass density and Poisson's ratio of the nanocomposite: 
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where 
GPL and 

GPL  are the mass density and Poisson’s ratio of GPLs. 
m  and 

m  are the same material 

properties of the metal matrix. Poisson’s ratio is assumed to be constant for open-cell metal foams[42-46]. The 

rigidity modulus *G of the nanocomposite is estimated as: 
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The volume content of GPLs GPLV  varies through the plate thickness according to the Eq. (15) for various 

dispersion patterns. 
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Where 
1 2 3 4, , ,i i i it t t t  and 

5it  are the upper limit of the
GPLV , and i=1, 2, 3 related to different porosity distributions 

1, 2 and uniform distribution. The total volume content of GPLs T

GPLV  is obtained by using the nanofiller weight 

fraction GPL in Eq. (16), and then is applied to find 1is , 2is  and 3is by Eq. (17). 
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2.3. Governing equations of the buckling problem  

 

The constitutive equation of the FG porous annular sector plate reinforced by GPLs assuming the linear elastic 

behavior for the plate in cylindrical coordinates is as: 

= D

 

(18) 

Where 

 

 

, , , , ,

, , , ,

T

r z r z rz

T

r z r z rz

  

  

     

     

=

=




 

(19) 

Where 
ij and ( , , , )ij i j r z = are the stress and strain components, respectively. Also, the elasticity matrix D 

is: 
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Where the linear and non-linear strain- displacement relations in cylindrical coordinates, considering the theory 

of elasticity are: 
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Indicates partial derivative.  

The transformations between cylindrical and local coordinates in an annular sector element are: 
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Where the natural coordinates, 1 , 1and  −    are through the r,  and z directions, respectively. ( )ea , ( )eb , 

( )e and ( )eh are the inner radii, outer radii, sector angle and thickness of each annular sector element.  

Hence, the linear part of strain-displacement relations (22) in matrix form is:  
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Here, a three dimensional graded FEM is developed for buckling problem of FG porous annular sector plates 

reinforced by GPLs. Three–dimensional 8- node solid graded elements are selected for discretization of the domain. 

In contrast to the conventional solid elements, material properties are also considered as nodal degrees of freedom. 

Following the conventional FEM, the displacement vector  of an arbitrary point of the element may be associated 

with the nodal displacement vectors of the element ( )e by applying the shape function matrix N, as 
( )e= N  (27) 
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The components of the shape function matrix may be determined in terms of the natural coordinates as[47]: 
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where 
i , is the value of the natural coordinate   related to the i-th node, e.g., if the i-th node has the 
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In addition, the displacement field, the nonhomogeneity of the material properties of the FG porous plate 

reinforced by GPLs may also be determined based on their nodal values. Therefore, a graded finite element method 

may be applied to effectively trace continuous variations of the material properties at the element level. Using the 

graded elements for modelling gradation of the material properties gives more accurate results than dividing the 

solution domain into homogenous elements. Hence, shape functions similar to those of the displacement field may 

be used: 

   1 8 1 81*8 1*8

8

1

, ,i

T

i

i

E N N E EE N
=

= = == Ξ Ξ  (31) 

 

Where iE  is the Young modulus of elasticity corresponding to node i. and Ξ  are vectors of shape functions 

and modulus of elasticity of each element. 

 

Therefore, Eq. (20) can be rewritten as: 

=  ΞD  (32) 

 

Substituting (27) into (24) gives the linear part of strain matrix of each element as: 
( ) ( ) ( )e e e

L =   = ε N  (33) 

Where 
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(34) 

 

 Governing equations of the graded elements can be derived based on the principle of minimum total potential 

energy: 
0U W   = − =  (35) 

 

Where U and W are the strain energy and work done by the externally in- plane shear loads, respectively: 
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( ), 0, e

T

V

r r

S Sr a b
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W v dS u dS
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=

   
= +   
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
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ε σ

 

 

 
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(36) 

 

r is the externally in- plane shear loads of the edges. V and S are the volume and boundary surface of the 

element, respectively. In the pre-buckling state, the displacement components may be considered to be small. 

Therefore, one may write:  

( )( ) ( ) ( ) ( )T e T T e e T e

V V
U dV dV    = =    =   ε σ Ξ    

 
(37) 

  
To develop the governing equations of the instability, one may use the following equation that relates the 

condition of the buckling onset to that of the pre-buckling state: 

( ) 2 0   =  =  (38) 

  

Therefore, based on Eqs. (37) and (38): 

 
( ) ( ) 2

. 0e T e

Ext    +  =  (39) 

  

Based on Eq. (21), the strain energy of the annular sector plate includes linear as well as nonlinear terms of the 

strain-displacement relations: 

( ) ( )
1 1

2 2

TT

L NL
V V

U dV dV = = +
  ε σ ε ε σ

 
(40) 

 

In the pre-buckling state, transverse displacement or large deformations are small. Based on this assumption, 

only the linear terms of strain- displacement relations appear. Since slope of the plate is not negligible at the 

buckling occurrence, the nonlinear components of the strain-displacement relations have to be considered. On the 

other hand, from Eq. (35) or from the principle of minimum total potential energy: 

( ) 0U W − =
 (41) 

 

Therefore, the following relation appears only after buckling occurrence: 

( )
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(42) 

 

Since in the beginning of the buckling occurrence: 

ij ij =
 

(43) 

 

At the boundaries of the plate, Eq. (42) may be rewritten in the following expanded relation, based on Eq. (22): 

.

1

4

T
Ext

V
U dV = =   

 
(44) 

 Where 
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(45) 

 

or:  

( )( ) T ( )1 1
. 4 4

T e T e

Ext
V V

dV dV =   =     Λ Λ 
 

(46) 

 

Therefore, based on Eqs. (39) and (46):  

( )2 ( ) ( ) ( ) ( ) 0e T e e T T e

V
dV      =   +    = Λ Λ 

 
(47) 

 

or in the following form:  

( )( ) T ( ) 0e e    +  =G  
(48) 

 

G
is the geometric stiffness matrix. Considering that ( )e  0 , the following governing equation of instability 

is obtained from Eq. (48):  

( ) ( )+ 0e   =G  
 

(49) 

 

Existence of nonzero solution necessitates that the following determinant to be zero:  

+ 0  =G  
(50) 

 

The load amplification factor may be considered as: 
Cr

r Cr r   =
 

(51) 

 

Hence, based on Eqs. (37, 47, 50):  
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(52) 

 

or in a compact form:  
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( ) 0CrF  =  (53) 

3. Results and discussions 

In the present section, shear buckling analysis of FG porous annular sector plates for various porosity 

coefficients, porosity distribution, dispersion of GPLs nanofiller, weight fraction of nanofiller, sector angles, aspect 

ratio and thickness ratio is presented and discussed in detail.  

Hence, the following material properties and geometrical parameters are considered: 

Geometry: a=0.25 m, b=0.3 m  and 
0 60 ,90 ,120   =   

 Material property: 130
m

E GPa= , 
3

8960m

kg

m
 = , 0.34m =  for copper, and 1.01GPLE TPa= , 

3
1062.5GPL

kg

m
 = , 0.186GPL = , 

1.5GPLw m=  , 2.5GPLl m= , 1.5GPLt nm=  for GPLs. 

In this study, three different types of boundary and loading conditions are considered. These boundary condition 

and their relevant mathematical interpretations are: 

a) Plate with movable simply supported edges subjected to shear load at all edges: 

, : , 0, 1( ),

0, : , 0, 1( )

r

r

r a b u w Pa

v w Pa

= = =

= = =







    
(54) 

 

b) Plate with immovable simply supported radial edges and free circumferential edges subjected to two anti-

phase shear loads at circumferential edges: 

0, : , , 0,

, : 1( )r

u v w

r a b Pa

= =

= =

 


 

(55) 

 

c) Plate with immovable simply supported circumferential edges and free radial edges subjected to two anti-

phase shear loads at radial edges: 

, : , , 0,

0, : 1( )r

r a b u v w

Pa

= =

= =    
(56) 

3.1. Validation of the present study   

To verification of the present study, a comparison study is performed. Present results for the critical shear 

buckling load of homogenous annular sector plate for various boundary conditions and sector angles are compared 

with those extracted from a well-known commercial finite element analysis code (ANSYS), in Table 1. For this 

target, it is sufficient to consider the weight fraction of GPL nanofiller and porosity coefficient in MATLAB code 

equal zero. In this way, porous nanocomposite annular sector plate is changed to a homogenous annular sector plate. 

As can be seen from Table 1, there is an excellent agreement between the present study and ANSYSWORKBENCH 

software. The geometry and mechanical properties are assumed as the following:  

Mechanical property: 130
m

E GPa= ,  0.34m =    

Geometry: 0.5 , 1a m b m= =  and 0.1h m= .  

Table 2: Critical buckling loads (GPa) of homogenous annular sector plate for different boundary conditions and sector angles compared 

with ANSYS (a=0.5 m, b=1 m and h=0.1 m) 

Sector angle 60 =  90 =  120 =  

Type of loading and boundary condition Ansys  Present Ansys  Present Ansys Present 

a 13.74 13.70 8.99 8.91 6.34 6.30 

b 2.34 2.29 1.98 11.87 0.98 0.94 

c 10.87 10.61 11.86 11.74 11.49 11.30 
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3.2. The results of Shear buckling of FG porous annular sector plate reinforced by GPLs  

The effect of various porosity distribution, boundary conditions and sector angles on shear buckling loads of FG 

porous annular sector plate reinforced by graphene platelet is shown in Table 2. (a=0.5 m, b=1 m and h=0.1 m 

,e0=0.5,  GPL-X, 0.01 %wt = ). As can be seen from this table, the maximum shear buckling loads of structure is 

belong to PD1,PD2 and PD3, respectively. Also movable simply supported boundary condition has the highest shear 

buckling loads due to providing more rigidity. It is obvious that by increasing the sector angle, shear buckling loads 

considerably decrease. The influence of different porosity coefficient on shear buckling loads of structure is given in 

Table 3(a=0.5 m, b=1 m and h=0.1 m, GPLX, 0.01 %wt = , 60 = , PD1) . By increasing the porosity coefficient, 

the shear buckling loads of structures decrease due to by increasing the porosity coefficient, the stiffness of structure 

decreases. By comparison of Table 2 and Table 3 , it is clear that the impact of porosity distribution on shear 

buckling load is greater than porosity coefficient. The influences of various weight fraction of GPL nanofiller on 

shear buckling loads are indicated in Table 4 (a=0.5 m, b=1 m and h=0.1 m, 60 = , e0=0.5, GPL-X, PD1). The 

impact of the weight fraction of GPL nanofiller plays an important role in stiffness of structure. By adding 1% wt of 

nanofiller, the shear buckling loads increase approximately 33% and its reason is related to the stiffness of 

structures. On the other hand, the nano-fillers with high strength and too low weight such as GPLs can significantly 

improve the stiffness of structures.  The effects of various pattern of GPLs dispersion is reported in Table 5 (a=0.5 

m, b=1 m and h=0.1 m, e0=0.5, 60 = , 0.01 %wt = , PD1). It can be seen that the maximum shear buckling load 

is related to GPLX. Also shear buckling loads of GPL-A and GPL-V is approximately same. The minimum of shear 

buckling loads belong to GPL-UD. It is obvious from the results; the maximum influence on shear buckling load is 

related to weight fraction of nanofiller, GPL pattern, porosity distribution and porosity coefficient, respectively. This 

problem could significantly help the engineers in their design. The first four shear mode shapes of FG porous 

annular sector plate reinforced by graphene platelet for various boundary conditions are shown in Figure 3 to 5, 

respectively.  

 

Table 3: First four shear buckling loads of FG porous annular sector plate reinforced by graphene platelet for different boundary 

conditions, porosity distribution and sector angles (a=0.5 m, b=1 m and h=0.1 m, e0=0.5, GPL-X) 

  60 =  90 =  120 =  

Type of boundary 

conditions 

Buckling 

load 

(GPa) 

PD1 PD2 PD3 PD1 PD2 PD3 PD1 PD2 PD3 

Movable simply 

supported 

Mode 1 19.82 19.35 18.12 12.35 11.86 10.47 8.74 8.55 7.98 

Mode 2 22.54 21.78 18.88 16.81 15.42 13.45 9.12 9.01 8.34 

Mode 3 23.29 22.09 19.31 17.35 16.99 15.13 9.74 8.83 8.69 

Mode 4 26.81 25.87 20.05 20.01 18.68 16.50 10.38 9.73 9.02 

Immovable edges 

at r=a, b 

Mode 1 16.86 16.53 15.30 16.93 16.22 15.18 17.09 16.88 15.92 

Mode 2 17.01 16.89 16.00 17.24 16.74 16.67 17.44 16.90 16.34 

Mode 3 20.22 18.28 17.68 21.00 20.86 18.81 21.87 21.33 20.55 

Mode 4 21.00 19.85 18.18 22.35 21.87 19.93 24.18 23.75 21.93 

Immovable edges 

at 0, =  

Mode 1 2.86 2.78 2.01 1.01 0.91 0.84 0.33 0.3 0.18 

Mode 2 3.90 3.37 3.01 2.87 2.79 1.55 1.12 1.00 0.74 

Mode 3 8.88 7.96 6.64 4.23 3.91 2.33 2.88 1.98 1.29 

Mode 4 10.12 9.99 8.92 8.49 8.10 4.74 3.56 2.84 2.01 
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Table 4: First four shear buckling loads of FG porous annular sector plate reinforced by graphene platelet for different boundary 

conditions, porosity coefficient (a=0.5 m, b=1 m and h=0.1 m, GPLX, 0.01 %, 60wt  = =   , PD1) 

Type of boundary conditions Buckling load 
(GPa) 

e0=0.5 e0=0.25 e0=0.1 

Movable simply supported Mode 1 19.82 19.61 19.00 

 Mode 2 22.54 21.94 20.12 

Mode 3 23.29 22.88 20.55 

Mode 4 26.81 26.12 25.37 

Immovable edges at r=a, b Mode 1 16.86 16.63 15.89 

 Mode 2 17.01 16.90 16.18 

Mode 3 20.22 19.31 18.38 

Mode 4 21.00 20.12 19.10 

Immovable edges at 0, =   Mode 1 2.86 2.80 2.34 

 Mode 2 3.90 3.66 3.22 

Mode 3 8.88 8.12 7.89 

Mode 4 10.12 10.01 9.72 

 

 

Table 5: First four shear buckling loads of FG porous annular sector plate reinforced by graphene platelet  for different boundary 

conditions, Weight fraction of GPL  (a=0.5 m, b=1 m and h=0.1 m ,e0=0.5,GPL-X, 60 =   ,PD1) 

Type of boundary conditions Buckling load (GPa) 0.01%wt =  0.005 %wt =  0%wt =  

Movable simply supported Mode 1 19.82 17.61 15.14 

Mode 2 22.54 19.81 17.12 

Mode 3 23.29 20.01 18.35 

Mode 4 26.81 22.66 20.47 

Immovable edges at r=a, b Mode 1 16.86 13.73 11.92 

Mode 2 17.01 14.26 12.99 

Mode 3 20.22 16.13 15.65 

Mode 4 21.00 18.68 16.28 

Immovable edges at 

 0, =  

Mode 1 2.86 2.00 1.69 

Mode 2 3.90 2.91 2.55 

Mode 3 8.88 6.54 5.86 

Mode 4 10.12 8.00 7.12 
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Table 6: First four shear buckling loads of FG porous annular sector plate reinforced by graphene platelet  for different boundary 

conditions, and various GPL pattern. (a=0.5 m, b=1 m and h=0.1 m ,e0=0.5, 60 , 0.01 %wt = =  ,  ,PD1) 

Type of boundary 

conditions 

Buckling load (GPa) GPL-X GPL-O GPL-V GPL-A GPL-UD 

Movable simply 

supported 

Mode 1 19.82 18.33 17.18 17.14 16.14 

Mode 2 22.54 21.20 19.33 19.28 18.86 

Mode 3 23.29 22.21 21.87 21.79    19.01 

Mode 4 26.81 24.88 23.66 23.61 22.33 

Immovable edges 

at r=a, b 

Mode 1 16.86 15.71 13.12 13.06 13.14 

Mode 2 17.01 15.96 13.87 13.81 14.01 

Mode 3 20.22 19.84 17.38 17.31 16.77 

Mode 4 21.00 19.58 17.63 17.59 17.88 

Immovable edges 

at 0, =  

Mode 1 2.86 2.10 1.88 1.82 1.85 

Mode 2 3.90 3.33 2.79 2.70 2.87 

Mode 3 8.88 7.99 6.64 6.60 6.78 

Mode 4 10.12 9.10 8.47 8.42 8.32 

 

 
Fig 3: The first four shear mode shapes of FG porous annular sector plate reinforced by graphene platelet (a=0.5m, b=1m and h=0.1m, 

e0=0.5, GPL-X, 90 , 0.01%wt = = PD1 ,B.C.1) 
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Fig 4: The first four shear mode shapes of FG porous annular sector plate reinforced by graphene platelet (a=0.5m, b=1m and h=0.1m, 

e0=0.5, GPL-X, 90 , 0.01%wt = =  ,PD1 ,B.C.2 

 

 
Fig 5: The first four shear mode shapes of FG porous annular sector plate reinforced by graphene platelet (B.C.3) (a=0.5 m, b=1 m and 

h=0.1 m ,e0=0.5,GPL-X, 90 , 0.01%wt = =  ,PD1 ,B.C.3) 
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4. Conclusion 

 

Shear buckling analysis of FG porous annular sector plate reinforced by graphene platelets based on 3D 

elasticity theory has been investigated for the first time. The Finite element method in conjunction with generalized 

geometric stiffness concept and the principle of minimum total potential energy utilized to derive and solve the 

governing equations. The influences various parameters including porosity coefficient, porosity distributions, GPL 

dispersion pattern, weight fraction of nanoffilers, sector angle and different boundary conditions on shear buckling 

loads of annular sector plate have been examined. Some of main results of present study are: 

a) Maximum and minimum shear buckling loads are related to GPL-X and GPL-UD, respectively. Its 

difference is approximately 22% 

b) The critical shear buckling loads for GPL-A and GPL-V are almost the same. 

c) The maximum and minimum buckling loads belong to PD1 and PD3. Its difference is lower than 10%.  

d) By increasing the weight fraction of GPLs, the shear buckling loads of the structure considerably 

increase (approximately 33%). 

e) The influence of porosity coefficient on the critical shear buckling loads of the FG-GPL porous annular 

sector is lower than other parameters 

 

5. References 

 

[1] L. Hromadová, Thermal pressurization of pore fluid during earthquake slip, Comenius University, 

Bratislava, 2009.  

[2] M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, Journal of applied 

physics, Vol. 26, No. 2, pp. 182-185, 1955.  

[3] I. Gibson, M. F. Ashby, The mechanics of three-dimensional cellular materials, Proceedings of the royal 

society of London. A. Mathematical and physical sciences, Vol. 382, No. 1782, pp. 43-59, 1982.  

[4] M. F. Ashby, A. Evans, N. Fleck, L. Gibson, J. Hutchinson, H. Wadley, F. Delale, Metal foams: a design 

guide, Appl. Mech. Rev., Vol. 54, No. 6, pp. B105-B106, 2001.  

[5] J. Choi, R. Lakes, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with 

a negative Poisson's ratio, International Journal of Mechanical Sciences, Vol. 37, No. 1, pp. 51-59, 1995.  

[6] M. Babaei, F. Kiarasi, K. Asemi, M. Hosseini, Functionally graded saturated porous structures: A review, 

Journal of Computational Applied Mechanics, Vol. 53, No. 2, pp. 297-308, 2022.  

[7] M. Babaei, F. Kiarasi, K. Asemi, R. Dimitri, F. Tornabene, Transient thermal stresses in FG porous rotating 

truncated cones reinforced by graphene platelets, Applied Sciences, Vol. 12, No. 8, pp. 3932, 2022.  

[8] M. Babaei, M. H. Hajmohammad, K. Asemi, Natural frequency and dynamic analyses of functionally 

graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity, Aerospace 

Science and Technology, Vol. 96, pp. 105524, 2020.  

[9] M. Babaei, K. Asemi, Stress analysis of functionally graded saturated porous rotating thick truncated cone, 

Mechanics Based Design of Structures and Machines, Vol. 50, No. 5, pp. 1537-1564, 2022.  

[10] M. Babaei, K. Asemi, F. Kiarasi, Dynamic analysis of functionally graded rotating thick truncated cone 

made of saturated porous materials, Thin-Walled Structures, Vol. 164, pp. 107852, 2021.  

[11] M. Mohammadi, A. Farajpour, A. Moradi, M. Hosseini, Vibration analysis of the rotating multilayer 

piezoelectric Timoshenko nanobeam, Engineering Analysis with Boundary Elements, Vol. 145, pp. 117-

131, 2022.  

[12] M. Mohammadi, A. Rastgoo, Primary and secondary resonance analysis of FG/lipid nanoplate with 

considering porosity distribution based on a nonlinear elastic medium, Mechanics of Advanced Materials 

and Structures, Vol. 27, No. 20, pp. 1709-1730, 2020.  

[13] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance 

analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical 

and electrical loads, European Journal of Mechanics-A/Solids, Vol. 77, pp. 103793, 2019.  

[14] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a 

rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal 

environment, Acta Mechanica, Vol. 227, pp. 2207-2232, 2016.  

[15] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular 

graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites 

Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.  



Journal of Computational Applied Mechanics 2023, 54 (1): 68-86 85 

[16] M. Mohammadi, M. Goodarzi, M. Ghayour, A. Farajpour, Influence of in-plane pre-load on the vibration 

frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, Vol. 

51, pp. 121-129, 2013.  

[17] M. Mohammadi, M. Ghayour, A. Farajpour, Using of new version integral differential method to analysis 

of free vibration orthotropic sector plate based on elastic medium, in Proceeding of, 

www.civilica.com/Paper-ISME19-ISME19_497.html, pp. 497.  

[18] M. Mohammadi, A. Farajpour, A. Rastgoo, Coriolis effects on the thermo-mechanical vibration analysis of 

the rotating multilayer piezoelectric nanobeam, Acta Mechanica, Vol. 234, No. 2, pp. 751-774, 2023/02/01, 

2023.  

[19] F. Kiarasi, M. Babaei, K. Asemi, R. Dimitri, F. Tornabene, Three-dimensional buckling analysis of 

functionally graded saturated porous rectangular plates under combined loading conditions, Applied 

Sciences, Vol. 11, No. 21, pp. 10434, 2021.  

[20] M. Babaei, K. Asemi, P. Safarpour, Buckling and static analyses of functionally graded saturated porous 

thick beam resting on elastic foundation based on higher order beam theory, Iranian Journal of Mechanical 

Engineering Transactions of the ISME, Vol. 20, No. 1, pp. 94-112, 2019.  

[21] E. Magnucka-Blandzi, Axi-symmetrical deflection and buckling of circular porous-cellular plate, Thin-

walled structures, Vol. 46, No. 3, pp. 333-337, 2008.  

[22] M. Jabbari, A. Mojahedin, M. Haghi, Buckling analysis of thin circular FG plates made of saturated 

porous-soft ferromagnetic materials in transverse magnetic field, Thin-Walled Structures, Vol. 85, pp. 50-

56, 2014.  

[23] A. Mojahedin, M. Jabbari, M. Salavati, Axisymmetric buckling of saturated circular porous-cellular plate 

based on first-order shear deformation theory, International Journal of Hydromechatronics, Vol. 2, No. 4, 

pp. 144-158, 2019.  

[24] A. Mojahedin, M. Jabbari, A. Khorshidvand, M. Eslami, Buckling analysis of functionally graded circular 

plates made of saturated porous materials based on higher order shear deformation theory, Thin-Walled 

Structures, Vol. 99, pp. 83-90, 2016.  

[25] A. Rezaei, A. Saidi, Buckling response of moderately thick fluid-infiltrated porous annular sector plates, 

Acta Mechanica, Vol. 228, pp. 3929-3945, 2017.  

[26] E. S. Rad, A. Saidi, A. Rezaei, M. Askari, Shear deformation theories for elastic buckling of fluid-

infiltrated porous plates: an analytical approach, Composite Structures, Vol. 254, pp. 112829, 2020.  

[27] E. Arshid, S. Amir, A. Loghman, Bending and buckling behaviors of heterogeneous temperature-dependent 

micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers, Journal of 

Sandwich Structures & Materials, Vol. 23, No. 8, pp. 3836-3877, 2021.  

[28] M. H. Sharifan, M. Jabbari, Mechanical buckling analysis of saturated porous functionally graded elliptical 

plates subjected to in-plane force resting on two parameters elastic foundation based on HSDT, Journal of 

Pressure Vessel Technology, Vol. 142, No. 4, pp. 041302, 2020.  

[29] Z. Zhou, Y. Ni, Z. Tong, S. Zhu, J. Sun, X. Xu, Accurate nonlinear buckling analysis of functionally 

graded porous graphene platelet reinforced composite cylindrical shells, International Journal of 

Mechanical Sciences, Vol. 151, pp. 537-550, 2019.  

[30] D. Shahgholian-Ghahfarokhi, G. Rahimi, A. Khodadadi, H. Salehipour, M. Afrand, Buckling analyses of 

FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform 

external lateral pressure, Mechanics Based Design of Structures and Machines, Vol. 49, No. 7, pp. 1059-

1079, 2021.  

[31] D. Shahgholian-Ghahfarokhi, M. Safarpour, A. Rahimi, Torsional buckling analyses of functionally graded 

porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs), Mechanics Based 

Design of Structures and Machines, Vol. 49, No. 1, pp. 81-102, 2021.  

[32] J. Yang, D. Chen, S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene 

reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Composite Structures, Vol. 193, 

pp. 281-294, 2018.  

[33] Y. Dong, L. He, L. Wang, Y. Li, J. Yang, Buckling of spinning functionally graded graphene reinforced 

porous nanocomposite cylindrical shells: An analytical study, Aerospace Science and Technology, Vol. 82, 

pp. 466-478, 2018.  

[34] R. Ansari, R. Hassani, R. Gholami, H. Rouhi, Nonlinear bending analysis of arbitrary-shaped porous 

nanocomposite plates using a novel numerical approach, International Journal of Non-Linear Mechanics, 

Vol. 126, pp. 103556, 2020.  

[35] S. Kitipornchai, D. Chen, J. Yang, Free vibration and elastic buckling of functionally graded porous beams 

reinforced by graphene platelets, Materials & Design, Vol. 116, pp. 656-665, 2017.  

www.civilica.com/Paper-ISME19-ISME19_497.html


86 Khatoonabadi et al. 

[36] C. Twinkle, J. Pitchaimani, Free vibration and stability of graphene platelet reinforced porous nano-

composite cylindrical panel: Influence of grading, porosity and non-uniform edge loads, Engineering 

Structures, Vol. 230, pp. 111670, 2021.  

[37] Q. H. Nguyen, L. B. Nguyen, H. B. Nguyen, H. Nguyen-Xuan, A three-variable high order shear 

deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates 

reinforced by graphene platelets, Composite Structures, Vol. 245, pp. 112321, 2020.  

[38] M. R. Anamagh, B. Bediz, Free vibration and buckling behavior of functionally graded porous plates 

reinforced by graphene platelets using spectral Chebyshev approach, Composite Structures, Vol. 253, pp. 

112765, 2020.  

[39] H. Yaghoobi, F. Taheri, Analytical solution and statistical analysis of buckling capacity of sandwich plates 

with uniform and non-uniform porous core reinforced with graphene nanoplatelets, Composite Structures, 

Vol. 252, pp. 112700, 2020.  

[40] G. R. Asgari, A. Arabali, M. Babaei, K. Asemi, Dynamic instability of sandwich beams made of isotropic 

core and functionally graded graphene platelets-reinforced composite face sheets, International Journal of 

Structural Stability and Dynamics, Vol. 22, No. 08, pp. 2250092, 2022.  

[41] M. Babaei, F. Kiarasi, M. S. Tehrani, A. Hamzei, E. Mohtarami, K. Asemi, Three dimensional free 

vibration analysis of functionally graded graphene reinforced composite laminated cylindrical panel, 

Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and 

Applications, Vol. 236, No. 8, pp. 1501-1514, 2022.  

[42] M. Khatounabadi, M. Jafari, K. Asemi, Low-velocity impact analysis of functionally graded porous 

circular plate reinforced with graphene platelets, Waves in Random and Complex Media, pp. 1-27, 2022.  

[43] F. Kiarasi, A. Asadi, M. Babaei, K. Asemi, M. Hosseini, Dynamic analysis of functionally graded carbon 

nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive 

loading, Journal of Computational Applied Mechanics, Vol. 53, No. 1, pp. 1-23, 2022.  

[44] M. Babaei, K. Asemi, F. Kiarasi, Static response and free-vibration analysis of a functionally graded 

annular elliptical sector plate made of saturated porous material based on 3D finite element method, 

Mechanics Based Design of Structures and Machines, pp. 1-25, 2020.  

[45] R. Mahmoudi, A. Barati, M. Hosseini, A. Hadi, Torsional vibration of functionally porous nanotube based 

on nonlocal couple stress theory, International Journal of Applied Mechanics, Vol. 13, No. 10, pp. 

2150122, 2021.  

[46] E. Sobhani, A. R. Masoodi, R. Dimitri, F. Tornabene, Free vibration of porous graphene oxide powder 

nano-composites assembled paraboloidal-cylindrical shells, Composite Structures, Vol. 304, pp. 116431, 

2023.  

[47] M. R. Eslami, M. R. Eslami, Finite Element of Elastic Membrane, Finite Elements Methods in Mechanics, 

pp. 35-55, 2014.  

 


