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Abstract 

The A polynomial displacement function was applied with three-dimensional 

(3-D) elasticity theory to solve the bending problem of isotropic rectangular 

thick plate that is simply-supported at the first and fourth edges, clamped 

and free on the second-third edges (SCFS). In the analysis, the model 

addressed the effect of shear deformation as well as the transverse normal 

strain-stress, obviating the coefficients of shear correction. The 3-D 

kinematic and constitutive relations were used to formulate the total 

potential energy expression, thereafter, the equilibrium equation developed 

from the energy functional transformation was used to get the relationship 

for slope and deflection. The solution of the equilibrium equation birthed the 

exact polynomial deflection function while the coefficient of deflection of the 

plate was produced from the governing equation using direct variation 

approach. These solutions were employed to analyze the bending 

characteristics of the SCFS rectangular plate by establishing the expression 

for calculating the displacement and stresses of the plate. The outcome of 

this study certifies that solutions from 3D model is exact and safe compared 

to refined plate theories applied by previous authors. Compared with the 3-

D plate analysis, the percentage differences presented are as close as 2.9% 

and 3.7% for all span-to-thickness ratios. The comprehensive average 

percentage variation of the center deflection values obtained by Onyeka et 

al., (2020) and Gwarah (2019), is 0.39%. This revealed that at the 99.7 % 

confidence level, the 3-D plate theory is most suitable and reliable for 

studying the bending characteristics of thick plates. 

Keywords: SCFS thick plate, 3D plate theory, Polynomial displacement shape function, Variation technique, Exact 

solution 

1. Introduction 

Three-dimensional Plates are widely applied in naval, aeronautical, mechanical, geotechnical and structural 

engineering for modelling bridge deck slabs, turbine disks, water tanks, ship hulls, retaining walls, machine parts, 

architectural structures etc. [1-4] as they are three dimensional structural elements with spatial dimensions along x, y, 

and z axes, whose thickness dimension is much lesser compared to the other two parallel in-plane dimensions [5, 6].  

Plates can be non-homogeneous, homogeneous, orthotropic, anisotropic, or isotropic based on their material 
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constituents [7-9]. With respect to shapes, they can be quadrilateral, square, circular, or rectangular. Free, simply 

supported and fixed conditions are different forms of edges of plates. Considering their thickness, they are either 

thin, moderately thick or thick [10-12].  In Refs. [13, 14], rectangular plates whose span-to-thickness ratio (𝑎/𝑡) lies 

between 45 and 100, 20 and 45, and less than 20 are regarded as thin, moderately-thick and thick plates respectively. 

In engineering works, the demand for thick plates is on the increase because of its economic benefits, load resistance 

capacity, high strength and light weight properties [15-17].              

The plate structure is generally analyzed in terms of vibration, buckling and bending [12, 18]. The application of 

lateral loads or external forces on the plate often result to bending, which is the deformation of the structure 

perpendicular to its surface. Deformation is increased when the critical load is exceeded by the induced load [19]. 

Consequently, the plate fails. Practical attention and accurate solution are required in order to defeat failure 

occurrence. Hence, this bending study is necessary.  

Different scholars have developed and used diverse theories such as the classical plate theory (CPT), refined 

plate theories (RPTs), and three-dimensional theory (3-D); to describe the bending behavior of thick plates. The 

uncompounded Kirchhoff plate theory (CPT) [20] is considered inadequate for determining the bending solution of 

thick plates since it neglects transverse shear effects. RPTs which consists of the First Order Shear deformation 

Theory (FSDT) [21, 22], Trigonometric Shear deformation Theory (TSDT) [23, 24], Exponetial Shear deformation 

Theory (ESDT) [24], Polynomial Shear deformation Theory (PSDT) [25, 26] and the Higher Order Shear deformation 

Theory (HSDT) [27, 28]; gives a better but incomplete solution in the thick plate analysis. While FSDTs (Reissner-

Mindlin theory) applies correction factors, HSDTs without it, satisfies the zero shear-stress conditions at the top and 

underside of the plates.  

RPTs are inconsistent and also addressed as 2-D plate theory as they overlook the normal stress and strain along 

the thickness axis of the plate. These 2-D solutions are inaccurate and unreliable. The beauty of the 3-D solution is 

its comprehensive system of fifteen governing equations which consists of material constitutive laws of generalized 

stress - strain equations, the kinematic relations for six strains and displacements and the three differential equations 

of equilibrium [13, 29-34].  Since thick plate analysis is basically a three-dimensional problem, this model is needful 

and it is a plus for evaluating thick plates with SCFS support status.  

Assessment on bending can be done analytically, numerically or with an energy approach or a miscellany of any 

[29]. In analytical approach, the solution of the bending problem, fulfils the boundary requirements of the plate in the 

governing equations at different positions of the plate surface. This method includes; Integral transform, Eigen 

expansion, Naiver and Levy series [35], while numerical approach whose solutions are approximate [36-38], consists 

of; Galerkin, Collocation, Bubnov-Galerkin, truncated double Fourier series, Kantorovich methods, boundary 

element, Ritz, and finite difference. The energy method whose total energy is equivalent to the total of strain and 

potential energy or external work on the continuum; can take an analytical or a numerical form.  

Analytical-energy approach with 3-D model is used in this paper to evaluate the displacements (in-plane and out-

of-plane), moments, and all the stresses at different points of plates with SCFS boundary order, considering the 

effect of aspect ratios, with the application of exact polynomial displacement-shape function. Contrary to preceding 

works, this study covers the deflection, shear stresses at x-y axis, x-z axis, y-z axis, the normal stresses along x, y, z 

co-ordinates produced due to the applied load on the plate, and the in-plane displacement in the direction of x and y 

co-ordinates. Many authors applied assumed displacement-shape functions to solve plate bending which led to 

inexact solutions. The integrity and accuracy of solutions to the thick plate bending problem are determined by the 

quality of shape functions used during the analysis and this is a matter of great concern for engineers. This gap is 

also bridged in this study.  

The excellency of this work is that its displacement function are exactly as they are obtained from the governing 

equations employing an analytical approach, coupled with the use of polynomial functions whose differentiation and 

integration are quite easy, accurate and can be successfully applied to solve thick rectangular plate of any support-

condition. Worthy to note is that previous scholars were not able to extensively address the bending behaviour of 

SCFS-plate configuration neither did they do justice to the application of 3-D models. This study covered the gap.  

Ghugal and Sayyad [39] presented bi-directional bending of thick plates using TSDT to address the effects of 

transverse-normal strain and shear deformation with cosine and sinusoidal function respectively. The virtual work 

principle was employed to obtain the support conditions and governing equations of the model. TSDT was also 

applied by [28] but with Navier’s solution technique to obtain an analytical solution for isotropic thick plates. The 

effect of transverse shear was also factored into their study. Although their work satisfied the shear-stress free 

surface conditions without the aid of shear correction factor, the study was not three-dimensional and polynomial 

functions were not considered.  

The precept of virtual work and HSDT was employed by Mantari and Soares [40] and was confirmed to be 

accurate when compared with other RPTs. The authors obtained a Navier-type analytically-solution of the governing 

equations of simply supported plates subjected to transverse bi-sinusoidal loads, with an assumption of variation in 
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the mechanical features of the plates in the thickness axis.  Thick plates with SCFS support order under uniformly 

distributed loads, were not addressed. The 3-D plate theory was also not applied.  

A polynomial shape function with the direct variation energy approach and 2-D theory was applied by [41] to 

obtain the displacement coefficients for CCCS and SSFS plates, without the need for correction factor. The authors 

failed to cover SCFS plates.  The three-dimensional plate elasticity model was not considered. 

A new inverse TSDT was applied by [42] to develop a finite element solution for bi-directional bending 

assessment of thick isotropic plates. They authors considered transverse shear deflection and rotating inertia effects. 

Dynamic version of the virtual work principle was used to get the dominant equations and edge conditions of the 

theory. When compared with previous HSDTs, their model yielded precise predictions of stresses and 

displacements. They didn’t carry out a three-dimensional investigation. Polynomial functions and SCFS thick plates 

were not considered.  

An exact polynomial functions obtained from the governing equation with an analytical approach were used by 

[43] to analyze SSSS 3-D thick plates. The authors obtained the total potential-energy functional using the six strains 

and stress components. The coarseness of RPT for thick plate analysis was divulged, when their solution was set 

side by side with those of RPT. However, they failed to cover SCFS thick plates.   

A numerical approach based on the 3-D theory was used by [44] to get the bending solutions of a thick plate. 

They applied Spline-collocation method with two-coordinate directions. The displacements and stresses in clamped 

plates were determined. The deflection value at any given point in the plate cannot be properly examined from by 

their approach. Plates with CSFS edge condition were not taken into consideration.  

Onyeka et al. [45] developed 3D trigonometric models for analyzing thick plates bending effects using the 

energy method. In [45], clamped thick plates were considered. The solution of their study confirmed the excellency 

of 3D theory in the thick plate analytic investigation. But both authors failed to analyze the bending attributes of 

SCFS plates. Polynomial displacement function was not taken into account.  

In Refs. [46-88]  applied non-classical elasticity theories to investigate the behavior of plates, but their studies 

were centered on functionally graded material. Their attention was more on nanostructures using nonlocal elasticity, 

strain gradient and nonlocal strain gradient theory. These authors failed to examine the bending attributes. Their 

study failed to capture isotropic rectangular plates. They were not able to consider the three-dimensional plate 

theory and SCFS boundary terms. 

Previous scholars who employed refined 2-D theories for analyzing isotropic rectangular plates, made erroneous 

assumptions with respect to deformation kinematics and inexact bending solutions were obtained. Very few 

researchers considered the 3-D model and this gap is addressed in this study.  

Safe and cost-effective analysis were not achieved by most antecedent scholars in their study due to the 

application of assumed displacement shape functions. To avert laborious mathematical analysis, these functions 

were not derived from the governing equilibrium equation. This research work covers this gap as it employs the 

exact displacement function to obtain its closed-form solution for the thick plate bending analysis.  

Although several authors have carried out studies on the bending of rectangular plates, their solutions were 

approximate as they failed to address all the stress elements as well as their inability to satisfy exactly the specified 

conditions of the edges or the governing differential equation or both. To conquer the limitations of previous works, 

a complete 3-D plate theory is applied in this study. This work determines the stresses and displacements of SCFS 

isotropic rectangular plates using exact polynomial shape functions.  

The physical interpretation of SCFS plate is that, the clamped edge is supported by a beam and continuous over 

the span of the plate, the other two edges are supported by a roller while the remaining one is free of support i.e. 

hang without support (Eg. Cantilever). This makes the study very significant because such boundary condition (BC) 

exist depending on the type of roller, beam or column support in the plate structure, thus, whenever such BC occurs 

it ought to be analysed a such to ensure that it account for all the forces (stresses) acting on it. This is because, forces 

are generated due to the applied load on the structure thereby will introduce significant errors in the result if they 

account for. Hence, the essence of the case study. 
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2. Methodology 

2.1. Model Formulation 

 
Fig. 1: An element of thick rectangular plate showing middle surface 

The research methodology of this study is presented by considering a rectangular plate in the Figure 1 as a three-

dimensional element in which the deformation exists in the three axis: length (a), width (b) and thickness (t). The 

length, width and thickness of the plate is along the x, y and z axis of the plate respectively. The analytical approach 

of energy method was used to obtain formulas for the analysis. The 3-D kinematics and constitutive relations for a 

static elastic theory of plate was used to formulate the governing equations which enables development of the 

formulae for the analysis. 

 

3.2. Kinematics 

The kinematics of the study if formulated by taking the assumption of the plate that the x-z section and y-z 

section, is no longer normal to x-y plane after bending. Thus, the 3-D displacement kinematics along x, y and z axis 

are obtained in line as: 

 (1) 

 (2) 

Given that:  

 (3) 

 
(4) 

 

(5) 

Thus, the six non-dimensional coordinates strain components were derived using strain-displacement expression 

according to Hooke’s law and presented in Equation (6) - (11): 

 

(6) 
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(7) 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

2.3. Constitutive Relations 

The three dimensional constitutive relation for isotropic material is given as: 

 

(12) 

The six stress components were obtained by substituting Equations 6 to 11 into Equation 12 and simplifying the 

outcome gave: 

 

(13) 

 

(14) 

 

(15) 

 

(16) 

 

(17) 

 

(18) 

2.4. Formulation of Energy 

The potential energy which is summation of all the external work done on the body of the material and strain 

energy generated due to the applied load on the plate is mathematically defined as: 

 (19) 
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Given that; 

  (20) 

And; 

  (21) 

Substituting Equations 22 and 25 into Equation 24 to get the energy equation as: 

 

(

22) 

2.5. Solution to the Equilibrium Equation 

The two compatibility equations were obtained by minimizing the total potential energy functional with respect 

to rotations in x-z and in y-z plane to give: 

 

(23) 

 

(24) 

The solution of the equilibrium differential equation gives the characteristics polynomial displacement and 

rotation functions as presented in the Equation 25-27 as: 

 

(25) 

 

(26) 
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(27) 

Considering a transversely loaded rectangular thick plate whose Poisson’s ratio is 0.3 under uniformly 

distributed load as shown in the Figure 2, the derived trigonometric deflection functions is subjected to a SCFS 

boundary condition to get the particular solution of the deflection functions is subjected to a SCFS boundary 

condition to get the particular solution of the deflection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: SCFS rectangular plate 

Applying the initial conditions of the plate in Figure 2, the relationship between the displacement and shape 

function of the plate as: 

 (28) 

 

(29) 

 

(30) 

The in polynomial form of the shape function of the plate after satisfying the boundary conditions is given as: 

 

(31) 

Substituting Equation 28, 29 and 30 into 22, gives: 

 

(32) 

Where: 

 

a 

b 

 
O 

S 

C 

S 

F 
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(33) 

 

(34) 

 

(35) 

 

(36) 

 

(37) 

 

(38) 

Minimizing Equation 32 with respect to  gives: 

 

(39) 

Minimizing Equation 32 with respect to  gives: 

 

(40) 

Re-write the Equation (39) and (40) and simplifying to give: 

 

(41) 

 

(42) 

Where; 

 

(43) 

 

(44) 

 

(45) 

 

(46) 

Minimizing Equation 32 with respect to  gives: 
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(47) 

 

(48) 

Factorizing Equations (48) and simplifying gives: 

 

(49) 

2.6. Exact Displacement and Stress Expression 

By substituting the value of  in Equation 49 into Equation 28, the deflection equation after satisfying the 

boundary condition of SCFS plate is given as: 

 

         

(50) 

Similarly, the in-plane displacement along x-axis becomes: 

 

(51) 

 

(52) 

Where; 

 

(53) 

 

(54) 

 

(55) 

Similarly, the in-plane displacement along y-axis becomes; 

 

(56) 

The six stress elements after satisfying the boundary condition are presented in Equations (57) – (62) as: 

 

(57) 

 

(58) 
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(59) 

 

(60) 

 

(61) 

 

(62) 

 

4. Results and Discussion  

The exact polynomial shape-displacement function established was employed to obtain the numerical results of 

the non-dimensional values for the stresses and displacements of a three-dimensional thick plate with SCFS 

boundary condition and uniform distributed loading. The outcome of the non-dimensional digits of displacements 

and stresses for varying span-thickness ratio with length-breadth aspect ratio of 1.0 and 2.0, were presented in 

figures 3 to 6. The span-depth ratio whose range consists of 4, 5, 10, 15, 20, 50, 100 and CPT, captured thick, 

moderately thick and thin plates. To determine the bending of the plate at different thickness, this work obtained the 

non-dimensional figures by expressing the rotation and deflection functions in a polynomial form.  

Figures 3 and 4 show that the in-plane displacements (u and v) increases in the negative coordinate while the 

out-plane displacement (w) decreases in the positive plane as the span-depth ratio increases. The stresses 

perpendicular to the x and y axis (σx and σy) decreased positively and increased in the negative direction 

respectively, as the span-thickness ratio of the plate increased. The value of the shear stresses in the x-y plane (τxy) 

and x-z plane (τxz) increased negatively with a reduction for the stresses in the y-z plane (τyz), as the span-depth 

ratio increased. This decrease was sustained until failure occurred in the plate structure. At a span-thickness ratio 

between 4 and 20, the value of the deflection varies between 0.0008 and 0.00005, as shown in figure 3. A constant 

value of 0.00395 was sustained at span-thickness ratio of 50 till 100 which was same with CPT value. It is observed 

that the difference in deflection is larger when the plate is thicker and it becomes smaller when the span-depth ratio 

rises under the same loading phenomenon.  

For length-breadth aspect ratio of 2.0, figure 3 demonstrates that as the span-thickness ratio gets higher, the non-

dimensional values of out-plane displacement (w) reduces with a difference of 0.0009 and 0.0002 span-depth ratio 

of 4 and 15. A constant deflection value of 0.00480 was found in a span - depth ratio of 15 and 20 while that of 50 

and 100 was 0.00470 which is equal to the value obtained for CPT. The values of the in-plane displacements (u and 

v) dropped as the span-depth ratio rose. The reductions perpetuate until the plate structure deforms outwit the elastic 

yield stress resulting in structural failure.  

Figure 6 represents the outcome of the non-dimensional values of the stresses at varying thickness for length-

breadth ratio of 2.0. The normal stress (σx) decreases in the positive coordinate while that of y-axis (σy) increases 

negatively as the span-thickness ratio gets larger. The value of shear stresses in the x-y plane (τxy) increased 

negatively span-depth ratio of 4 and 5 with a negative constant value of 0.0051 a span - depth ratio of 10, 15, 20, 50, 

100 and CPT. The value of the shear stress in the x-z plane (τxz) increased negative for 4 and 5 span-depth ratios, 

but with a positive reduction for the span-depth ratios ranging from 10 to 100 and CPT. The non-dimensional values 

of shear stresses in the y-z plane (τyz) decreased positively for the span-depth ratio of 4 and 5, with a negative 

decrease for span-thickness ratio between 10 and 100, as well as CPT.  

The center deflection obtained in this study was compared to those obtained from 2D shear deformation theory 

by Onyeka et al. [1], as shown in figures 5 and 6. The similarity of these studies is that the non-dimensional 

deflection values decreased as the span-depth ratio increased. Although both past and current study possess the same 

behavioral trend as shown the graphs, their disparity is still undeniable as it confirmed that refined plate theories 

under-estimates and overestimates the bending solution of the plates. The study of Onyeka et al. [1] which applied 

derived shape function produced solutions that were closer to the exact solutions of the present study. While the 2D 

theories yield approximate solutions, 3-D model as applied in this study offers exact and reliable solutions and 

should be adopted for an adequate analysis of thick plates. The overall average percentage variation of the deflection 

values obtained by Onyeka et al. [1], is 0.39%. This revealed that at the 99.7 % confidence level, both theory and 
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methods are identical and applicable for thick plate analysis.  

From Table 1, it is shown that the present study predicts slightly higher values of center deflection with highest 

percentage difference of 5.2%, which occur at span-thickness aspect ratio of 4. The degree of these variations 

confirms the safety of the current model. The comparative study of the present model as shown in Table 1, clearly 

confirms that derived deflection function employed in this work is reliably and more accurate as the six stress 

elements were captured in order to produce an exact solution for the bending problem of plates with SCFS support-

order.   

 
Fig. 3: Displacements and span-thickness ratio variation for SCFS plate with aspect ratio of 1.0 

 
Fig. 4: Stresses and span-thickness ratio variation for SCFS plate with aspect ratio of 1.0 

 

 



12 Festus Chukwudi Onyeka et al. 

 
Fig. 5: Displacements and span-thickness ratio variation for SCFS plate with aspect ratio of 2.0 

 
Fig. 6: Stresses and span-thickness ratio variation for SCFS plate with aspect ratio of 2.0 

 
Fig. 7: Comparative center deflection analysis for SCFS square plate at different span-thickness ratio between present study and 

past studies 
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Fig 8: Comparative center deflection analysis for SCFS plate at different span-thickness ratio and length-breadth aspect ratio of 2.0 

between present study and past studies 

Table 1: Center deflection percentage difference between the present study and past studies for SCFS square plate 

Past Scholars 
Span-thickness ratio Average % 

difference 

Overall % 

difference 4 5 10 15 20 50 100 CPT 

Onyeka et al., 
(2020) [1] 

2.1390 2.4000 2.8571 2.9557 2.9925 3.0380 3.2911 3.5533 2.9030  
0.3856 

Gwarah 

(2019) [98] 

-5.1693 -4.6000 -3.5714 -3.6946 -3.4913 -2.0253 -3.5443 -3.2995 -3.6700 

 
Fig. 7: A graph of deflection against span-depth ratio, comparing previous studies with the present study 

5. Conclusion 

The 3-D elasticity theory has been used to investigate the moments, displacements and stresses of thick 

rectangular plates with the following conclusions drawn from it: 

a. The result obtained in this work which are compared with those of previous works revealed that 2-D 

refined plate theories are quite coarse for thick plate analysis. RPTs under-estimates and over predicts 

stresses, displacements and bending loads within the engineering allowable error of 3.28% for thick plate 

analysis. 

b. The exact polynomial displacement functions offered closed-form solution for thick plate analysis. 

c. The 3-D elasticity solution gave a more accurate and reliable solution compared refined plate theories and 

are recommended for the analysis of thick plate under the initial condition. 

d. The model produced in this study can be employed to analyze plates at varying thicknesses and aspect ratio. 
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Thus, the model produced in this study can be employed to analyze various categories of the plate. 
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