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Abstract 

This paper deals with the free vibrations of a 5-layer sandwich plate consisting 

of a sutured porous material core. Two randomly oriented straight single-

walled carbon nanotube (CNT) reinforced composites and face sheets 

manufactured of piezoelectric material that is subjected to an external electric 

voltage, are placed on a Visco-Pasternak foundation. The relationship 

between strain and stress in the core is expressed by considering the pore fluid 

pressure based on the Biot theory, and for pore distribution along the core 

thickness, three uniform, symmetric and nonsymmetric patterns are 

considered. A quasi-3D sinusoidal shear deformation theory which that 

couples the effects of shear strain and normal deformation without the need 

for any shear correction factor which uses Hamilton’s principle and Navier’s 

method is used to derive the governing equations of the sandwich structure 

for the simply supported case. Effects of different parameters on the natural 

frequencies of the plate are studied including layer thickness ratio, porosity 

parameter, porosity distribution pattern, pores compressibility, the volume 

fraction of CNTs and external voltage. The maximum frequency in different 

modes could be an important design factor that is calculated based on the type 

of the porosity distribution. Controlling the material properties based on 

specific needs is the most important advantage of the 5-layer sandwich 

structure. This paper introduces sandwich panels with porous cores, 

nanocomposite layers and piezoelectric overlays for the first time which is 

analyzed to determine system vibration frequencies under external voltage 

and by changing various parameters with emphasis on different porosity 

distributions. The frequency of monotonous distribution was 4% higher than 

symmetric and asymmetric distributions for a constant porosity.  
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1. Introduction 

      Porous media have desirable characteristics such as being lightweight and highly flexible, sound and energy 

absorption, and cost-effectiveness. Therefore, they are the favorite materials among aeronautical, mechanical, and 

civil engineers. In recent years, researchers have considered the effect of the fluid inside the porous medium cavities 

under the topic of saturated porous media and investigated the structural behaviour of this material. In FG porous 

structures, the porosity of the structure varies from one surface to the other. Many researchers have studied the 

behavior of FG structures[1-5]. Most of the current studies about FG porous structures are concentrated on the static, 

buckling, and vibration analyses which some of them which are mentioned here. 

      Al Rjoub and Hamad [6] studied the dynamic behaviour of a functionally graded Timoshenko beam analytically. 

By solving the transport matrix, they concluded that the rotational inertia and the coupling between shear deformation 

and rotational inertia are small and negligible. Chen et al. [7] performed nonlinear and post-buckling vibration analysis 

of a graphene nanocomposite functionally graded porous beam. The multilayer beam was formed from a porous metal 

foam reinforced with graphene platelets (GPLs) so that the pores and the GPL Nanofillers are distributed uniformly 

in each layer, but the porosity coefficients and the weight fraction of graphene platelets vary from layer to layer 

according to the thickness direction. Results showed the porosity and GPL distribution effect on increasing the 

nonlinear frequency and post-buckling load. Zenkour [8] studied the bending responses of single-layer porous and 

sandwich plates using the quasi-3D shear deformation model by considering the shear strain and normal deformation 

effects under the effect of the exponent grade and porosity. Subsequently, Arshid et al. [9] studied the free vibration 

of a circular plate made from a porous media with piezoelectric actuator patches. Due to the thinness of the plate, the 

shear deformations were neglected. Using the classical plate theory, the Hamilton principle was applied to obtain the 

equations of motion for the structure, and the effect of some parameters such as the porosity thickness ratio, porosity 

distribution, and pores compressibility and their influence on the system frequency was analyzed. Safaei et al. [10] 

studied the thermoelastic behaviour of sandwich panels with polymer porous core and nanocomposite layers 

reinforced with carbon nanotubes with a polymer matrix. The distribution of pores in the core and the carbon 

nanotubes on the surface were considered as functionally graded in the thickness direction. The results showed that 

the sandwich panel with a functionally graded porous core has a smaller deformation than cores with uniform 

distribution. Arshid et al. [11] studied the static and dynamic analysis of a circular nanocomposite porous microplate 

reinforced with functionally graded graphene plates using the modified strain gradient theory. To obtain the 

nanocomposite properties, the Halpin-Tsai method was used and the governing equations were solved with the 

generalized differential quadrature method with various boundary conditions. They reported that by increasing the 

porosity factor, the natural frequencies and critical buckling load decrease, while the microplate deformation increases. 

Gao et al.[12] studied wave propagation in functionally graded porous plates reinforced with graphene plates. In their 

study, they considered two symmetric non-uniform and one uniform model for the pore distribution and three different 

patterns for graphene plate distribution in the plate thickness direction. As a result, the mechanical nanocomposite 

characteristics were extracted with the Halpin-Tsai method. To mention a similar study, Askari et al. [13] studied the 

effect of piezoelectricity and porosity distribution on the natural frequencies of smart porous plates. They used the 

Mindlin plate theory to study the Levy boundary conditions. The numerical results showed that the changes in natural 

frequencies of the sandwich structure are strongly affected by the porosity distribution model. In addition, the natural 

frequency increase (due to adding piezoelectric layers) is more noticeable for uniform and asymmetric porosity 

compared with symmetric distribution cases. Balak et al. [14] studied the free vibration of an elliptic sandwich plate 

with a composite porous plate on piezoelectric overlays. Based on their study, the most important variable on the 

vibration frequencies of the said plate were the geometric parameters of the elliptic plate and the material 

characteristics. Safari et al. [15] published a paper about free electrical-magnetic-thermal vibration of a sandwich 

Timoshenko beam made from a porous material core and composite reinforced with graphene platelets. To describe 

this issue further, in their paper, the studied parameters were the material length, temperature variations, different 

porosity, graphene platelets distribution, and the thickness ratio of layers, and the studied output parameter was the 

natural frequency of the sandwich structure. 

Based on the unique characteristics of carbon nanotubes and graphene sheets, they are an ideal choice for many 

applications. One of the most important applications of carbon nanotubes is based on their mechanical and thermal 

characteristics which are their use as reinforcement for composite materials [16-18]. The outstanding and exceptional 

mechanical, electrical, and thermal characteristics of carbon nanotubes and graphene sheets [19-25] have stimulated 

researchers to exploit them as a new generation of reinforcing agents for polymers. Numerous studies have been made 

to analytically and experimentally determine the mechanical properties of nanocomposites. 

      Other nanotube applications include energy storage, the automobile industry, and aeronautics. Shen [26] proposed 

the objective-oriented usage of carbon nanotubes in polymer composite for the first time in 2009. In this paper, the 
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nonlinear flexure of composite plates reinforced with carbon nanotubes in thermal environments was studied. In their 

study, the effectiveness factor (η) was considered for nanotubes which were obtained by comparing molecular 

dynamics with the developed rule of mixture. Ke et al. [27] used the Ritz method to study nonlinear vibrations of 

functionally graded Timoshenko beams reinforced with carbon nanotubes. Shen [28] studied the post-buckling of 

cylindrical functionally graded composite shells reinforced with carbon nanotubes in thermal environments under 

axial load. Results showed that the distribution and volumetric percentage of carbon nanotubes have a strong influence 

on the buckling load and post-buckling behaviour of shells reinforced with carbon nanotubes. Jam et al. [29] studied 

the free vibrations of functionally graded cylindrical panels reinforced with curved nanotubes with the 3D elasticity 

theory. In this paper, the nanotube volumetric percentage was varied across the radius and its mechanical characteristic 

was found with the developed mixing law. The effect of aspect ratio and nanotube curve on the vibration behaviour 

was studied. This is consistent with results of previous papers. Pourasghar et al.[30] studied the local aggregation of 

CNTs on the vibration behaviour of functionally graded reinforced nanocomposite cylinders using 3D elasticity 

theory. They estimated the mechanical properties using the Eshelby-Mori-Tanaka method for a volumetric element of 

the nanocomposite and used a 4-parameters of power-law distributions model for the functionally graded 

nanocomposite. Zhang et al. [31] studied the vibration of a bent plate reinforced with carbon nanotubes. In this paper, 

different configurations of carbon nanotubes were studied. Zhang and Selim[32]  studied the free vibration of a thick 

laminated composite reinforced with carbon nanotubes based on a higher-order shear deformation theory of Reddy 

for the first time using a meshless method. They used a meshless method based on the generalized moving least 

squares – Ritz approximation for solving the numerical method. For calculating the effective composite properties 

which were reinforced with carbon nanotubes with four types of UD, FG-O, FG-X, and FG-V, the Mori-Tanaka 

method was used. In the end, the effect of carbon nanotube volumetric fraction and the effect of plate aspect ratio, 

width to thickness of the plate, and the number of plate layers on the nondimensional natural frequency of the plate 

were solved for various orientations of carbon nanotubes. Thang et al.[33]  used a new method to analyze the nonlinear 

buckling of composite plates reinforced with defective functionally graded carbon nanotubes under axial compression. 

Their results showed that the defect has a considerable effect on the nonlinear static behaviour of the plate and the 

FG-O distribution case has the lowest stiffness compared to other distributions. Moradi and Aghadavoudi [34] used 

the first-order shear deformation theory and meshless method to calculate the deformation and stress distribution of 

functionally graded nanocomposite sandwich plates reinforced with defective carbon nanotubes on a Winkler-

Pasternak foundation. They studied the effect of arrangement, the number of defects, the volume fraction, boundary 

conditions, and geometric dimensions on the static analysis of the sandwich plate. Daghigh et al. [35] studied the 

buckling and nonlocal bending of composite nanoplates reinforced with carbon nanotubes and used the Hamilton 

principle and Eringen nonlocal elasticity theory and the sinusoidal shear deformation theory and Navier analytic 

method, the constitutive differential governing equations were solved. They considered the effect of temperature, scale 

parameter, the volume fraction of carbon nanotubes, and length to thickness ratio of the plate on the static bending 

and buckling behaviour of the plate. The usage of piezoelectric is increasing as sensors and actuators in automotive, 

aeronautics, computers, home appliances, and medical sciences. 

     On the other hand, in recent years, the research on structural vibration control has attracted more and more attention 

and structure control research has become a hot subject of structural analysis  [36-38]. Zenkour [39] presented a 

hygrothermal analysis of a non-homogeneous piezoelectric elastic cylinder. In this study, the effects of initial 

temperature, pressure, electrical potential, and moisture were studied. Arefi et al. [40] studied the free vibration of a 

functionally graded sandwich piezoelectric cylindrical shell. In this paper, the first-order shear deformation theory 

combined with the nonlinear von Karman translational strain equations were used, and the governing equations of the 

functionally graded sandwich structure with a core were solved with the analytical Navier method. The functionally 

graded piezoelectric overlays were used as actuators and sensors. Ghasemi and Jaamialahmadi [41] studied the 

buckling behaviour of multilayer nanoplates made from graphene with two layers of piezoelectric on top and bottom. 

Their study was based on nonlocal elasticity theories and shear and normal deformations. They solved the resulting 

equations with the assumptions of simple supports on all 4 edges analytically and the critical buckling loads were 

obtained. Arefi and Zenkour [42] conducted a study of free vibration and bending of sandwich microbeam made from 

graphene with two piezo-magnetoelectric overlays. In this study, to enforce the microscale effect, the strain gradient 

theory was used, and the considered microbeam was placed on a Visco-Pasternak foundation. The magnetic and 

electric potentials were a mixture of polynomial and cosine functions. Ebrahimi and Hosseini[43] studied the 

flexoelectric effect on the forced nonlinear vibration of a nanocomposite with functionally graded porous core and 

piezoelectric overlays subject to electrical voltage and outside parameter exciters. For deriving the governing equation 

of motion of the sandwich plate which was on a visco-Pasternak foundation, the Mindlin and Kirchoff theories and 

the Hamilton principle were used. Results showed that the electrical voltage does not influence the vibration of 

piezoelectric and flexoelectric materials. Arani et al. [44] studied energy harvest via a sandwich beam with laminated 

composite core and piezoelectric overlays under the effect of external fluid movement. In their study, the fiber angle 
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had a prominent effect on the structural damping, bending stiffness, natural frequency, and finally the harvested 

energy. They also realized that the maximum voltage occurs when the fibers have an angle of zero and the least amount 

occurs at the angle of 50°.  

    To summarize, in the presented paper, an exact solution is presented for free vibration analysis of a 5-layer 

simply supported sandwich plate consisting of a sutured porous material core, CNT-reinforced interior layers, and 

piezoelectric face sheets that are subjected to an external electric voltage resting on a Visco-Pasternak foundation. The 

porosity of the core is uniformly, symmetrically, and asymmetrically repartitioned through the thickness. For its 

simplicity and accuracy even at a high volume fraction of inclusions, the Mori-Tanaka approach is applied for 

estimating the effective moduli of the nanocomposite layers. The accuracy of the presented analysis is confirmed and 

the influences of various parameters on the natural frequencies of the plate are investigated such as aspect ratio, layer 

thickness ratio, porosity parameter, porosity distribution pattern, pores compressibility, the volume fraction of CNTs, 

external voltage, Winkler modulus, shear modulus of the surrounding elastic medium and damping modulus parameter 

of the foundation. 
From the main important applications of this type of sandwich structures that utilize new materials that possess 

characteristics such as flexibility, strength, controllability and smartness, their use in different parts of airplane wing 

and UAVs can be mentioned. 

 

2. Nomenclature 

Porosity 𝑒1 Length, width and thickness of 

plate  
a,b,h 

Poisson’s ratio   Thickness of the core hc 

Density   Thickness of the nanocomposite 

layers  
hnc 

modulus of elasticity Eij Thickness of the piezoelectric 

layers  
hp 

Winkler coefficient 
w

K  Displacement at the middle surface 

of the plate (z=0) 
, ,u v w  

shear coefficient 
G

K  
Rotations from the middle surface 

along the x-direction x  

damping coefficient 
d

C  Rotations from the middle surface 

along the y-direction y  

elastic coefficient 
ijC  Rotations from the middle surface 

along the z-direction Z  

strain energy U Displacement in x, y and z 

directions 1 2 3, ,u u u  

Lamé coefficient   Nondimensional natural frequency   

Biot coefficient α Kronecker delta 
ij  

Lamé coefficient for the porous 

material u  pore fluid pressure P 

bulk moduli of the CNT-

reinforced layer ncK  Poisson’s ratio for the porous 

material 
u  

shear moduli of the isotropic 

matrix mG  
shear moduli of the CNT-

reinforced layer nc
G  

Hill’s elastic moduli kr, lr, mr, nr 

and pr 

bulk moduli of the isotropic matrix 
mK  
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dielectric coefficients 𝑘𝑖𝑗 electric displacement D 

electric potential function Ψ piezoelectric coefficients 𝑒𝑖𝑗 

work done by non-conservative 

forces 
W volumetric strain 

kk  

volume fraction of the polymer 

matrix mV  Skempton coefficient B 

  volume fraction of the CNT 

reinforcement 
rV  

 

3. PROBLEM DESCRIPTION AND THE GOVERNING EQUATIONS  

   As shown in Fig. 1, the sandwich plate with a total thickness of h, length of a, and width of b is made from 5 layers 

with saturated porous material core with a thickness of hc which is reinforced with carbon nanotube composite with a 

thickness of hnc and piezoelectric overlays with a thickness of hp which function as actuators are placed on a Visco-

Pasternak foundation. As the energy method is used to derive equations, and the total potential energy of the structure 

should be determined. Considering the stress-strain relation of each layer and using quasi-3D sinusoidal theory, strain 

and kinetic energy of the porous, nanocomposite, and piezoelectric layers are calculated separately. 

 

 
Figure 1. The geometry of the problem.  

 

3.1. Displacement field 

The specified displacement field for this structure is a quasi-3D sinusoidal theory proposed by Zenkour [45, 46] in 

which the stress-free boundary conditions on the top and bottom surfaces of the plate are applied[46]. Using sinusoidal 

functions was first proposed by Levy[47] and assessed by Stein[48] .The simplicity and accuracy of these functions 

and the fact that they consider both normal and shear deformations caused Zenkour to use and develop them. Based 

on the quasi-3D sinusoidal shear deformation theory, components of displacement in a rectangular plate can be 

considered as [45] 
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Where u1, u2, and u3 are displacement in x, y and z directions respectively, and u, v, and w show corresponding 

components of displacement at the middle surface of the plate (z=0). φx and φy represent rotations around y and x-

axes, respectively, φz is an unknown function and f(z) is defined as the following [49, 50]: 
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Based on the strain-displacement relations in x-y-z coordinates, the components of the strain can be calculated using 

Eq. (1) as [51] 
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3.2Porous core 

      Porous materials are a class of nonhomogeneous materials that have attained a considerable reduction in weight 

due to the presence of pores. Due to the low strength of these materials, they aren’t typically used alone but used as a 

core in a sandwich structure. For a nonhomogeneous porous core, the mechanical properties of the material include 

modulus of elasticity (E), shear modulus (G), and density (ρ), which may have monotonous, symmetric, and 

nonsymmetric distributions as shown in the figure below [9]. 
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Monotonous distribution Symmetric distribution Nonsymmetric distribution 

  

 

Figure 2. Distribution patterns of pores [52] 

For the monotonous distribution: 
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Symmetric distribution means that the following equations apply: 
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Nonsymmetric distribution: 
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    In these relationships, E1, G1 and ρ1 indicated the considered property in the case without any pores, and the 

dimensionless coefficient (e1) is the porosity. It should be mentioned that in porous materials, the Poisson’s ratio (υ) 

is considered as a constant. Due to the isotropy of these materials, the following relationship between elastic modulus, 

shear modulus, and Poisson ratio applies [9]. 

     Based on Hook’s law, the relationship between stress components and strain components in the solid material in 

the elastic range is given by the following equation [51] 
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( ) 2ij ij kk ijz G   = +
 (7) 

      Wherein λ is the Lamé coefficient, 
ij  is the Kronecker delta, and 

kk is the volumetric strain. These variables 

are defined via the following formulas [51]. 
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       Research about the relationship between strain and stress in porous materials was done by Biot which included 2 

main assumptions in his theory [53]: 

• Increasing pore pressure results in the expansion of the material.  

• Applying compressive load on the pores elevates the pore pressure.  

Based on these assumptions, in porous materials filled with fluid (saturated porous materials), the stress and strain are 

interconnected based on the following relationship:         

2 , 1,2,3ij ij u kk ij ijG p i j      = + − =
 (9) 

    In this relationship, p is the pore fluid pressure. α is known as the Biot coefficient of effective stress and λ is the 

Lamé coefficient for the porous material. This coefficient is computed from the following relationships [9]. 
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2

,
1 2

u
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u

G p M
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
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    In this relationship,   is the fluid volume in the pores. This coefficient is a function of the available space inside 

the pore and when the pores are filled with fluid (for the undrained material case), the value is equal to zero.  

Also, 0.5u    is the Poisson’s ratio for the porous material, and M is known as the Biot modulus 

which is computed by the following equations.  
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    In this relationship, the nondimensional variable 0 1B   is the Skempton coefficient. This coefficient shows 

the compressibility of the fluid inside the pores so that B=0 represents incompressible fluid and B=1 represents fully 

compressible fluid. Therefore, the relationships 
, , 0, 0u u M p   = = = =

  from the Biot law stated in Eq. 

(9) for solid materials containing fluid are changed to the Hook’s law stated in Eq. (7). 
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      As it was mentioned, for porous saturated materials, ξ = 0 holds, therefore the pore pressure can be calculated by 

Eq. (10). 

kkp M = −
 (12) 

By substituting Eq. (12) in Eq. (9) the following relationship can be obtained. 

( ) ( )22ij ij u kk ijz G M     = + +
 (13) 

For the porous core following relation between stress and strain tensors can be considered. 
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In which γij=2εij indicates the shear strain and 
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(15) 

Where Ec(z), Gc(z) and υc are elasticity modulus, shear modulus and Poisson’s ratio of the porous cores, respectively. 

It should be noted that the poroelastic relationships mentioned for the porous materials are completely based on the 

assumptions of the limitations stated below 

• Linearity of the stress-strain relationship 

• Irreversibility of the deformation process meaning that no energy is lost in a complete closed loop 

 



Journal of Computational Applied Mechanics 2022, 53 (3): 444-477 453 

3.3CNT-reinforced layers 

As shown in Fig. 1. The porous core is surrounded by two CNT-reinforced layers. The CNTs are distributed uniformly 

with randomly orientated directions. According to the rule of mixture, the density of a CNT-reinforced polymer can 

be calculated as follow: 

(16) ,m m r rV V  = +  

In which ρ and V indicate density and volume fraction, while subscripts m and r indicate polymer matrix and CNT 

reinforcement, respectively. 

Also, the volume fraction of the polymer matrix can be obtained using the following relation: 

(17) 1 .m rV V= −  

As the CNTs are orientated randomly, the CNT-reinforced matrix can be considered as an isotropic structure and Eq. 

(14) can be used for CNT-reinforced layers as well, wherein the following relationships hold: 
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Where elastic modulus (Enc) and Poisson’s ratio (νnc) of the CNT-reinforced layers can be estimated using the Eshelby–

Mori–Tanaka scheme via 

(19) 
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In which Gnc and Knc are shear and bulk moduli of the CNT-reinforced layers respectively and can be calculated based 

on the Eshelby–Mori–Tanaka scheme as described below [54, 55]: 

(20) 
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In which Gm and Km stand for shear and bulk moduli of the isotropic matrix which can be evaluated via: 

(21) 
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Where Em and νm are elasticity modulus and Poisson’s ratio of the isotropic matrix and αr, βr, δr and ηr are defined as 

the following relationship [56]: 
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(22) 
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In Eq. (22), kr, lr, mr, nr and pr are five independent constants known as Hill’s elastic moduli [56]. 

3.4. Piezoelectric layers 

For the piezoelectric face sheets, stress-strain relation can be written as the following formula [57]: 
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(23-b) 

Where Cij are elastic coefficients of the piezoelectric layers, eij and kij are piezoelectric and dielectric coefficients, D 

is electric displacement and Ei denote electric field which can be calculated using an electric potential function 

(Ψ=Ψ(x,y,z,t)) as 

Ψ Ψ Ψ
x y xE E E

x y z
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= − = − = −
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(24) 

In this paper, the following distribution is considered for electric potential function [58] 
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Here, ψ0 is the electric potential implied on the top and bottom of the plate and  

ψ= ψ(x,y,t) is an unspecified function and 
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(26) 

 

3.5. Hamilton’s principle 

The set of the governing equations can be derived using Hamilton’s principle via [59] 
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(27) 

In which δ is a variational operator, [t1,t2] is the desired time interval, U is strain energy, T is kinetic energy and W is 

work done due to non-conservative forces. 

     The strain energy can be calculated as 
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(28) 

In which S is the plate surface. The kinetic energy can be stated as 
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(29) 

   The work done by external electric potential can be written in the form [60] 

22
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Here, the normal force is induced by electric voltage, which can be written as [60, 61] 
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The work due to external works includes the visco-Pasternak foundation [42, 43] 
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For this foundation type, the force is defined as: 
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where Kw, KG and Cd are Winkler, shear and damping factors of the Visco-Pasternak foundation, respectively. 

Substituting Eqs. (28)-(32) into Eq. (27) leads to the following governing equations: 
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(34) 

   In which Iij and Jij are defined in Appendix A and 
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(35) 

     By substituting equations (3), (14), (23), (24) and (25) into equations (34) and (35), the set of the governing 

equations can be written as 
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    It should be noted that three assumptions have been considered in the derivation of equation of motion of the 

sandwich plate, namely (a) all layers have the same transverse displacement, (b) no slippage occurs between 

adjacent layers and (c) considering the equivalent single-layer method.  

4. Solution procedure 

For a plate with simple supports, the following solution can be considered based on Navier’s solution: 
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(37) 

Substituting Eq. (37) into Eq. (36) leads to the following eigenvalue equation: 
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(38) 

In which, [K], [M] and [C] are symmetric matrices presented by details in Appendix C. By solving the eigenvalue 

equation (36), the natural frequencies of the 5-layer sandwich plate can be achieved for different values of mode 

numbers such as m and n. The Navier analytical method gives closed-form solutions for the linear problem which is 

easy to implement and exact, however, it is not suitable for nonlinear problems or more complex geometries. 

5. Numerical results 

In this section, numerical results are reported for the analytical solution presented previously. For the sake of 

validation, consider a single layer homogeneous square plate of a/h=10 and ν=0.3 with no foundation (Kw=0, KG=0). 

For different values of mode numbers m and n, nondimensional natural frequency of the plate (λ=ωh(ρ/G)0.5) are 

presented in Table 1 against corresponding ones reported by other authors [62, 63]. As shown in this table, results 

with high accuracy can be obtained. 

Table 1. Dimensionless natural frequencies (λ=ωh(ρ/G)0.5) of a single layer, homogeneous square plate (a/h=10, ν=0.3, Kw=0, KG=0) 

HSDT [63] Exact 3D solution [62] Present (m,n) 

0.0931 0.0932 0.0933 (1,1) 

0.2222 0.2226 0.2230 (1,2) 

0.3411 0.3421 0.3428 (2,2) 

0.4158 0.4171 0.4182 (1,3) 

0.5221 0.5239 0.5253 (2,3) 
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0.6862 0.6889 0.6911 (3,3) 

0.7481 0.7511 0.7537 (2,4) 

0.9230 0.9268 0.9304 (1,5) 

1.0847 1.0889 1.0938 (4,4) 

0.83 0.45 - Maximum Error (%) 

 

Again, a single layer homogeneous rectangular plate of a/b=0.5, a/h=10 and ν=0.3 with no foundation (Kw=0, KG=0) 

is selected. Table 2 shows dimensionless values of the natural frequency of the plate (Ω=ωa2(ρ/E)0.5/h) for various 

values of mode number m and n along with the corresponding values predicted by Hebali et al. [64]. As shown in this 

table, the results are in high agreement. 

 

Table 2.  Dimensionless natural frequencies (Ω=ωa2(ρ/E)0.5/h) of a single layer homogeneous rectangular plate (a/b=0.5, a/h=10, ν=0.3, 

Kw=0, KG=0) 

Quasi-3D [64]  Present (m,n) 

3.69590 3.70480 (1,1) 
5.83920 5.85420 (1,2) 
13.9324 13.9760 (2,2) 
17.1070 17.1641 (2,3) 
26.0579 26.1598 (3,2) 
28.8754 28.9933 (3,3) 

0.79 - Maximum Error (%) 

  

Consider a thin square plate of b/h=300 and ν=0.3 with no foundation (Kw=0, KG=0). Values of the first three natural 

frequencies are presented in Table 3 in a dimensionless form (Λ=ωa2(ρh/D)0.5, D=Eh3/12(1-ν2)) against corresponding 

ones reported by other authors [65-68]. This table confirms the high accuracy of the presented solution and the 

achieved results. 

 

Table 3. Dimensionless natural frequencies (Λ=ωa2(ρh/D)0.5, D=Eh3/12(1-ν2)) of a single layer, homogeneous square plate (b/h=300,                                                                                                                                                                           

ν=0.3, Kw=0, KG=0) 

Maximum Error (%) Mode 3 Mode 2 Mode 1  

- 98.9337 49.4718 19.7899 Present work 

0.25 98.6960 49.3480 19.7392 Exact solution [66] 

0.25 98.7162 49.3480 19.7392 Finite element method [67] 

0.31 98.6268 49.3453 19.7392 Differential quadrature method [68] 

0.27 98.6765 49.3431 19.7362 Galerkin method [65] 

 

    An isotropic homogeneous single layer square plate of ν=0.3 resting on an elastic foundation is considered. For 

different values of thickness to length ratio (h/a) and nondimensional Winkler and shear coefficients of the foundation 

(
4ˆ

w w
K K a D= ,

2ˆ
G G

K K a D= , D=Eh3/12(1-ν2)), natural frequencies of the plate are presented in Table 4 in a 

dimensionless form (Λ=ωa2(ρh/D)0.5) against corresponding ones reported by other authors [69-71]. The results of 

this table confirm the accuracy of the presented solution. 
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Table 4. Dimensionless natural frequencies (Λ=ωa2(ρh/D)0.5, D=Eh3/12(1-ν2)) of a single layer, homogeneous square plate (ν=0.3) 

Present Moradi et al. [71] Atmane et al. [70] Akhavan et al. [69] ˆ ˆ,
w G

K K  
h

a
 

19.7904 

26.2499 

58.0136 

19.7396 

26.2115 

57.9963 

19.7392 

26.2112 

57.9962 

19.7391 

26.2112 

57.9961 

(0,0) 

(100,10) 

(1000,100) 

0.001 

19.1196 

25.5733 

56.9680 

19.0658 

25.6235 

57.3922 

19.0658 

25.6236 

57.3923 

19.0840 

25.6368 

57.3969 

(0,0) 

(100,10) 

(1000,100) 

0.1 

17.5141 

23.9892 

56.0145 

17.4530 

24.2728 

56.0363 

17.4531 

24.2728 

56.0311 

17.5055 

24.3074 

56.0359 

(0,0) 

(100,10) 

(1000,100) 

0.2 

   After validation of the applied method, vibration behaviors of the square power-law FGM sandwich plates with four 

simply supported edges are investigated. The top and bottom layers are considered homogeneous plates and made of 

aluminium  (Em=70Gp, ρm=2707Kg/m3) and alumina  (Ec=380Gp, ρc=3800Kg/m3), respectively. The effective material 

properties of FGM core, like Young’s modulus and mass density, then can be expressed by the rule of mixture[72] as 

( ) ( )( )(2 ) / 2m c c

k

core c cz z h h   = +− + . 

     Table 5. Reports Fundamental normalized frequency parameters (for n=1 and m=1) of power-law FGM sandwich 

square plates (a/b=1) with Three thickness-side ratios h/b (0.01, 0.1, 0.2) and four-volume fraction indices k 

(0.5,1,5,10). As observed, increasing the ratio of h/b reduces all the frequency parameters of the sandwich square 

plates, also increasing of the volume fraction indices k, increases the frequencies. 

Table 5. Fundamental frequency parameters ((Ω=ωb2(ρ0/E0)
0.5/(hcore+hc+hm)), (ρ0=1Kg/m3, E0=1GPa)) of simply supported square 1-8-1 

power-law FGM sandwich plates with FGM core (hcore/hm=8, hc/hm=1, ν=0.3, Kw=0, KG=0) 

Present Q. le et al.[72]  k  
h

b
 

1.3713 

1.4179 

1.5470 

1.6014 

1.33931 

1.38669 

1.53143 

1.59105 

0.5 

1 

5 

10 

0.01 

1.3273 

1.3777 

1.5080 

1.5600 

1.29751 

1.34847 

1.49309 

1.54980 

0.5 

1 

5 

10 

0.1 

1.2210 

1.2783 

1.4094 

1.4557 

1.19580 

1.25338 

1.39567 

1.44540 

0.5 

1 

5 

10 

0.2 

     What follows, numerical examples are presented to study the influences of various parameters on the natural 

frequencies of the 5-layer sandwich plates. Except for the cases which are mentioned directly, mechanical properties 
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are considered as those mentioned in Table 6. Porosity distribution is considered as asymmetric with porosity 

parameter e1=0.6, Skempton coefficient B=0.5 and CNTs are distributed with total volume fraction V*
r=0.11 based 

on uniform distribution pattern. Elastic and shear stiffness coefficients of the foundation are selected as Kw=109 N/m3 

and KG=105 N/m and the following dimensionless definition is defined as the first natural frequency:  

( ) 1

1

2 1
h

E

 
 

+
=

 

(39) 

Table 6.  Mechanical properties 

Core [9] 

 

(Tennessee 

marble) 

Interior layers 

Piezoelectric face sheets [73] 

 

Matrix 

[71] 

(Methyl-

methacrylate ( 

Reinforcement 

[74] 

CNT (R=10 

𝑨°)  

E1= 60 

GPa 

ν=0.25 

ρ1=2700 

kg/m3 

α=0.19 

E=2.5 

GPa 

ν=0.34 

ρ=1150 

kg/m3 

kr=30 GPa 

lr=10 GPa 

mr=1 GPa 

nr=450 GPa 

pr=1 GPa 

ρr=1400 kg/m3 
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12
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44
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216
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44.2
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5550

p

p

p

p

p

p

p

p

C GPa

C GPa

C GPa

C GPa

C GPa

C GPa

C GPa

C GPa

Kg
m



=

=

=

=

=

=

=

=

=

 

 

e31=e32=-

2.2 C/m2 

e15=e24=5.8 

C/m2 

e33=9.3 

C/m2 

k11=5.64×10-

9 C/Vm 

k22=5.64×10-

9 C/Vm 

k33=6.35×10-

9 C/Vm 

 

     The square sandwich structure with h/hp=6 and constant surface area (S=a.b) is shown in Figures 3, 4, and 5 for 

three types of nonsymmetric, symmetric, and monotonous pore distribution, and it is included to study the effect of 

natural frequency variations based on the porous core thickness to nanocomposite layer thickness ratio hc/hnc for 

different porosity values. The figures show that for all 3 distribution types, by increasing the porosity parameter which 

means that with an increase in the size of pores, the natural frequencies of the sandwich plate increase, because by 

increasing the porosity, the mass, and structural stiffness both decrease, but all three figures show that the mass 

reduction of the structure is much larger than the stiffness reduction for a given layer thickness, which leads to the 

increased natural frequency. 
     In addition, to understand the effect of geometric parameters such as the layer thickness, as shown in the figures, 

by increasing the ratio of the porous core thickness to the nanocomposite for nonsymmetric and symmetric 

distributions shown in Figure 3 and 4 respectively in the interval [0,0.7] and for monotonous distribution in the interval 

[0,0.5] as shown in Figure 5, due to the reduction of the structural stiffness, the natural frequencies are attenuated and 

for higher porosities in these intervals, the trends are reversed. Consequently, if the goal is to increase the natural 

frequency of a structure, the optimum situation can be found by selecting the porosity distribution for a specified layer 

thickness and changing the porosity value.  
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Figure  3. The dimensionless natural frequency of sandwich plate versus layer thickness ratio (hc/hnc) for various values of porosity 

parameter of nonsymmetric distribution pattern. 

 

  

 
Figure 4. The dimensionless natural frequency of sandwich plate versus layer thickness ratio (hc/hnc) for various values of porosity 

parameter of symmetric distribution pattern. 
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Figure 5. The dimensionless natural frequency of sandwich plate versus layer thickness ratio (hc/hnc) for various values of porosity 

parameter of monotonous distribution pattern. 

    Figure 6 shows the comparison of various distributions for a given value of porosity parameter e1=0.4 for a square 

sandwich plate with a constant surface area of (S=a.b) at h/hp=6. As shown in this figure, the natural frequencies for 

all 3 distribution models decrease by increasing the layer thickness ratio, but for all layer thickness ratios, the 

fundamental frequency of the monotonous distribution model is greater than the symmetric and nonsymmetric 

distribution models with a large margin, which could be caused by a higher increase in mass and stronger improvement 

of stiffness in the monotonous distribution case compared with the symmetric and nonsymmetric distributions for a 

given porosity value. The values of natural frequency in the symmetric and asymmetric cases are similar which is 

because the stiffness to mass ratio of the structure is similar in the functional behavior of the two porous distributions, 

but as shown in the figure, increasing the core thickness while keeping the total thickness constant, results in a greater 

reduction in the frequency for the asymmetric case compared with the symmetric case. 

 
Figure  6. The dimensionless natural frequency of sandwich plate versus layer thickness ratio (hc/hnc for different distribution patterns. 

     The effect of porosity coefficient (0<e1<0.95), porosity distribution model, and layer thickness hc/hnc=10 and 
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7, 8, and 9. As shown in Figures 7 and 8, only for nonsymmetric and symmetric cases, by increasing the porosity 
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parameter, the fundamental frequencies ( )11  always increase, and in other cases, based on the porosity distribution 

and the frequency mode number, it increases first and then decreases. The maximum frequency in different modes 

could be an significant design factor that is shown based on the type of the porosity distribution.  

 

 
Figure  7. The dimensionless natural frequency of sandwich plate versus porosity parameter for nonsymmetric distribution pattern. 

 
Figure 8. The dimensionless natural frequency of sandwich plate versus porosity parameter for symmetric distribution pattern. 
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Figure 9. The dimensionless natural frequency of sandwich plate versus porosity parameter for monotonous distribution pattern. 

    Figure 10 shows the fundamental natural frequency variations based on aspect ratio (a/b) of a sandwich plate 

hc/hnc=10 and hp/hnc=1 with constant surface area (s=a.b) and fixed volume (V=s.h) for two values of Skempton 

coefficient. As shown in this figure, the minimum values of the natural frequencies belong to a square plate (a/b=1). 

For a/b<1 an increase in the value of aspect ratio decreases all-natural frequencies and for a/b>1 reverse trend can be 

seen. Also, by increasing the Skempton factor, the fundamental natural frequency in all 3 cases of porosity distribution 

increases. So that by increasing the Skempton factor, the pore compression increases, and the stiffness increase is 

higher than the mass increase, leading to higher natural frequencies. The natural frequencies are at their maximum 

value for monotonous distribution and B=0.8 and at their minimum for nonsymmetric distribution and B=0. 

 

 

 

 
Figure 10. The dimensionless natural frequency of sandwich plate versus aspect ratio (a/b) for different 

distribution patterns and Skempton coefficients. 
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Figure 11 shows the influence of the total volume fraction of CNTs on the natural frequencies of the sandwich square 

plate of h/hp=6. This figure confirms that all-natural frequencies increase with the rise in the value of the total volume 

fraction of CNTs which can be explained by an increase in the flexural rigidity of the CNT-reinforced interior layers. 

In other words, as the volume fraction of CNTs in Eq. (20) becomes greater, Gnc and Knc that are shear and bulk moduli 

of the CNT-reinforced layers respectively will increase. Therefore, according to Eq. (19), the mechanical properties 

of nanocomposite layers increase. So the stiffness of the sandwich plate enhances which leads the natural frequency 

to increase. This result is in complete agreement with [75],[71] and [76]. 

 

  

Figure 11. The dimensionless natural frequency of sandwich plate versus layer thickness ratio (hc/hnc) for various volume fraction of 

CNTs. 

    The variations in the natural frequency of the sandwich structure (hc/hnc=1 and hp/hnc=1) based on aspect ratio (a/b) 

for the various elastic medium models, Winkler and shear coefficients of the foundation and damper modulus 

parameter are shown in Figure 12. As shown, when the Pasternak model is used for the elastic medium, the natural 

frequency compared to other models is at its maximum. This is due to the Winkler constant and shear layer in this 

model which has an increasing effect on the natural frequencies. As expected, the frequency vs. aspect ratio curve for 

the Visco-Pasternak model is lower than Winkler and Pasternak models due to the presence of damping constant in 

addition to the Winkler constant and the shear layer.  

    As these figures show, an increase in both Winkler and shear coefficients of the foundation, all-natural frequencies 

grow which can be explained by the increase in the value of stiffness of the plate-foundation system but viscoelastic 

behavior leads to energy damping and force dissipation, and by increasing the damper modulus parameter, the 

frequency experiences a higher decrease due to the system damping effect. 
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Figure 12. The dimensionless natural frequency of sandwich plate versus aspect ratio(a/b) for different damping coefficients, 

foundations, Winkler and shear layer constants 

    The natural frequency variations of the square sandwich plate with h/hc=6, are shown in Figure 13 based on the 

layer thickness ratio under applied external voltage. As shown, when the applied voltage changes from negative to 

positive, the natural frequency decreases. The sandwich plate sensitivity to applied positive and negative voltages is 

due to the tensile and compressive forces since the tensile forces weaken the stiffness and compressive forces enhance 

the stiffness; consequently, the effects result in softening and hardening of the structure which leads to a decrease and 

increase of the structural natural frequency, respectively. As a result, the applied external voltage value could be an 

effective parameter for controlling the vibration of sandwich structure. 

 
Figure 13. The dimensionless natural frequency of sandwich plate versus layer thickness ratio (hp/hnc) for various values of external 
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6. Conclusions 

     Using Navier’s method, an exact solution was presented for free vibration characteristics of 5-layer sandwich plates 

consisting of a sutured porous material core, CNT-reinforced interior layers and piezoelectric face sheets that are 

subjected to an external electric voltage. The plate was modelled using the quasi-3D sinusoidal shear deformation 

theory and the set of the governing equations are derived using Hamilton’s principle. The accuracy of the presented 

solution was validated and the influence of various parameters on the natural frequencies of the sandwich plate was 

investigated. the objectives of this study include optimum application of new and smart materials. Using a porous core 

for reducing structural weight, improving flexibility and reducing cost also affects the structural strength. Composites 

reinforced with carbon nanotubes enhance structural strength, while adding piezoelectric functional layers can turn 

the material into a smart structure, which are widely used in sandwich panel structures such as applications in 

aerospace and airplane wings.  

 Numerical examples showed that: 

• the natural frequency increases with increasing the value of the porosity parameter. Also by an optimum 

selection of porosity parameter and porosity distribution, the frequency reduction can be reversed which 

occurs by increasing the layer thickness ratio.  

• the minimum values of the natural belong to a square plate (a/b=1). In addition to a given optimum porosity 

percentage for a sandwich plate for constant volume and area, the maximum increase in natural frequency 

occurs.  

• the monotonous case had the highest natural frequencies and the least amount is for the nonsymmetric case. 

•  all-natural frequencies increase with increasing the value of the total volume fraction of CNTs. 

•  by increasing Winkler modulus and shear modulus of the surrounding elastic medium, natural frequent 

increases but by increasing damper modulus parameter, natural frequencies decrease. 

•  The medium effect on natural frequency follows the order Pasternak medium > Winkler medium > Visco-

Pasternak medium > Without elastic medium. 

• By changing the externally applied voltage to piezoelectric overlays from positive to negative, the natural 

frequency can be increased. It should be noted that  

• For optimum use of piezoelectric materials, instead of a continuous layer, piezoelectric patches can be used. 
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