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Abstract 

The two-dimensional pulsatile blood flow in tapered stenosis arteries under 

the effect of a Magnetic field with mass and heat transfer was analyzed by 

using a new analytical method called the Akbari-Ganji homotopy 

perturbation method (AGHPM).This technique is based on integrating the 

Akbari-Ganji and the homotopy perturbation methods. We succeeded in 

developing the mathematical model studied by researchers Liu and Liu by 

adding the effect of the magnetic field of blood flow in addition to the effect 

of mass and heat transfer on it, this developed model has not been studied 

before. In the two states (absence and presence) of a magnetic field; the axial 

velocity, the wall shear stress, flow resistance and volumetric flow rate were 

investigated under the impact of the angle of tapering, the Grashof number, 

the solutal Grashof number and magnetic field. The results show that in the 

case of the absence magnetic field there is good agreement with the previous 

study made by the researchers Liu and Liu, while in the case of the presence 

magnetic field it is noted that when the magnetic field increases from 2 to 6, 

the velocity and flow rate decrease, but in contrast the wall shear stress and 

resistance flow increases. Moreover, the results establish that AGHPM is 

effective and extremely accurate in determining the analytical approximate 

solution for pulsatile blood flow in tapered stenosis arteries under magnetic 

field influence. Furthermore, the graphs of this novel solution demonstrate 

the validity, usefulness, and substantiality of AGHPM, and are consistent 

with the results of earlier investigations. 

Keywords: Akbari-Ganji method; blood flow; homotopy perturbation method; tapered stenosis arteries; 

magnetic field; mass and heat transfer. 

1. Main text 

The study of bio-fluid dynamics has received a great deal of attention from many researchers and scientists in the 

last years, especially concerning the facets of the system of human cardiovascular. The source of this tremendous 

interest is due to the fact that the system of the human cardiovascular is the inner transfer of fluids with multiple 

offshoots of the arteries along which an intricate flow of blood circulates. There are many different cardiovascular 

diseases, a stenosis is one of these main diseases that infects the arteries and affects the process of the blood flow.  
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The stenosis happens in an artery because of the deposit of adipose substances on the internal walls of the artery, 

a state called atherosclerosis, which leads to the blood flow in the corresponding organs of the body being seriously 

reduced, resulting in several dangerous circulatory disorders. Because of the importance of studying blood flow in 

arteries with stenosis, many numbers of researchers and scientists have attempted to find solutions to the problem of 

blood flow through arteries affected by stenosis (a single case or multiples) by employing various methods for 

various blood models. For example, Ali et al. [1] solved numerically the blood flow for the Sisko model through a 

tapered stenosis artery. Chakravarty and Mandal [2] studied the interfering stenosis in an artery for the 

incompressible Newtonian blood flow model that submitted to body acceleration theoretically. Changdar and De [3] 

employed the finite difference method for the incompressible viscous unsteady Newtonian fluid model to the blood 

flow through an artery which has a multiple stenosis. Mandal et al., [4] studied the laminar pulsatile flow of blood 

through an artery that has stenosis by utilize a finite difference method and beneath the effect of externally imposed 

periodic body acceleration. Srivastava et al., [5] investigated the blood flow in a two-layered macroscopic model 

through interfering constriction in the arteries. Zaman et al. [6] analyzed by utilizing a two-dimensional model and 

in a tapered artery that has stenosis the unsteady pulsatile blood flow, through using a finite difference method. 

When the physical and medical effects are studied on blood flow, the blood flow system becomes more complicated. 

Therefore, it is difficult to find exact solutions for this system to clarify these effects, and therefore many researchers 

resort to searching for a suitable simulation technique to hold their goals. Dada and Alamu-Awoniran [7] studied 

analytically the impact of heat and mass transfer in flow of blood. They assumed blood to be a micropolar, 

incompressible fluid through a tapered artery with mild stenosis. Shit and Majee [8] examined unsteady blood flow 

and heat transfer properties for the Newtonian, incompressible, fluid model in a tapered artery under the existence of 

whole body vibration and a magnetic field. Shaw et al., [9] treated the blood flow as a Casson fluid model through 

an artery that has stenosis under the effect of an exterior magnetic field with body acceleration. Sharma and Gaur 

[10] analyzed the blood flow through arterial catheterization when the blood is exemplified by a Newtonian fluid 

with the effect of a magnetic field. Ponalagusamy and Priyadharshini [11] processed the blood flow as a Herschel-

Bulkley fluid and studied the impact of the existence of a magnetic field and body force through an artery with 

stenosis. Tripathi and Sharma [12] inspected the impact of mass and heat transfer on the flow of blood under the 

effect of a magnetic field with a chemical reaction for a non-tapered artery with mild stenosis. Ellahi et al. [13] 

examined the blood as a fluid flow of Jeffrey in a catheterized tapered artery and they studied the impact of heat 

transfer with a catheter. Danesh et al. [14] used nonlocal elasticity theory to study the small scale impact on the axial 

vibration of a tapered nanorod. To analyze the mechanical behavior of nanoscale materials the nonlocal elasticity 

theory was used. By using the differential quadrature method the governing equations of the nanorod for clamped–

clamped, clamped–free and fixed-attached spring boundary conditions were solved. Faghiri et al. [15] examined the 

Graetz-Nusselt problem for blood as a non-Newtonian fluid. By using the separation of variables method the energy 

equation is treated after the flow field is identified by solving the momentum and the continuity equations. 

Moreover, an approximate analytical solution is determined, using an integrated approach to solving boundary layer 

equations. Finally, the effects of controlling parameters such as surface heat flux and energy law index on the 

thermal properties of the flow and structure of non-Newtonian fluids are discussed in detail. Hosseinzadeh [16] 

studied the magnetohydrodynamic (MHD) flow in the presence of microorganisms and nanoparticles on a surface. 

The impact of thermal radiation, Brownian motion, Magnetic field, Schmidt number, Peclet number, 

thermophoresis, and bioconvection Schmidt number is investigated. The governing equations are transformed into 

the ordinary differential equation and then are solved with MAPLE software by taking advantage of the Runge-

Kutta fifth-order method. Furthermore, many studies have investigated the impact of magnetic fields on the flow of 

blood in an artery with stenosis (one instance or several instances) on the different fluid models [17-57]. In 1992, Luo 

and Kuang [58] suggested a new constitutive equation to describe the shear thinning demeanor for blood at high and 

low shear rates for the non-Newtonian fluid model. This model is called the K-L model. Additionally, Luo and 

Kuang conducted an experimental investigation using the K-L model. Results indicated that the K-L model has good 

agreement with experimental data, and can be utilized to describe blood flow. They deduce that the suggested model 

is more efficacious in describing shear thinning for the blood flow behavior in comparison with the Newtonian and 

Casson’s models. In 2020, Liu and Liu [59] considered the blood flow as a K-L model and examined the impact of 

mass and heat transfer on it. Also, they studied the properties of the blood flow. 

   What was introduced above reflects the importance of studying the flow problem of blood, in addition to the 

study of the effect of a magnetic field on it, by researchers in various mediums, treating it with various simulation 

methods. Furthermore based on the information and to the best of our knowledge, the merging process between 

analytical approaches and approximate methods may alleviate or decrease many of the restrictions associated with 

handling each method separately. This reason stimulates us to combine the two methods in this study. The first is the 

analytical method known as the Akbari-Ganji's method (AGM), which is a new method presented by Ganji and 



Journal of Computational Applied Mechanics 2022, 53(4): 543-570 545 

Akbari and may be used to solve a variety of nonlinear differential equations (ordinary and partial). And the second 

is the homotopy perturbation approach that is discovered by Aminikhah and Hemmatnezhad [60], which is a semi-

analytical (approximate) method that takes on a fresh format for the standard homotopy perturbation method (HPM). 

The combination between these two methods (AGM and HPM) yields an innovative approach known as the Akbari-

Ganji's homotopy perturbation method (AGHPM). For these reasons and what has been presented in the historical 

review above, we were encouraged to do the following: first, the blood is assumed to be a K-L model. Second, we 

developed the model of blood flow in [59] by adding the effect of a magnetic field in addition to the impact of the 

heat and mass transfer for the blood flow. According to the information available to us, the new system has not been 

studied before, and thus will be one of the new innovative points of our work. Third, we use the Laplace transform 

(LT) and Yang transform (YT) to convert the partial equations of pulsatile blood flow to an ordinary differential 

equations. Fourth, we resolve the new system by using the new method (AGHPM). Fifth, we study the effect of the 

magnetic field as well as the properties of blood on the axial velocity, volumetric flow rate, wall shear stress and the 

flow resistance profile. Finally, we made a comparison between the results obtained by AGHPM, AGM and HPM 

with and without the existence of the magnetic field. Furthermore, the innovative method could be an improvement 

for AGM and HPM. The numerical results, obtained by using AGHPM to solve the current problem confirm that the 

proposed method is competent, effective, and has high precision. And also, its results are in agreement with those 

are reported by other researchers [59, 61, 62].  

   The novelty of the current paper lies in the development of the mathematical model that was solved by the 

researchers in [59] by adding the effect of the magnetic field to it. Moreover; we have solved the current problem 

under study by using a developed and novel method that has not been used before to solve this problem in two cases, 

the presence and absence of the effect of the magnetic field. This method give new and high-accuracy results that 

have been confirmed its validity by comparison with previous studies in the literature, while the limitations of this 

method are that it can be easily applied to the ordinary differential equation but on the partial differential equation 

must be firstly transform it into the ordinary differential equation and then applied this method on it. Moreover, this 

new study (i.e. add effect of the magnetic field) with the applications of (mass and heat transfer) explains the 

importance of applying the magnetic field and how doctors can benefit from it to reduce the risk of diseases, when 

used appropriately. 

2. The AGHPM Algorithm 

The basic idea of the AGHPM is based on the AGM and HPM algorithms, which will be discussed in this 

section. 

2.1.  Akbari-Ganji’s Method (AGM)  

This method was proposed by Akbari and Ganji [63] and it is a very suitable calculation technique that may be 

used to solve different nonlinear differential equations. In this method the solution is assumed as finite series, so the 

solution is found by solving a set of algebraic equations. 

To apply AGM, the differential equation for a function )(yU  and its derivatives can be expressed as follows; 
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where kp   is the nonlinear differential equation of 
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To solve Equation (1) in connection with the conditions (2a and 2b), the solution of the differential equation is 

considered as follows; 
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   By the choosing more terms of Equation (3) leads to a more accurate solution to Equation (1). To obtain the 

solution for the differential Equation (1), if the series (3) is of ( n ) degree, then exist ( 1+n ) unknown coefficients, 

which are need ( 1+n ) equations to be defined. The boundary conditions (2a) and (2b) are applied for Equation (3) 

as follows: 

 

(a) At 0=y , we have the following, 
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(b) After substituting Equation (3) into Equation (1) and after that we apply the boundary condition to it, we obtain: 
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    With regarding the choice of n ; ( mn  ) the terms in Equation (3) and to making in order a set of equations 

consisting of ( 1+n ) unknowns and ( 1+n ) equations, we are faced with an additional number of unknowns that 

are surely the same as the coefficients of Equation (3), so, to overcome on this problem, we must derivate Equation 

(1) of m  time according to the unknowns additional in the set of differential equations above and after that we 

apply the boundary conditions on it as follows:  
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(c) The boundary conditions are applied to Equation (7) as follows: 

           






+

+

))(),...,('''),(''),('(

))0(),...,0('''),0(''),0('(
:'

)1(

)1(

LULULULUf

UUUUf
p

m

m

k
                                                                                        (8)    

          






+

+

))(),...,(''''),('''),(''(

))0(),...,0(''''),0('''),0(''(
:''

)2(

)2(

LULULULUf

UUUUf
p

m

m

k
                                                                                 (9) 

    From Equations (4) to (9), ( 1+n ) equations may be worked out, and so ( 1+n ) unknown coefficients of 

Equation (3) such as naaaa ,...,,, 210  can be computed. By locating the coefficients of Equation (3), the solution 

to the nonlinear differential Equation (1) will be achieved. 

2.2. Homotopy Perturbation Method (HPM)  

A fresh form  of homotopy perturbation method was found-out by the two scientists Aminikhah and 

Hemmatnezhad [60] to obtain an analytical solution for the nonlinear differential equations. It is assumed that the 

solution in this method is an infinite series. To illustrate the basic ideas of this technique [60, 64], let us contemplate 

the following nonlinear differential equation: 

                     
=− )(,0))(())(( yryrfyUA

                                                                                 (10) 

with the boundary condition: 
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where A  is a public differential operator,   is the operator of a boundaries, ))(( yrf  is an analytic well-

known function and   is the boundary for the domain  . The operator A  can be divided into two parts, L  and 

N , where L  is a linear operator and N  is a nonlinear operator. Therefore, Equation (10) can be rewritten as: 

                  0))(())(())(( =−+ yrfyUNyUL                                                                                              (12)
 

By the technique of homotopy, we are building a homotopy  → 1,0:),( prv ℝ which satisfies: 
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where  1,0p  is an embedding parameter, )(0 yU  is an initial approximation of Equation (10). From 

Equations (13) and (14), we obtained; 
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According to HPM, we can first use the embedding parameter p  as a small parameter, and assume that the 

solutions of Equations (13) and (14) can be represented as a power series in p  as follows: 
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Let's now rewrite Equation (14) in the following format:  
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By applying the inverse operator 
1−L  to both sides of Equation (18), we obtain:  
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Assuming the initial approximate of Equation (10) has the following format: 
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where 0b , 1b , 2b ,… are unknown coefficients and )(0 yg , )(1 yg , )(2 yg ,… are specified functions depended 

on the problem. Now by substituting (17) and (20) into the Equation (19), we have 
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By equalizing the coefficients for terms that have the same power p , leads to   
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Therefore, we can obtain the solution as follows: 
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2.3. The Fundamental Notion of the Innovative Method (AGHPM) 

To describe the essential notion of the new technique for Equation (12) with conditions (11) is as the following 

steps: 

Step1: By the HPM, we have: 
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Step3: Applying the boundary conditions to the function )(yv . 

Step4: By putting )(yv  and )(0 yU
 
in Equation (24), we have: 
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Step5: Equalize the terms that have the same power of p , we obtain: 
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So on. 

Step6: By applying the boundary conditions to Equations (26) to find the unknown coefficients ia
 
and kb . 

Step7: The analytical solution can be found by putting  ia
 
in:   
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3. Governing equations 

3.1. The geometry of stenosis 

It is assumed that the artery is a tapered, cylindrical, elastic and thin tube. It has interfering stenosis in the vessel 

axisymmetric. Cylindrical polar coordinates were used to clarify the blood artery and indicate the point in the system 

with ),,( zr  , where:   and r  are circumferential and radial directions respectively, the z -axis is along the axis 
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of the artery. The geometric shape of the tapered artery with multiple stenosis is shown in Fig. 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Geometric shape of the tapering artery with stenosis, 

 
and the geometry function as [59]: 
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vessel. The time-variant parameter is )cos(1)(1  −+= tkta , where k  indicates some parameter associated 

with amplitude. 

3.2. The equations of the flow 

Keep in mind that blood flow is a pulsating fluid in tapered stenosis arteries beneath the influence of a magnetic 

field combined with the effects of mass and heat transfer, and the blood is bound in the form of a viscous, 

incompressible fluid. Therefore, with these assumptions, the governing equations (continuity, momentum, energy, 

and mass concentration) can be written as: 
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where:
10 BBB +=  is the total magnetic field where 

0B  is the exterior magnetic field which is justified for 

magneto-hydrodynamics (MHD) flow at a small magnetic Reynolds number and 1B  is the induced magnetic field 

which is negligible.  

   From Ohm’s law [61], we get:    

                                        ( ),BVEJ +=                                                                                                   (32) 

where; ),0,( wuV =
 
are the velocity components. The force BJ   can be simplified to: 

                                             .2 VBBJ −=                                                                                                (33) 

By putting Equation (33) into Equation (29); then Equation (29) becomes: 
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the apparent viscosity and   defined as a K-L model. 

Since the blood flow is considered pulsatile, so the pressure gradient can be defined as follows [59]: 

                                                             ,0;)(cos10 +=



− ttAA

z

P
   

0A  indicates the amplitude in the state of the steady state, 1A  symbolizes the amplitude in the state of the 

pulsatile blood flow and pf 2=  is the frequency angular where pf  is the pulse frequency. 
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So, the Equations (27, 28, 30, 31, 34) can be written in dimensionless as: 
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The non- dimensional pressure is defined as [59]  
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The boundary conditions can be described as follows: 

The axial velocity gradient, radial velocity, temperature gradient, and mass gradient are all zero along the axis of 

symmetry, i.e. 
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Now, to transmute the governing Equations (35) and (36-39) for the radial coordinates, let 
),( tzR

r
=  , then 

have: 

                                

,0
1

=







−




++











w

z

R

Rz

w

R

uu

R
                                                                                      

(40)

  

       ,
Re

111

1Re

2

2

22

w
M

CGTG
zz

R

RzRR

z

Pw
ww

w

z

R

R

w

R

uw

t

R

Rt

w

cr

zzzzz

z −++

















+




−




++




−












−








+




−+








=

























                                  

(41) 

       













−








+




−+








=











 T
ww

T

z

R

R

T

R

uT

t

R

Rt

T
2

Re

                 

         

,
11

Pr

1
2

2

2

2

22

2

22

2

22

2






























+








+








−−




+




+




+






























−




+
















−




+




+




+






































T

z

R

R

T

z

R

R

T

z

R

Rz

TT

R

T

R

w

z

R

Rz

wu

z

R

Rz

uw

R

u

R

E
zzz

zc

        (42) 

    

,
11

111

Re

2

2

2

2

22

2

22

2

22

2

2

2

2

22

2

22

2

22

2






























+








+








−−




+




+




+






























+








+








−−




+




+




+













−








+




−+








=









































T

z

R

R

T

z

R

R

T

z

R

Rz

TT

R

T

R

S

C

z

R

R

C

z

R

R

C

z

R

Rz

CC

R

C

RS

C
ww

C

z

R

R

C

R

uC

t

R

Rt

C

r

c           

(43) 

 

Where the components of stress are defined as [59] 

 

;
1

)(,
1

)(2,)(2 











+








−




=












=
















−




=












 

w

R

u

z

R

Rz

uu

R

w

z

R

Rz

w
zzz






++
=

• 2/1

0)(
l

2/1

0

0

1

2; 









=•

u

d
l




and  

2222

11
2 












+








−




+































−




+








+












=












w

R

u

z

R

Rz

uw

z

R

Rz

w

R

uu

R
. 

 

The radial velocity can be found as [59] 
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The initial conditions can be defined as: 
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And the conditions of the boundary are: 
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5. Application of AGHPM 

To apply the AGHPM algorithm to the governing Equations (41-43), in the firstly, we transform Equations (41-

43) to ordinary differential equations this can be made by taking Laplace transform with respect to  with apply the 

condition on it then we have also partial differential equation in tz,  coordinate and to make the equations full 

ordinary after that we take Yang transform with respect to z , and by applying the conditions on it, then, we have 
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)47(

,
)(1)()(

)()(1)()()(1

)()(1
)(

)()(Re)(

,
)(1)()()(

Pr

11

1)()(
)(

)()(Re)(

,
Re

1111Re

2

2

22222

22

2

2

2

222222

2

2

22

2

22222

2

2

222222

2

2

2

222

22222

2

2

2

22222


























































+








+−−+























+++




































+−−








−+









+++








−+−+=




























+








+−−








+++




























−








+




































+−+++








−+−+=

−++






















+−++−








−+−+=
















































































































































Rs

Ts
R

Rs

sT

Rs

sTS

T

R

sTs

R

TsS
R

Rs

sC

Rs

sC

Rs

Cs

S

C

R

sCs

R

sC

S
Csw

Rs

wCs

R

Csu

Rs

CsR
C

Rs

Ts
R

Rs

sT

Rs

sTT

R

sTs

R

Ts

Rs
w

E

u
Rs

us

RR

usE
Tsw

Rs

wTs

R

Tsu

Rs

TsR
T

w
M

CGTG

RsR

s

R

s
Pw

Rs

w

R

u

Rs

R
w

r

r

c

c

t
t

zz
c

z

zct
t

cr

zzzzzzz
t

t







































































 
 

where; ),,(),,,( tsTTtsww   == , ),,,( tsCC  = == Rws



1

,* ,










+−=






RRs

suu
z




  2

)(
)(  











=










−=











R

su

Rs

su
wzz

)(
)(2,

)(1
)(2

2





 

 and 

2/1

0

0

1

2

2/1

0 ;)( 









=

++
= •



•



u

d
l

l










 

where;  
2

1

2

2

2

2

2
22

)(11
)(

1
2




























+−+























−+








+








=




















RRs

su
u

Rs
w

R

us
su

R








  . 

Also; the geometric of stenosis is:
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Now, we will use the innovative algorithm AGHPM that we illustrated it in subsection (2.3) to solve the equations 

involved in relation (47). After finding the AGHPM solutions ),,(),,,( tsTtsw  
, and ),,,( tsCC  = we 

take the Laplace and Yang inverse for these solutions to obtain: ),,(),,,( ztTztw   and ),,( ztC  .  

    These analytical approximate solutions will be in two cases: The first in the absence of a magnetic field are; 
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Secondly, the analytical solutions in the presence of a magnetic field are: 
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   Now, after we have established the velocity components (radial and axial velocity), the important properties of the 

blood flow like the volumetric flow rate, the wall shear stress and the resistance impedance can be calculated with 

the help it (velocities), as follows, respectively: 
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6. Results and discussion 

Fig. 2 shows the comparison between the analytical approximate solution offered by the new method (AGHPM) 

and [71] for the axial velocity in the state of the absence of a magnetic field at 

,2.0,2.01 == tA ,1,1 00 == d ,10,7,4 0 === dll ,2.1,005.0 == fk ,3,3,2 === rc SSf  

,4.0=cE ,1000Re,1 ==z ,5.1,20002 == cG 5.1=rG  and various values of  ,m  and 
0A . While Fig. 3 

explains the effect of a magnetic field on the axial velocity (presence of M ) at the same values of the parameters 

for Fig. 2. We note that the velocity flow of blood amounts to the maximum value in the center of the artery. 

Moreover, it can be observed that the velocity increase as the depth of the stenosis increases ( m ), whilst when the 

angle of the tapered vessel increases ( ) the velocity decreases. Furthermore, we note the effect of a magnetic field 

on the velocity: when the magnetic parameter ( M ) increases, the velocity will decrease. This happens due to the 

fact that blood contains magnetic iron oxide, and when a magnetic field impacts the blood, it feels a powerful 

electromotive power, which leads to the generation of a rotational movement of blood particles, and these impacts 

the speed of blood flow. Therefore, when the influence of the magnetic field increases, the Lorenz force which is 

stable amongst the applied magnetic field and the magnetic particles oppose the movement of the flow of blood and 

thus leads the blood velocity to decrease. Consequently, we can conclude the great significance in the blood vessel 

when the stenosis is reduced and the magnetic field increases, because the vessels slowly dredge the blood velocity 

and as a result minimize the risk of disease. 
 

    Fig. 4 explains the comparison between AGHPM and Ref. [59] solutions for the effect of the solutal Grashof 
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number ( cG ) and the Grashof number ( rG ) on the axial velocity when the depth of the stenosis takes a fixed value 

( 03.0 dm = ) and ,2.0,2.01 == tA ,10,7,4,1,1 000 =====  dlld  ,2.1,005.0 == fk
 

,3,3,2 === rc SSf  2000,1000Re,4.0 2 === cE
 
and 1=z , in a state of absence of a magnetic 

field. However, Fig. 5 illustrates the impact of a magnetic parameter as well as the influence of cG  and rG  on the 

axial velocity (presence of M ), in the same values of the parameters in Fig. 4. We show, when cG  and rG  

increase the velocity also increases, which exemplifies the influence of both mass and heat on the fluid, respectively. 

Also, we note that when M  increases, the velocity decreases. This signifies that the velocity increases considerably 

when the concentration and temperature growing in the absence of a magnetic field. Conversely the velocity 

decreases in the presence of a magnetic field which illustrate that M  has an opposite effect with rG  and cG  on 

velocity. This occurs due to the Lorentz force which dissents the movement of the flow of blood at the artery 

causing an increase in blood's internal viscosity.   This indicates the importance of a magnetic field in reducing the 

risk of diseases, when used appropriately.  

  Fig. 6 demonstrates the volumetric flow rate in an artery with stenosis at various values of rG ,  , 0A
 
and 

,2.1,005.0,10,7,4,1,1 000 =======  fkdlld  ,3,3,2 === rc SSf ,5.1,4.0 == cc GE

01

2 4.0,2.0,2.0,2000,1000Re dtA m =====   in the absence of a magnetic field. We can observe 

that the volume flow rate takes the shape of the geometric artery, illustrating that the rate of flow goes down at the 

onset of stenosis and at the critical height of the stenosis reaches its minimum. Moreover, when   increases, the 

flow rate increases significantly. Also, the flow rate increases when the thermodynamics parameter ( rG ) increases. 

To the contrary, as shown in Fig. 7, in the case of the flow rate with the impact of a magnetic field on its ( M  

presence), we note that the rate of flow decreases as M  increases. This means that the existence of a magnetic field 

also affects the rate of flow by considerably minimizing its size, also it is illustrated that M  has an opposite effect 

with rG  on flow rate.  Furthermore, Fig. 8 illustrates the comparison between AGHPM and Ref. [59] solutions for 

the volumetric flow rate for various values of  cG  which demonstrate the influence of mass transfer on the fluid 

flow. It was noted that the rate of flow is subject to increases when the solutal Grashof number ( cG ) increases. 

Conversely, Fig. 9 shows the impact of a magnetic field on the flow rate (presence of M ) with various values of 

mass transfer represented by a cG  number. It can be seen that the rate of flow decreases with the increase in M  

which means that M  has the opposite effect with cG  on flow rate. Due the behavior of blood as an electrically 

conductive fluid that stimulates the magnetic field as well as the electric field when it flows under the effect of the 

magnetic field this leads to appear the Lorentz force, which opposes the movement of blood flow. 

   Figs. 10 and 11 explain the effect of the Grashof and solutal Grashof numbers on the wall shear stress at some 

tapered angles in the absence of a magnetic field and 1000Re,20002 == , ,1,1 00 == d
 

,3,3,2,2.1,005.0,10,7,4 0 ========

rc SSffkdll  ,2.0=t .4.0,2.01 == cEA  It 

was noted that when 0  the wall shear tapering converged, and if 0=  the wall shear became a non-tapered 

artery. When 0 , the wall shear tapering diverged. Moreover, at an increased solutal Grashof number and 

Grashof number the wall shear stress decreased greatly, i.e. the concentration and temperature exerted a negative 

impact on the wall shear stress. Figs. 12 and 13, however, show the effect of a magnetic field in addition to the 

effect of a Grashof number and solutal Grashof number on the wall shear stress (presence of M ) in a range of 

tapered angles and with the same values of parameters in Figs. 10 and 11. It can be noticed that the wall shear stress 

increased with increases in the magnetic field, the Grashof number and the solute Grashof number, meaning that the 

temperature and concentration together with the effect of a magnetic field have a positive influence on the wall shear 

stress. 

   The effect of the Grashof number and the solute Grashof number on the flow resistance can be seen in Figs. 14 

and 15 respectively; for some values of angles of tapering and ,2000,1000Re 2 ==   ,4,1,1 00 === ld 
 

2.0,2.0,4.0,3,3,2,2.1,005.0,10,7 10 ========== AtESSffkdl crc . In Figs. 14 and 15 
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the resistance of blood flow is at the critical rising point of the stenosis at its maximum value. Moreover, it was 

noted that the shape of the resistance flow distribution takes an opposite form to that of the rate of flow. Also, it can 

be noticed when the angle of a tapered vessel increases the resistance flow decreases. When the Grashof and solutal 

Grashof numbers increase, the resistance flow also decreases. Conversely, Figs. 16 and 17 illustrate the impact of a 

magnetic field on the resistance (presence of M ) of the blood flow for the same values of parameters in Figs. 14 

and 15. The resistance flow was observed to increase with the increase of the magnetic parameter, which indicates 

that the application of the magnetic field affects the flow resistance of blood. Moreover it is noted that the magnetic 

parameter has an opposite effect with the Grashof and solutal Grashof numbers on the flow resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Comparison between AGHPM and [71] of the axial velocity at various value of m and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Impact of magnetic field on axial velocity ( w ) at various value of M . 
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Fig. 4: Comparison between AGHPM and [71] at various value of cr GG , and  . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Impact of magnetic field on axial velocity ( w ) at various value of M  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Flow rate ( Q ) comparison between AGHPM and [71] at different values of rG and  . 
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Fig. 7: Impact of magnetic field on flow rate ( Q ) at various values of rG
 
and M . 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Flow rate ( Q ) comparison between AGHPM and [71] at different values of cG and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Impact of magnetic field on flow rate ( Q ) at various values of cG  and M . 
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Fig. 10: AGHPM and [71] for wall shear stress ( ) at different values of 
rG and  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: AGHPM and [71] for wall shear stress ( ) at different values of 
cG

 
and   .  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: The impact of magnetic field on wall shear stress ( ) at different values of rG  and 6,4,2=M . 
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Fig. 13: The impact of magnetic field on wall shear stress ( ) at different values of cG
 
and 6,4,2=M . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: The flow resistance ( ) for AGHPM and [71] at different values of rG and  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: The flow resistance ( ) for AGHPM and [71] at different values of cG and  . 
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Fig. 16: Effect of magnetic field on flow resistance ( ) at various values of rG
 
and 6,4,2=M . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 17: Effect of magnetic field on flow resistance ( ) at various values of cG  and 6,4,2=M . 

 

Moreover; Table 1 shows the comparison of the errors between AGHPM, AGM and HPM in case of absence and 

presence of a magnetic field at ,2.0,2.01 == tA ,1,1 00 == d ,10,7,4 0 === dll
 

,2.1,005.0 == fk ,3,3,2 === rc SSf ,1=z 2000,1000Re,4.0 2 === cE
 
and different 

values of  . As shown in the tables below, AGHPM has fewer errors, is more efficient, and is more accurate than 

other approaches for solving this problem (AGM and HPM). As a result, we can state that the new approach is a step 

forward for AGM and HPM (which is the first time that we applied these methods (HPM and AGM) for solve the 

current problem). 
 

Table 1: A comparison errors between AGHPM, AGM and HPM of velocity function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Errors 0=M  2=M  

AGHPM AGM HPM AGHPM AGM HPM 

 

-0.005 2L  
0.0000291 0.0886898 0.0217303 0.0001824 0.0441785  0.0073814 

L  
0.0000434 0.1988725 0.0637615 0.0006429 0.0873843 0.0251249 

 

0 2L  
0.0000289 0.0885481 0.0217189 0.0001811 0.0440930 0.0073783 

L  
0.0000432 0.1989316 0.0637496 0.0006439 0.0873885 0.0251209 

 

0.005 2L  
0.0000287 0.0883993 0.0217076 0.0001798 0.0440077 0.0073752 

L  
0.0000430 0.1989892 0.0637376 0.0006448 0.0873927 0.0251169 
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where; the measurement errors define as following: 
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7. Convergence analysis of AGHPM 

In this section, we will study the convergence of analytical approximate solution obtained from AGHPM for 

Equations (41-43), as follows: 

Definition: Assume that X  is the Banach space and →XN : ℝ is a nonlinear mapping where ℝ is the real 

numbers. Then, the sequence of the solutions can be written in the following form: 
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where N  satisfies the Lipschitz condition such that : 

              ℝ;  .10,)()( 11 −− −−  mmmm WWWNWN                                                    (49b) 

 

Theorem (1): The series of analytical approximate solutions obtained by new method convergence if it satisfies 

the following condition:  
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Because N  satisfies the Lipschitz condition, 

Let, 1+= nm  then, we have 11 −+ −− nnnn WWWW  , then 
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From (50), we have: 
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By using the triangle inequality: 
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when →n , we have 0→− nm WW , then mW  is the Cauchy sequence in Banach space 1X . 

 

Theorem (2): The solution by the new method converges and is close to the solution of problems (41-43) if the 

following property is achieved: 
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Proof: For any 1XW   define an operator from 1X  to 1X  ,
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Therefore, the mapping   is contractive, and by the Banach fixed point theorem for contractive, there is a 

unique solution; 11)( WW =  . 

Then: 
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This end the proof.                                                                                                                                                    ■ 

   From Theorems (1) and (2), the values of the parameter 
m  must be calculated to obtain the convergence by 

using the following relationship: 
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We can analyze the convergence of solutions in the two cases as follows: 
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In the absence of a magnetic field: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the presence of a magnetic field: 

 

From the above analysis, the condition of convergence was achieved in the cases both of the absence and the 

presence of a magnetic field. This confirms the effectiveness of the current method AGHPM in finding analytical 

approximate solutions. Also, it shows that the convergence theorems can be successfully applied.  
 

8. Conclusion 

In this study, the developed a problem for two-dimensional (2D) pulsatile blood flow in tapered stenosis arteries 

under the impact of a magnetic field in addition to the effect of mass and heat transfer was solved analytically by 

using a new method (AGHPM). The model that we developed through adding the effect of magnetic field on it 

explains the following results,  

 

1. When M  increases, the velocity and flow rate decrease,  

2. When M  increases, the wall shear stress and resistance flow increase.  

3. Also it is concluded through the comparison between AGHPM, AGM and HPM, note that the solutions obtained 

using AGHPM in the case of absence and presence of a magnetic field are more accurate than other methods 

(AGM and HPM) which consider as developed method for AGM and HPM.  

4. Furthermore; this study illustrates the importance of a magnetic field when applied to the blood flow to reduce 

the risk of diseases, when used appropriately.  

5. Moreover, the results confirm the veracity and capacity of the new method to solve this problem, and by 

comparing it with previously published results they were found to be in excellent agreement with them.  

6. It was concluded that AGHPM is an efficient method with a high level of accuracy in finding analytical 

approximate solutions for 2D pulsatile blood flow in tapered stenosis arteries under the impact of a magnetic 

field together with the effect of mass and heat transfer. It can be used to deal with different complicated fluid 

flow problems that have multiple applications in life. 
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9. Nomenclature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

),( tzR            The artery radius. 

                   The tapering angle. 

m                   The stenosis critical height. 

d                    The stenosis location. 

L                    The arterial segment finite length. 

0
2

3
l                  The interfered stenosis length. 

                     The density of fluid. 

u  and w        The velocity components in radial and axial directions respectively. 

C                     The mass concentration.  

T                     The temperature.  

k                    The conductivity thermal.  

P                     Pressure.  

pc                    The specific heat at constant pressure. 

D                    The thermal-diffusion ratio. 

TK                    The mass diffusivity coefficients.  

mT                    The medium’s temperature. 

J                     The current density. 

                     The electrical conductivity.   

E                     The electric field. 

1                     The viscosity of plasma.  

0d                    The fixed radius of the normal artery located in the non-stenosis part. 

0u                 The velocity average of flow in the uniform artery.  

0C  and 0T
  

The concentration of mass and average temperature respectively. 
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