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Abstract 

The current paper presents a thermoelastic model with a single relaxation 

time to examine the thermoelastic interaction in an isotropic infinite medium. 

The unbounded medium is exposed to a thermal shock with varying 

temperatures due to a vertically moving heat source in a planar region. The 

basic partial differential equations were solved using the Laplace transform 

method. Physical fields are studied and compared in terms of how the speed 

of the heat source, the relaxation time parameter, and the time parameters 

affect their behavior. Graphical presentations are used to analyze physical 

field variables like temperature changes, thermal stress and deformation.  

Keywords: Thermoelastic theory; Lord and Shulman; heat supply; unbounded medium. 

1. Introduction 

The motion equations, the compatibility equations, and the foundation law are the basic laws of thermal 

elasticity, identical to those of the theory of elasticity. The idea of linear thermoelasticity is based on the linear 

addition of thermal stresses to mechanical strains as the primary catalytic force. Conventional thermoelastic 

theory predicts that the effect of thermal shock will be immediately felt at all application sites when the shock 

is delivered to a homogeneous and isotropic elastic body, and an external change in temperature causes the 

shock. This indicates that thermal shock affects the pattern and amount of thermal stress and temperature in 

solving related thermoelastic problems. This suggests that the paradoxical perturbation of thermoelasticity can 

be transmitted at any speed in experimental particle physics. Therefore, the assumption based on the 

conventional Fourier law of heat transport must be replaced by a better mathematical formula because this 

response is not physically valid and interacts with heat transfer processes. 

Many serious efforts and different theories have been put forward to solve this physical inconsistency of 

conventional thermal elasticity, which says that heat wave disturbances can spread at an infinite rate. These theories 

explain why heat signals can only move at a certain speed by introducing the additional phrase "heat flow rate" to 

Fourier's law or making the amount of temperature one of the variables. In this context, Lord and Shulman [1] proposed 

one of the most famous improvements to the theory of thermoelasticity, which depends on the heat flux rate by 

including a single period of relaxation. Within the framework of the thermoplastic process, Green and Lindsay [2] 

proposed another revised hypothesis of thermoelasticity which allows for two phases of thermal relaxation. 

Furthermore, Green and Naghdi [3-5] introduced three models to aid the development of extended thermoelastic 
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frameworks: GN-I, II, and III. Tzou [6-8] further proposed a new model (the DPL model) in which a two-stage delay 

separates the heat flow from the temperature gradient. In recent years, Abouelregal [9, 10] developed a thermal 

conductivity model with a high-order time derivative and further developed Green and Naghdi's extended theorems 

without energy dissipation by Mohammadi, et al. [11, 12]. In addition, he built a unique model of thermoelastic 

conduction with two temperature and high-order time derivatives and biphasic delays by Abouelregal [13, 14]. 

The phenomenon of thermal conductivity of materials involving mobile heat sources has been investigated in 

various fields in recent decades Hu and Liu [15]. Among the most important areas that include such sources are welding 

and cutting materials, drilling, hardening/laser forming, plasma spraying, and heat treatment of metals of all kinds. It 

is also used in manufacturing electronic components, even shooting the barrel of a gun, burning solid fuel, and others 

[16-18].  

The field of temperature change within materials is most commonly described using the heat transfer equation 

with time-dependent local source terms for the transfer of heat sources. This is the most important physical variable 

for such real-world applications Sun, et al. [19]. Several additional thermo-physical properties of the material, such as 

metallic microstructures, heat stress, residual stress, and partial deformation, can be calculated after obtaining the 

temperature range Mirkoohi, et al. [20, 21]. It is important to infer precisely how the temperature range around moving 

heat sources will change over time during these engineering processes. Since a moving heat source can be placed on 

a surface or within a material, the resulting mathematical formula will include a source term in the boundary case or 

a controlled heat transfer equation, depending on which one applies. Depending on the situation, a moving heat source 

is usually represented by a point, a line, or a flat surface, each of which has a different shape see in Akbari, et al. [22, 

23]. 

Regardless of the moving heat source, its power is almost always focused in a finite area that depends on time. 

From studies and experiments, it became clear that in the confined area around the moving heat source, the temperature 

of the material will change dramatically. As a result, it is clear that the adaptive grid technique, which dynamically 

focuses on several grid points in local areas with rapid temperature change, may yield significant efficiency gains over 

the static grid method when the problem is solved with the same precision Huang and Russell [24]. Many different 

techniques, whether using an analytical or numerical approach, have been used to analyze the temperature change and 

thermal properties associated with the issue of moving heat sources in much literature [25-29].  

In recent years, nanosensors are a typical type of nano-electromechanical system (NEMS) that is used for detection 

at the nanoscale and is also one of the most useful nano-devices. In many different fields, such as environmental 

nanotechnology, nanomedicine, nanomechanics, etc., accurate and sensitive detection of nanoparticles, including 

proteins and viruses, is critical [30-34]. Continuum modeling of nanostructured materials has garnered a lot of attention 

from the scientific community in recent years due to the impracticality of conducting experiments of this scale and 

the high processing cost of conducting simulations using molecular dynamics. Nanorods, nanoparticles, graphene 

sheets, and nanorings are just a few examples of nanostructures that have been studied using the nonlocal elasticity 

theory to analyze the influence of small scale on bending, resonance, and buckling [11, 35-37]. 

The originality of the present research lies in its attempt to characterize thermoelastic interactions in an unbounded 

elastic medium within the framework of the hyperbolic thermoelasticity model with a single-phase lag. It was taken 

into account that the outer surface of the half space is subjected to thermal shock as well as a time-dependent heat 

source moving perpendicular to the outer surface of the medium. Since the laser beam is in motion with respect to the 

part during cutting and scribing, heat transfer model from a moving source of heat is an area of study. If the scanning 

speed is held constant, then the erosion front and subsequent temperature distribution will remain unchanged with 

respect to a reference frame cantered on the laser beam. 

To obtain the analytical solution, the coupled differential equations are decoupled using Laplace transform 

procedures, and the resulting system is solved analytically. The problem was solved numerically using the Honig and 

Hirdes approach, which is a numerical implementation of the inverse Laplace transform. Graphs of the numerical 

findings for various models are also provided. 
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After the introduction, the remainder of the research can be organized as follows: The basic equations of the 

theoretical thermoelasticity model are established and discussed in Section 2. The problem of one-dimensional heat 

conduction in the presence of heat sources is described in Section 3. The fourth section solves the problem analytically 

after applying the Laplace transform. An application of the proposed problem is presented in Section 5, where it is 

assumed that the free surface is adherent and due to thermal shock. Due to the difficulty of obtaining the analytical 

formulas of the inverse Laplace transforms, an accurate and proven numerical algorithm was applied in the fifth 

section. In the sixth section, the numerical results were discussed. In the last section of this article, the most important 

conclusions obtained are presented. 

2. Governing equations of generalized thermoelasticity  

The experimental Fourier law is the oldest model presented to study how heat travels through matter. This law 

takes into account the existence of a linear relationship between the heat flow �⃗�  and the temperature gradient ∇𝜃 as 

follows: 

�⃗� (𝑟 , 𝜏) = −𝐾∇Θ(𝑟 , 𝜏).  (1) 

The simple equation for energy conservation is as follows: 

𝜌𝐶𝑆

𝜕Θ

𝜕𝑡
+ Ω𝑇0

𝜕

𝜕𝜏
(∇ ∙ �⃗⃗� ) = −∇ ∙ �⃗� + 𝐻 (2) 

When Fourier's law (1) and the conservation equations (2) are put together, the classical equivalent Fourier thermal 

conductivity equation can be found. Over the past decades, Fourier's law has been used in a wide range of mechanical 

and engineering fields for ease of understanding and application. But on the other hand, Fourier's law gives an equation 

of a parabolic type heat transfer with an infinite speed of conductive heat transfer, which is contrary to what can be 

seen in the real world. Biot [38] devised the theory related to thermal elasticity to solve the paradox problem, which 

eliminates the problem that the deformation does not affect the temperature change. For this theory to be in line with 

the experimental data, the velocity of the thermoelastic signal is not expected to be limited by its field equations, 

which are parabolic and hyperbolic combined equations. 

To address the conflict and inconsistencies of the classical models, the concepts of thermoelasticity have been 

expanded, and many suggestions have been made. Cattaneo [39] provided a clear mathematical correction to the 

Fourier law of heat transfer propagation error. Cattaneo's idea is an important improvement that limits the speed of 

heat wave propagation. In this proposal, Cattaneo introduced the thermal relaxation time 𝑡0 with the rate of heat flux 

as: 

(1 + 𝑡0
𝜕

𝜕𝑡
) �⃗� (𝑟 , 𝜏) = −𝐾∇Θ(𝑟 , 𝜏)  (3) 

Applying the Cattaneo relaxation-time model, the associated theory can no longer claim that heat waves can travel 

at infinite speeds. Lord and Shulman [1] proposed the initial generalized theory of thermoelasticity with one relaxation 

period for homogeneous and isotropic bodies based on this previous suggestion. Instead of using Cattaneo's concept 

of thermal conductivity, this theory uses a new law of thermal conductivity that explains heat flow and its time 

derivative. 

Lord and Shulman's model suggests that the generalized heat transfer equation can be written as: 

𝐾∇2Θ = (1 + 𝑡0
𝜕

𝜕𝜏
) (𝜌𝐶𝑒Θ̇ + Ω𝑇0�̇� − 𝐻).  (4) 

The stress tensor 𝑆𝑘𝑙  can be defined by the relation 

𝑆𝑘𝑙 = 2𝜇𝑒𝑘𝑙 + (𝜆𝑒𝑚𝑚 − ΩΘ)𝛿𝑘𝑙 .  
(5) 

where 𝑒𝑘𝑙 stands for the strain tensor, which can be found by following the formula: 
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𝑒𝑘𝑙 = 0.5(𝑈𝑘,𝑙 + 𝑈𝑙,𝑘),  (6) 

one of the formulas for the equations of motion is as follows: 

𝑆𝑘𝑙,𝑙 + 𝐹𝑘 = 𝜌�̈�𝑘 .  (7) 

Introducing Eqs. (5) and (6) into Eq. and (7), we get 

𝜇𝑈𝑘,𝑙𝑙 + (𝜆 + 𝜇)𝑈𝑙,𝑘𝑙 − ΩΘ,𝑘 + 𝐹𝑘 = 𝜌�̈�𝑘 .  
(8) 

 

3. Problem formulation 

Applying the generalized elasticity theory and for the purposes of the study and discussion, it will be taken into 

account that the region 𝑋 ≥ 0, which represents half of the infinite space, has a constant temperature of 𝑇0 (see Figure 

1). The boundary surface of the medium 𝑋 = 0 will be thought to be fixed and exposed to thermal shock and a moving 

heat source 𝑄(𝑋, 𝜏) . As 𝑄(𝑋, 𝜏)  propagates across the surface of half the area, it causes heat to be emitted 

perpendicular to the x-axis. In the Cartesian coordinate system (𝑋, 𝑌, 𝑍), we will also assume that the 𝑋 coordinate is 

parallel to the central axis.  

 
Figure 1: An infinite space due to a moving heat supply  

The proposed half-space problem can be simplified to a one-dimensional problem, in which case the only 

component of the displacement is 𝑈𝑋 = 𝑈(𝑋, 𝜏). As a direct consequence of this, the thermal stress, denoted by the 

symbol 𝑆𝑥𝑥 in equation (7) can be expressed as: 

𝑆𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑈

𝜕𝑋
− ΩΘ .  (9) 

By substituting equation (9) into equation (8) and using the relation (6), we get 

(𝜆 + 2𝜇)
𝜕2𝑈

𝜕𝑋2 − Ω
𝜕Θ

𝜕𝑋
                                 

= 𝜌
𝜕2𝑈

𝜕𝜏2  .  
(10) 

In addition to this, equation (4) describes the modified LS heat transport theory and can be expressed as 

(1 + 𝑡0
𝜕

𝜕Ω
) (

𝜌𝐶𝑠

𝐾

𝜕𝜃

𝜕Ω
+

Ω𝑇0

𝐾

𝜕2𝑈

𝜕𝜏𝜕𝑋
−

1

𝐾
𝐻) =

𝜕2Θ

𝜕𝑋2.  
(11) 

The following dimensionless variables will be taken into account 
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{𝑥, 𝑢} = 𝜂𝑐0{𝑋, 𝑈},   {𝑡, 𝜏0} = 𝜂𝑐0

2{𝜏, 𝑡0}, 𝜃 =
1

𝑇0
Θ,

   𝜎𝑥 =
1

𝜇
𝑆𝑥𝑥 , ℎ =

𝐻

𝐾𝑇0𝑐0
2𝜂2 , 𝑐0 =

𝜆+2𝜇

𝜌
, 𝜂𝐾 = 𝜌𝐶𝑠.

    
(12) 

Using the preceding data, the non-dimensional form of equations (9) to (11) can be derived as follows: 

𝜎𝑥 = 𝑎
𝜕𝑢

𝜕𝑥
− 𝑝𝜃,  (13) 

 

𝑎
𝜕2𝑢

𝜕𝑥2 −
𝜕2𝑢

𝜕𝑡2 = 𝑝
𝜕𝜃

𝜕𝑥
,  (14) 

 

𝜕

𝜕𝑡
(1 + 𝑡0

𝜕

𝜕𝑡
) 𝜃 + 𝑞 (1 + 𝑡0

𝜕

𝜕𝑡
)

𝜕2𝑢

𝜕𝑡𝜕𝑥
= (1 + 𝑡0

𝜕

𝜕𝑡
) ℎ +

𝜕2𝜃

𝜕𝑥2,  
(15) 

where 

 𝑎 =
𝜆+2𝜇

𝜇
,       𝑝 =

Ω𝑇0

𝜇
,   𝑞 =

Ω

𝜌𝐶𝐸
.   

It is suggested that the initial and continuing aspects of the problem are as follows: 

𝜃 = 0 =
𝜕𝜃

𝜕𝑡
= 0,     𝑢 = 0 =

𝜕𝑢

𝜕𝑡
     at       𝑡 = 0,

𝑢 → 0  ,   𝜃 → 0        when         𝑥 → ∞.
  (16) 

In the current problem, it will be taken into account that the heat source ℎ, which moves at a constant speed 𝜗 

in the direction of the surface of the medium and constantly releases energy in the positive direction of the 𝑥-axis, 

affects the stress and heat of the half region 𝑥 ≥ 0 affected by this heat source. So, the non-dimensional source of heat 

ℎ of uniform magnitude ℎ0 can be thought of as having the following shape: 

ℎ = ℎ0𝛿(𝑥 − 𝜗𝑡) ,  (17) 

where 𝛿(∙) denotes the delta function. 

4. The solution in the Laplace transform domain 

The following relationship forms the definition of the well-known Laplace transform: 

�̅�(𝑥, 𝑡) = ∫ 𝑒−𝑠𝑡𝑔(𝑥, 𝑡)𝑑𝑡,    𝑠 > 0.
∞

0
  (18) 

When applying the Laplace transform to the initial conditions (16), the expressions (13)-(15) in the field of the 

Laplace transform become: 

𝜎𝑥𝑥 = 𝑎
d𝑢

d𝑥
− 𝑝�̅�,  (19) 

𝑎
d2𝑢

d𝑥2 − 𝑠2�̅� = 𝑝
d�̅�

d𝑥
,  (20) 

𝜓1�̅� + 𝜓2
d𝑢

d𝑥
− 𝜓3𝑒

(−
𝑠𝑥

𝜗
)
=

d2�̅�

d𝑥2,  
(21) 

where 
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   𝜓1 = 𝑠(1 + 𝑡0s), 𝜓2 = s𝑞(1 + 𝑡0s), 𝜓3 =
ℎ0𝑠(1+𝜏0s)

𝜗
 .   

The equations (20) and (21) may be rewritten as follows: 

(𝛽1
d2

d𝑥2 − 𝑠2) �̅� = 𝑏
d2�̅�

d𝑥2  ,  
(22) 

 

𝜓2�̅� = (
d2

d𝑥2
− 𝜓1) �̅� + 𝜓3𝑒

(−
𝑠𝑥
𝜗

)
. (23) 

Eliminating �̅� from Eqs. (22) and (23), one gets 

(𝛽1
d4

d𝑥4 − (𝜓1𝛽1 + 𝑠2(1 + 𝜓2𝑏))
d2

d𝑥2 + 𝑠2𝜓1) �̅� = −
𝜓3𝑏𝑠2

𝜗
𝑒

(−
𝑠𝑥

𝜗
)
 . (24) 

Which can be expressed as: 

(∇2 − 𝑘1
2)(∇2 − 𝑘2

2)�̅�  = −𝛼1𝑒
(−

𝑠𝑥

𝜗
)
 , (25) 

where 𝛼1 =
𝜓3𝑏𝑠2

𝜗𝛽1
 and the coefficients 𝑘1

2 and 𝑘2
2 satisfy the following equation 

𝑘4 −
(𝜓1𝛽1+𝑠2+𝑠2𝜓2𝑏)

𝛽1
𝑘2 +

𝑠2𝜓1

𝛽1
= 0 . (26) 

The comprehensive solutions of equation (25) under regularity constraints (16) can be expressed as: 

�̅�(𝑥) = 𝐴1e
−𝑘1𝑥 + 𝐴2e

−𝑘2𝑥 − 𝐴3𝑒
(−

𝑠𝑥

𝜗
)
,  (27) 

where 𝐴3 =
𝛼1

(
𝑠

𝜗
)
4
−

(𝜓1𝛽1+𝑠2+𝑠2𝜓2𝑏)

𝛽1
(
𝑠

𝜗
)
2
+

𝑠2𝜓1
𝛽1

. 

From Eqs. (22) and (27) we have: 

�̅�(𝑥) = (
𝛽1𝑘1

2−𝑠2

𝑏𝑠2𝑘1
2 )𝐴1e

−𝑘1𝑥 + (
𝛽1𝑘2

2−𝑠2

𝑏𝑠2𝑘2
2 )𝐴2e

−𝑘2𝑥 − (
𝛽1(

𝑠

𝜗
)
2
−𝑠2

𝑏𝑠2(
𝑠

𝜗
)
2 )𝐴3𝑒

(−
𝑠𝑥

𝜗
)
 . 

(28) 

Integrating Eq. (27) with respect to 𝑥, we obtain: 

�̅�(𝑥) = −
1

𝑘1
𝐴1e

−𝑘1𝑥 −
1

𝑘2
𝐴2e

−𝑘2𝑥 +
𝜗

𝑠
𝐴3𝑒

(−
𝑠𝑥

𝜗
)
 . (29) 

We can extract the transformed thermal stress 𝜎𝑥𝑥 by substituting equations (28) and (29) into (19) as: 

𝜎𝑥𝑥(𝑥) = 𝛽1𝐴1e
−𝑘1𝑥 + 𝛽1𝐴2e

−𝑘2𝑥 − 𝛽1𝐴3𝑒
(−

𝑠𝑥
𝜗

)
− (

𝛽1𝑘1
2 − 𝑠2

𝑠2𝑘1
2 )𝐴1e

−𝑘1𝑥

 − (
𝛽1𝑘2

2 − 𝑠2

𝑠2𝑘2
2 )𝐴2e

−𝑘2𝑥 + (
𝛽1 (

𝑠
𝜗
)
2

− 𝑠2

𝑠2 (
𝑠
𝜗
)
2 )𝐴3𝑒

(−
𝑠𝑥
𝜗

)
.

 

(30) 

5. Applications 
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To calculate the integration constants 𝐴1 and 𝐴2 it will be taken into account that the free surface of the infinite 

media (𝑥 = 0) is constrained (fixed) and subjected to a thermal shock. The boundary conditions can be expressed 

mathematically as: 

𝜃(0, 𝑡) = 𝜃0𝐻(𝑡),

𝑢(0, 𝑡) = 0,        
 . (31) 

where 𝐻(𝑡) denotes the unit step function.  

As shown below, in the Laplace transform field, the boundary conditions can be transformed as follows: 

�̅�(𝑥, 𝑠) =
𝜃0

𝑠
,                  𝑎𝑡    𝑥 = 0,

�̅�(𝑥, 𝑠) = 0                 𝑎𝑡    𝑥 = 0.     
  (32) 

As shown below, to obtain a system of linear equations with the constants 𝐴1 and 𝐴2, the boundary conditions (32) 

must be applied 

(
𝛽1𝑘1

2−𝑠2

𝑏𝑠2𝑘1
2 )𝐴1 + (

𝛽1𝑘2
2−𝑠2

𝑏𝑠2𝑘2
2 )𝐴2 = (

𝛽1(
𝑠

𝜗
)
2
−𝑠2

𝑏𝑠2(
𝑠

𝜗
)
2 )𝐴3 +

𝜃0

𝑠
,  (33) 

1

𝑘1

𝐴1 +
1

𝑘2

𝐴2 =
𝜗

𝑠
𝐴3 (34) 

 

It is possible to find the values of the integration constants 𝐴1 and 𝐴2 by solving the previous system of algebraic 

equations. 

6. Laplace transform inversion 

This section will calculate the numerical values of physical fields in the time domain using the Riemann sum 

approximation approach because it is difficult to obtain direct inverse transformations of these fields. There is no fool 

proof strategy that can be relied upon in every situation. In this article, inverse Laplace transforms will be calculated 

using one of the most accurate approximation methods among others in the field of thermoelasticity.  In this approach, 

the inverse of any function in the Laplace domain, denoted by �̅�(𝑥, 𝑠), can be numerically computed in the time 

domain, denoted by 𝑅(𝑥, 𝑡), by using the tried-and-true approximation algorithm [40]: 

𝑅(𝑥, 𝑡) =
𝑒𝑐𝑡

𝑡
(
1

2
�̅�(𝑥, 𝑐) + 𝑅𝑒 ∑ �̅� (𝑥, 𝑐 +

𝑖𝑛𝜋

𝑡
) (−1)𝑛𝑤

𝑛=1 )  (35) 

where 𝑤 is a finite number that cannot exceed infinity. For numerical computations, this extension is straightforward 

and easy to program. Several computational investigations showed that the c value satisfies the relation 𝑐𝑡 ≅ 4.7 [8], 

which is necessary for faster convergence. 

7. Numerical results 

Some analysis of the numerical results of the various physical fields estimated in the 

preceding section will be provided to confirm and explain the correctness of the analytical 

conclusions suggested in this study. For this goal, numerical simulations and discussions of two 

potential scenarios were carried out. Magnesium crystal is the material to be used for numerical 

evaluations and calculations. For this material, the various physical parameters will be as follows 

[41]: 

𝐾 = 1.7 × 102W m−1K−1, 𝛼𝑡 = 1.78 × 10−5 K−1, 𝑇0 = 298K

 𝜌 = 1740Kgm−3, 𝐶𝐸 = 1040Jkg−1K−1,   𝛾 = 2.68 × 106Nm−2K−1,

𝜇 = 3.278 × 1010Nm−1,   𝜆 = 2.17 × 1010Nm−1.
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7.1 The influence of the speed of the source of heat 

Several types of engineering, such as laser processing of materials, spot welding, and milling, can learn a lot 

from studying thermoelasticity problems that involve the transfer of heat sources. Because the heat source is moving, 

temperature, deformation, and stress all change in very big ways. The construction of the current study makes use of 

both the time-dependent basic solution of the heat transfer problem as well as the theoretical solutions to the 

thermoelastic and thermodynamic problems, respectively. In this part, we'll look at how heat sources with a moving 

point affect their surroundings.  

We will investigate what happens to the non-dimensional displacement and the change in dynamic temperature 

and thermal pressure when the velocities 𝜗 of the moving heat source differ (see Figures 2-4). Figures 2-4 show that 

when the velocity parameters 𝜗 of a heat source change, all field variables change in a completely different way in 

magnitude with similar behavior. 

The following is what we see: 

• There is a substantial relationship between the velocity of the heat source 𝜗 and the distributions of the 

studied fields. 

• In comparison to the velocity of the heat source, the rate of stress 𝜎𝑥𝑥 increase is quite sluggish. 

• The magnitude of the displacement 𝑢 increases as a function of the increasing axial distance 𝑥 until it 

reaches its maximum value. It gradually starts decreasing until it disappears in the middle. 

• With a rising value of heat source speed and a fixed value of distance 𝑥, the displacement 𝑢 decreases, and 

these fluctuations are pretty visible. 

• When the medium is stable, the displacement values at the surface 𝑥 = 0  remain constant, matching the 

given boundary conditions. It is clear from Figure 3 that the displacement component follows the same 

pattern for all different magnitudes of velocity. 

• From Figure 2, it can be seen that the temperature decreases when the speed of heat source transfer 

increases, which is the opposite of what can be expected. The amount of thermal energy the heat source can 

output in a certain time period is fixed. The strength of the emitted energy per unit length, however, 

diminishes with increasing source velocity. 

• The thermodynamic temperature has an oscillating pattern concerning distance, but the amplitude of the 

oscillation decreases with increasing distance from the heat source, although it has the same pattern 

consistent with [25]. 

• When a moving heat source is used, the medium undergoes thermal expansion displacement (see Figure 3). 

With more time having passed, a larger heat disturbed zone has developed, resulting in thermal expansion 

deformation evolving transversely through the medium. 

• Figure 4 further shows that the nondimensional thermal stress 𝜎𝑥𝑥 amplitudes drop with increasing heat 

source velocity due to a decrease in thermal energy strength per unit length. 

• It is also observed that the oscillations are identical in behavior when the moving heat source speed 

increases; the values of peak temperature and displacement and the absolute values of pressures decreased 

in some periods within the medium. These values converge farther from the surface of the infinite mean. 

When there is a greater rise in the velocity of the heat source, there is a corresponding increase in the size 

of the effect field, which is also consistent with [42]. 



Journal of Computational Applied Mechanics 2022, 53 (3): 431-443 439 

 

Figure 2: The change of temperature 𝜃 depending on the various velocities of the moving heat sources 𝜗 

 

Figure 3: The change of displacement 𝑢 depending on the various velocities of the moving heat sources 𝜗 

 

Figure 4: The change of the thermal stress 𝜎𝑥𝑥 depending on the various velocities of the moving heat sources 𝜗 
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7.2 The influence of the time instant 

This scenario shows how the response of the studied field variables changes with a change in the instantaneous 

values of time 𝑡. We will assume that the moving heat source maintains a constant velocity of 𝜗 = 1.2 plus the 

relaxation time 𝜏0 = 0.1. For the purpose of data comparison, the changes in temperature, vertical displacement, and 

thermal pressure of the half medium are shown in Figures 5-7. It was found from the numerical results and figures 

that the time coefficient had a clear effect on each field of research. It is also noticed that the values of all studied 

areas increase along with the increase in the value of t. It is also seen that the rate at which waves travel through space 

slows down more rapidly as the value of 𝑡 increases. The time coefficient 𝑡 significantly influences each of the issues 

considered. As the value of 𝑡 increases, all field values studied experience an increase, but the rate at which waves 

travel through space decreases faster. 

 

 

Figure 5: The temperature 𝜃 with different time instant 𝑡. 

 

 

Figure 6: The displacement 𝑢 with different time instant 𝑡. 
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Figure 7: The stress 𝜎𝑥𝑥 with different time instant 𝑡. 

 

8. Conclusions 

This article introduces the Lord and Shulman heat transfer model, a type of generalized thermoelasticity theory. 

This proposed model, which is based on the theory of generalized thermoelasticity, was applied to investigate the 

structural response to a variable heat source in an isotropic and homogeneous half-space. The Laplace transform 

method was used to obtain the solutions of different physical fields and an accurate and suitable numerical technique 

to produce the inverse Laplace transform. The various effects that a moving heat source can have on transient reactions 

and the effects that time can have on these reactions have been studied. 

According to the results obtained, the following conclusions can be summarized: 

• Each distribution of the studied fields is profoundly affected by the thermoelastic theory with a single 

relaxation factor when there are active heat sources in motion.  

• The phenomenon of finite propagation velocities in all shapes and fields is shown, suggesting that the 

presented model is accurate and consistent with physical phenomena. This is in contrast to some traditional 

theories, which state that heat waves are expected to travel at infinite speeds.  

• When the velocity of the moving heat source increased, the values of peak temperature and displacement 

decreased, and the absolute values of the thermal stress decreased.  

• The results converge within the mean at a distance beyond the boundary of the infinite mean. The speed of 

the heat source is directly linked to how much the field of influence grows. 

• The values of all studied fields rise with increasing time, although the speed with which waves propagate 

through space decreases more rapidly. This is due to the thermal relaxation time. 

Nomenclature: 

𝜆, 𝜇 Lam´e’s constants  𝐾 thermal conductivity
𝛼𝑒 thermal expansion coefficient 𝜌 material density  

𝐶𝑆 specific heat �⃗� heat flux vector

Ω = (3𝜆 + 2𝜇)𝛼𝑡 thermal coupling parameter 𝜏  time 
𝑇0 environmental temperature   𝐻 heat source

Θ = 𝑇 − 𝑇0 temperature increment    𝑆𝑘𝑙 stress tensor
𝑇 absolute temperature 𝑡0 thermal relaxation time 

�⃗⃗� displacement vector 𝑒𝑘𝑙 strain tensor 

𝑒 = div �⃗⃗� cubical dilatation 𝛿𝑖𝑗 Kronecker′s delta function

𝐹𝑘 external body force   
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