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Abstract 

Nanofluids find numerous applications in thermal engineering and industrial 

processes due to their effective thermal conductivity property compared to 

regular fluids.  A nanofluid consists of containing nanometer-sized particles, 

called nanoparticles of metals, oxides, carbides, or carbon nanotubes etc. 

with water, ethylene glycol, and oil etc. serve as base fluids. The present 

study takes care of effects of Brownian motion and thermophoresis on 

unsteady Casson fluid flow, heat and mass transfer over a stretching sheet 

embedded in a porous medium. Moreover, the flow phenomena are 

subjected to heat source, thermal radiation, viscous dissipation, Joule 

heating and are associated with the diffusion of chemically reactive 

nanoparticles to base fluid. These two thermo mechanical aspects draw a 

little attention of the researchers as reported in literature. The governing 

equations of flow model admit similarity solution and are reduce to non-

linear ordinary differential equations (ODEs) applying suitable similarity 

transformation and are solved numerically using Runge-Kutta-Fehlberg 

method with MATLAB code. The interesting outcomes are recorded as 

follows: The formation of inverted boundary layer, the consequence of flow 

reversal, is due to overpowering of shearing effect of the rigid bounding 

surface over the free stream stretching in the absence of suction. The higher 

magnetic field intensity as well as unsteady flow parameter leads to 

increasing skin friction coefficient may lead to flow reversal. Hence, 

regulating these parameters is a suggesting measure. The low Brownian 

motion in conjunction with high thermophoresis leads to upsurge of thermal 

energy (hike in temperature profile) near the bounding surface. The 

presence of nanoparticles considered in the base fluid, deduces the shearing 

stress at the plate surface is a desired outcome to avoid flow reversal. 

Keywords: MHD; heat and mass transfer; Casson fluid; thermophoresis; Brownian motion; chemical 

reaction.   

1. Introduction 

A number of technical processes such as polymer extraction in a melt spinning process, glass blowing, 
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continuous casting of metals, etc. affect the flow of an incompressible Newtonian or non-Newtonian fluid over a 

stretched surface significantly. A flow caused by extending a surface had a closed-form similarity solution [1]. 

Mahapatra and Gupta [2] and Misra and Sinha [3] worked on the stagnation point flow on a stretching sheet.  The 

work [3] bears a favor of biological application. 

Nomenclature 

,u v  Velocities along x  and y  directions   

respectively  

k 
      Absorption coefficient 

a  Stretching rate T  Temperature  

b
 

Strength of stagnation flow C  
Nanoparticle volume fraction 

t
 

Time Ue  Ambient fluid velocity 

0B
 

Magnetic field strength  Tw  Temperature of the wall 

M  Magnetic parameter  T
 Ambient temperature 

K
 

Porosity parameter C
 Ambient concentration 

Kc  Chemical reaction parameter  Greek Symbols 

Pr  Prandtl number   Similarity variable 

Nb  Brownian motion parameter   Electrical conductivity  

Nt  Thermophoresis parameter   Stream function 

Sc  Schmidt number   Positive constant 

R  Radiation parameter   Casson parameter 

S  Unsteadiness parameter   Stretching ratio parameter 

Kc  Chemical reaction parameter  

 
Stefan-Boltzmann constant 

BD  Brownian diffusion coefficient   Thermal diffusivity 

TD  Thermophoresis diffusion coefficient   Ratio of the nanoparticle heat  

capacity to the base fluid heat capacity 

pc  Specific heat at constant temperature ( )
f

c  Heat parameter of base fluid 

Q
 heat source/sink coefficient ( )

p
c  Heat parameter of nanoparticle 

k  Thermal conductivity coefficient 
f  Dynamic viscosity of base fluid 

K
 Permeability of the medium 

f  Kinematic viscosity of base fluid 

Q  Heat source/sink parameter 
f  

Density of base fluid  

 

The Casson fluid is a good representative of human blood with non-Newtonian property. Beyond a critical stress 

value, it behaves like a Newtonian fluid. Bhattacharyya [4] examined the stagnation point flow of Casson fluid past 

a stretched surface. Ibrahim et al. [5] studied the effects of radiation and chemical reaction on non-Newtonian fluid 

flow over a stretching sheet. Kumar and Srinivas [6] studied the unsteady flow of chemically reacting Casson fluid 

over an inclined porous stretching sheet. El-Aziz and Afify [7] investigated the Casson fluid flow over a stretching 

sheet considering Hall current, an electromagnetic phenomenon. Das et al. [8] considered chemically reactive 

double‐diffusive Casson fluid past a flat plate in porous medium. Kumar et al. [9] studied the effect of thermal 

radiation on MHD Casson fluid flow over an exponentially stretching curved sheet. Nayak et al. [10] examined the 

stability analysis on MHD stagnation point flow of Casson fluid over the stretching surface with slip velocity. 

Further, Kumar et al. [11] studied the pulsating flow of Casson nanofluid in a vertical porous space. Gireesha et al. 
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[12] analysed the heat transfer of Casson fluid flow in an inclined porous microchannel with viscous and Joule 

heating. Kumar and Srinivas [13] studied the Eyring-Powell nanofluid flow over an inclined permeable stretching 

sheet.  El-Aziz and Afify [14] considered the Hall current effect on MHD slip flow of Casson nanofluid over a 

stretching sheet with zero nanoparticle mass flux. Many authors [15-20] have studied the influences of physical 

parameters on Casson fluid flow over a stretching sheet considering different boundary conditions.  

The effect of thermal radiation on the boundary layer flow is relevant to many engineering challenges, 

particularly, in high temperature field. Due to the impact of thermal radiation on the rate of cooling, it is crucial in 

regulating the quality of the final product. Swain et al. [21] investigated the flow of Williamson nanofluid 

considering thermal radiation. VeeraKrishna [22] examined the effect of Newtonian heating on Casson hybrid 

nanofluids past an infinite oscillating vertical porous plate. Azam et al. [23] studied the radiation and viscous 

dissipation effects on Casson nanoliquid over a moving cylinder with activation energy. Some important works on 

thermal radiation effect had been done by the researchers [24, 25].   

Mohammadi et al. [26-67] studied the thermo-mechanical vibration investigation of annular and circular graphene 

sheet embedded in an elastic medium using the nonlocal continuum plate model. Ibrahim and Makinde [68, 69] 

studied the MHD stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip 

boundary conditions. Makinde et al. [70] examined the stagnation point flow of nanofluid over a stretching surface 

with chemical reaction. Satya Narayana et al. [71] considered the flow of visco-elastic nanofluid over a heated 

surface. Rehman et al. [72] observed the effect of Joule heating on the flow of Eyring-Powell fluid induced by an 

inclined cylindrical surface. Mehmood et al. [73] studied the stagnation point flow of Casson fluid over a stretched 

horizontal Riga plate. 

The novelties of the present study are many folds. The inclusion of viscous dissipation arising out of 

material/rheological property of the Casson fluid due to inter layer friction of the flowing fluid dissipating thermal 

energy. The effect of Joule heating affecting the thermal energy arising out of electromagnetic interaction due to 

applied magnetic field. Nevertheless consideration of chemical reaction arising out of chemically reactive species 

which adds to the mass diffusion processes of the present analysis. Most importantly, Das et al. [74] have not 

considered the effect of electrical conductivity of the Casson fluid with the interaction of magnetic field which gives 

rise to a resistive external body forces affecting the momentum transport processes. Moreover, they have not 

considered the embedding medium of the stretching surface most likely porous medium, which relates to many 

physical and biological system. The inclusion ascribes to another body force accounted for with the help of linear 

Darcy law valid for slow flow comparable to mild stretching of the sheet aptly represent biological system. The 

similarity solution of the unsteady complex coupled partial differential equations with time and space dependent 

boundary conditions renders mathematical impasse to analytical solution paving the way to numerical solution being 

accomplished by the shooting technique with MATLAB code. 

 

2. Formulation of the problem 

The unsteady two dimensional flow of an electrically conducting Casson nanofluid flow over an elongated sheet 

embedded in a porous medium is investigated. The plate is placed along x-axis and y-axis is normal to it (Fig. 1). 

The flow confined to the plane 0y  , is due to elongated bounding surface and free stream. The rheological 

equation of state for an isotropic and incompressible flow of a Casson fluid [16] is expressed as: 
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is the rate of strain tensor, ij  is the component of stress tensor, B  is the Casson 

coefficient of viscosity, ij ije e =  is the product of the rate of strain tensor with itself, c  is the critical value of the 

product of the rate of strain tensor with itself, yp  is the yield stress of the fluid.  
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Fig. 1 Flow geometry 

The continuity, momentum, energy and concentration equations with prescribed boundary conditions [74] and 

Rosseland approximation [75] are given by 
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Here, stretching velocity ( ),
1

w

ax
u x t

t
=

−
, free stream velocity ( ),

1
e

bx
U x t

t
=

−
, and the wall 

temperature ( )T
w

and nanoparticle volume fraction ( )C
w

 are given by 
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respectively. 

In order to convert the coupled PDEs to ODEs, the following similarity variables, transformations and 
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parameters are introduced. This is also supported by plane stagnation point flow [76]. 
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Equation (1) is identically satisfied and the equations (2) - (5) yield the preferred form: 
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The dimensionless local skin friction coefficient fC , the local Nusselt number 
xNu and the local Sherwood 

number
xSh which are defined as follows 
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The steady-state flow is recovered when 0S = .  

3. Method of solution 

The set of non-linear coupled ordinary differential equations (7) - (10) have been solved numerically by Runge-

Kutta-Fehlberg method with shooting technique using MATLAB software with step size of 0.01 =  and error 

bound 10-6 in all cases. Advantages of this method are that the coupled nonlinear ODEs are transformed to a set of 

linear first order ODEs with the introduction of the new variables. Secondly, the boundary value problem gets 
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transformed to initial value problem by providing guess values to unknown initial values as required by the problem 

to be solved. The guess values are corrected by the shooting method to tally with the specified boundary conditions 

at the other boundary. Once the guess values are corrected with required number of iterations, then the forward 

integration is carried out to give the numerical solutions of the desired points comprising interval. The limitations 

are: Not all the PDEs, representing the governing equations, do not admit similarity transformations and cannot be 

transformed to ODEs. Only specific types of flow problems admit similarity transformations and hence similar 

solutions. There might be dual solutions to a specific problem, if exists, then which one is stable or unstable that is 

to be decided upon and discussed. To assess the accuracy of the present code and validity check, the numerical 

values of skin friction coefficient ( )0f  for different values of   are presented in Table 1 when 

0, .M Kp S = = = →  

TABLE 1 Comparison of ( )0f  for different values of    


 

( )0f 
 

Present study
 

Swain et al. [67]
 

Das et al. [66]
 

0.1 -0.9696514 -0.96965625 -0.969328 

0.2 -0.9181601 -0.91816450 -0.918098 

0.5 -0.6672609 -0.66726432 -0.667301 

2 2.0175025 2.01750252 2.017467 

3 4.7292808 4.72928082 4.729406 

 

4. Results and discussion 

For numerical computation, we have considered some values of the parameters as fixed i.e. 

0.5, 0.3, 2, 0.1,pM K S Kc Sc R Q Ec Nb Nt = = = = = = = = = = = =  and Pr 5=  unless otherwise 

specified. 

Table 2 shows the variations of ( )0f − for different values of parameters. It is observed that when values of 

other parameters are fixed, the wall shear stress ( ) 0f −  increases with the increase in the values of M  and S , 

whereas it decreases with increase in the values of  and  . Physically, it means that higher values of magnetic 

intensity decrease the shear stress at the bounding surface. Further, it is concluded that higher the unsteadiness, 

greater the shearing stress at the bounding surface. From Table 3 it is seen that the rates of heat transfer and solutal 

concentration at the bounding surface increase with unsteady parameter whereas rate of heat transfer decreases and 

rate of solutal concentration increases with higher values of M . It is also observed that ( )0 − increases with 

increase in strength of heat sink ( )0Q  but ( )0−  decreases. Further, it is seen that heat source ( )0 ,Q Sc and 

destructive chemical reaction parameter ( )0Kc  have opposite effects on ( )0 − and ( )0− , compared to that of 

constructive chemical reaction parameter ( )0Kc  and heat source ( )0Q  . It is interesting to note that the rate of 

mass transfer at the wall shows an opposite effect compared to rate of heat transfer for all the parameter except 

unsteadiness parameter ( ).S  This outcome may be attributed to the fact that higher thermal energy enhances the 

solutal diffusion causing the fall of concentration level and hence, the flux at the wall. It is interesting to note that 

the presence of nanoparticles in the base fluid reduces the shearing force at the plate surface, hence imposing 

stability or preventing backflow in the downstream. 

 

From Fig. 2 it is seen that the boundary layer is formed when 1  and inverted boundary layer is formed when 

1 
 
whereas no boundary layer is formed for 1 = . The magnetic parameter decreases the velocity profile due to 

resistive Lorentz force however; the effect is reversed in case of inverted boundary layer. Further, the presence of 

porous matrix and moderate values of Casson parameter are to reduce the velocity, resulting a thinner boundary 

layer (Fig. 3).  Inside the boundary layer, the pressure gradient dominates the momentum transfer of the outer shear 

flow. Therefore, shear induced component of the free stream shear flow inside the boundary layer is less than the 

inviscid value. This results in flow reversal in the absence of suction. Reza and Gupta [77] The formation of the 

inverted boundary layer in the present study is the outcome of flow reversal due to over powering of shearing effect 
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of the boundary over free stream in the absence of suction. 

 

Flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Computation of ( ) 0f −  

when 0.5, 0.3, 2,Pr 5, 0.1pK Kc Sc R Q Ec Nb Nt= = = = = = = = =  

M    S    ( )0f −  

0.1 0.1 0 0.5 2.070225 

0.5    2.290439 

1    2.540362 

 0.3   2.086459 

 0.5   1.565345 

  0.5  1.650139 

  1  1.732104 

   1 1.414217 

   2 1.224745 

 

Table 3 Computation of ( )0 − and ( )0−  when 0.5,Pr 5, 0.1pK R Ec Nb Nt = = = = = = = =  

M  S  Q  Sc  Kc  ( )0 −

 

( )0−

 0.1 0.1 0.1 2 0.1 2.915176 0.844825 

0.5     2.893939 0.849222 

1     2.868720 0.855275 

 0.3    3.090879 0.892068 

 0.5    3.299090 0.927975 
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  0.5   3.033451 1.122957 

  1   2.670987 1.382402 

  -0.3   3.547863 0.742159 

  -0.5   3.666891 0.652257 

  0.1 3  3.208601 1.752369 

   5  3.093658 2.978601 

    0.5 3.068714 3.288434 

    0 3.100417 2.897159 

    -0.3 3.122186 2.641721 

    -0.5 3.138127 2.460946 

 

Figs. 4-6 depict the temperature profile for various values of , ,Q Ec Nb and Nt . It is seen that temperature 

increases with the strength of heat source ( )0Q   but decreases with heat sink ( )0Q  . Further, both Eckert 

number ( )Ec and radiation parameter ( )R increase the temperature as an increase in Ec and R contribute to higher 

thermal energy (Figs. 4 and 5). As Eckert number ( )Ec  is the measure of addition of heat energy due to viscous 

dissipation, so that higher value of Ec  gives rises to rise in temperature. Fig. 6 shows that an increase in Brownian 

motion parameter ( )Nb , increases the thermal energy, and hence the rise in temperature is observed but the reverse 

effect is observed in case of solutal concentration. Moreover, thermophoresis parameter ( )Nt  enhances both 

temperature and volume fraction due to thermophoretic effect. It is interesting to note that for low Brownian motion 

and high thermophoresis resulted in hike in temperature near the plate surface (Fig. 7).  

Fig. 8 depicts the concentration profile for various values of chemical reaction parameter ( )Kc . It is observed 

that the concentration level deplete with higher rate of destructive reaction ( )0Kc   and Schmidt number ( )Sc  

but opposite effect is marked for constructive reaction parameter ( )0Kc  . Physically, both destructive reaction and 

Schmidt number (heavier species) decelerates the mass diffusion contributing to thinner solutal boundary layer (Fig. 

9). Finally, it is important to note that the unsteadiness of the flow reduces the momentum transport and mass 

concentration but enhances the thermal energy irrespective of the effects of other parameters.  

 
Fig. 2 Velocity profiles for various values of M and    
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Fig. 3 Velocity profiles for various values of  and pK   

 
Fig. 4 Temperature profiles for various values of Q  
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Fig. 5 Temperature profiles for various values of Ec  and R  

 

 
Fig. 6 Temperature profiles for various values of Nb  and Nt   
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Fig. 7 Concentration profiles for various values of Nb  and Nt

  

 
 

Fig. 8 Concentration profiles for various values of Kc   
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Fig. 9 Concentration profiles for various values of Sc   

 

5. Conclusions 

From the present study the important finding are reported as follows: 

• Formation of boundary layer is altered depending upon the value of stretching ratio parameter i.e. over 

powering of free stream stretching to bounding surface stretching. Physically, it indicates the reversal of 

momentum transport in the flow domain presented in velocity distribution graph.  

• By the relative shearing impact of the plate and the free stream, the formation of the inverted boundary 

layer can be controlled. 

• Higher values of magnetic field intensity as well as unsteady parameter lead to increasing skin friction 

coefficient. Thus, it is suggested that the necessary control may be enforced by controlling the voltage in 

the electric circuit or otherwise restrict/limit the magnetic intensity and unsteadiness to reduce the growth 

of skin friction to avoid back flow. 

• Brownian motion favours the escalation of temperature distribution but sets in an impasse for the rise in 

level of concentration. 

• The unsteadiness of the flow reduces the momentum transport and mass concentration but enhances the 

thermal energy irrespective of the effects of other parameters. 

• Thermophoresis favours the rise in both temperature and volume fraction of the nanofluid in the entire flow 

domain. 

• The presence of nanoparticles in the base fluid reduces the shearing stress at the plate surface so as to avoid 

back flow.  

• The rate of heat transfer increases with increase in strength of heat sink
 
but mass transfer decreases.  

• Destructive and constructive chemical reactions have opposite effects to each other on heat and mass 

transfer of nanofluid.   

Limitations: The present analysis is having following limitations. 

• Consideration of space dependent linear stretching. 

• Consideration of slow/seepage flow in the embedded porous medium. 
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Future work: 

• Future work may be carried out by replacing the linear stretching with non-linear stretching having power 

indexed space variable ( )nx  which occurs in industrial applications very often. 

• The linear Darcy law may be replaced by non-linear laws (Brinkmann, Forchheimer etc.) to account for 

moderately high flows.  
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