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Abstract 

Functionally graded material is an in-homogeneous composite, constructed 

from various phases of material elements, often ceramic and metal and is 

employed in high-temperature applications. Aim of this work is to examine the 

behaviour of buckling in porous Functionally Graded Material Beams (FGBs) 

in 2 directions (2D) with help of fifth order shear deformation theory. 

With help of potential energy principle and Reddy’s beam theory, equilibrium 

equations for linear buckling were derived. Boundary conditions such as 

simply supported – Simply supported (SS), Clamped – clamped (CC) and 

Clamped-Free (CF) were employed. A unique shear shape function was derived 

and 5th order theory was adapted to take into account the effect of transverse 

shear deformation to get the zero shear stress conditions at top and bottom 

surfaces of the beam. Based on power law, FGB material properties were 

changed in length and thickness directions. The displacement functions in axial 

directions were articulated in algebraic polynomials, including admissible 

functions which were used to fulfil different boundary conditions. Convergence 

and verification were performed on computed results with results of previous 

studies. It was found that the results obtained using 5th order theory were in 

agreement and allows for better buckling analysis for porous material. 

 

Keywords: Buckling Behaviour; Fifth Order Shear Deformation Theory; Lagrange’s equations;2D FGB. 
1.  Introduction 

 

Functionally graded material (FGM) [1] was first introduced in Japan in the mid1980s, for applications in various 

structural and functional requirements due to necessity of materials capable of resisting high temperature as well as 

of high strength. FGM belongs to an advanced class of composite materials and characterized [2] by continuous 

variation of properties as the dimension varies. A typical FGM is an in-homogeneous composite, constructed from 

various phases of material elements, often ceramic and metal, and is employed in high-temperature applications [3]. 

In FGM, the mixing of metal and ceramic with acceptable volume fractions offers smooth and continuous fluctuation 

in mechanical and physical properties in the desired direction. Due to its low thermal conductivity, ceramic component 

of the material offers resistance to high temperatures. On the other hand, ductile metal component avoids fracture 

owing to stresses from a high temperature gradient in a relatively short amount of time. And as a result, the FGM 

structural components can benefit from the advantages of both metals and ceramics in low- and high-temperature 

environments [4, 5]. 

 

The main usage of FGM falls in structural applications where the integration of refractoriness and toughness is 
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accomplished. It includes combustion chambers of rocket engines, high performance cutting tools etc. A few examples 

of applications where FGMs have considerable potential are heat shields for spacecraft, heat exchanger tubes, 

biomedical implants, flywheels, and plasma facings for fusion reactors. FGM allows for the creation of novel materials 

for use in chemical plants, nuclear energy reactors, aerospace applications, and other applications that would typically 

need incompatible materials. In a typical thermal barrier coating for high temperature applications, for instance, a 

separate layer of ceramic material is bonded to a metallic structure.  

 

A structural part like a beam is frequently subjected to a persistent temperature difference between its end surfaces 

in high-temperature applications (top and bottom). As a result, the member is subjected to thermal loading due to the 

facilitation of conductive heat transfer across the beam thickness under steady-state conditions. 

 

There are several beams' theories to describe behaviour of beam type structures. “The oldest and the well-known 

beam theory is the Euler–Bernoulli beam theory or classical beam theory (CBT). In this theory the free boundary 

conditions [6, 7] are not satisfied with shear stress on top and bottom surfaces. Shear correction factor (k) id needed to 

correct the discrepancy in shear force of the first order shear deformation theory. To overcome this drawback, some 

higher order shear deformation theories have been developed by researchers”. 

The shear deformation effects are more pronounced in the thick beams than in the slender beams. “These effects 

are more neglected in the elementary beam theory. In order to describe the correct bending behaviour of thick beams 

including shear deformation effects and the associated cross-sectional warping, shear deformation theories are 

required. This can be accomplished by selection of proper kinematics and constitutive models. The function f(x) is 

included in the displacement field of higher order theory to take into account the effect of transverse shear deformation 

and to get zero shear stress conditions at top and bottom surfaces of the beam”.  

 

Piezoelectric Nano Films (PNFs) are used to create nonlinear continuous model for large amplitude vibration of 

nano electromechanical resonators under external electric power. “In order to develop differential equations of motion, 

Hamilton's principle and von Karman's theory were combined by Asemi H. et al. [8]. “For the transverse vibration of 

double-piezoelectric-nanoplate systems (DPNPS) with initial stress under an external electric voltage, a nonlocal 

continuum plate model was created”. To account for impact of shearing between two piezoelectric nano plates in 

addition to the typical behaviour of coupling elastic medium, Pasternak foundation model was used by Asemi S. et al. 

[9]. “Based on nonlocal continuum mechanics, single layer of graphene sheet subjected for post buckling behaviour. 

According to Von Karman’s assumptions, a nonlinear geometrical model was used” by Asemi S. R. et al.  [10]. Based 

on exponential and power law, elastic modulus of beam was varied in thickness direction. Using shear deformation 

shell theory, free vibration behaviour of a simply supported FGB was determined by Aydogdu et al. [11]. In their 

study, attention was given to examining the nano beam's dynamic and stability behaviour, affected by the magnetic 

field, surface energy, and compressive axial stress. For this scenario, it was assumed that the rotating nano beam was 

under axial compression and was situated in a non-uniform magnetic field. The Gurtin-Murdoch model and the 

nonlocal elasticity theory were used to take into account the impact of surface energy and interatomic forces on the 

vibrational behaviour of rotating nano beams Baghani M. et al. [12]. Solutions of static torsion in microtube formed 

of 2D FGM was presented in their study. The material characteristics were presumptively variable along the 

microtube's radius and length in accordance with an arbitrary function. With regard to the axial magnetic field's torque 

effect, the well-known Maxwell's relation was applied. To investigate the impact of small-scale on static torsion of 

microtube, couple stress theory was used by Barati A. et al.  [13]. their paper examined bi-directional functionally 

graded (FG) nanobeams exposed to a longitudinal magnetic field in terms of transverse vibrations. The small-scale 

effect was taken into account using the nonlocal elasticity hypothesis by Barati A. et al. [14]. Investigated free vibration 

behaviour of bi-directional FGPs from refined theory of shear deformation with first order. From Lagrange equations, 

the equations of motion were obtained by Bathini S. R. [15]. For bending and dynamic behaviour of FG plates, a first-

order theory incorporating shear deformation was developed. The governing equations of axial and transverse 

deformations of FGPs were developed using 1st order plate theory with shear deformation by Bellifa H. et al.  [16]. 

their study examined the small-scale effects on the functionally graded nanoplate's free vibration behaviour. The 

small-scale effects on natural frequencies were investigated using the Eringen's nonlocal hypothesis. While stocky 

and short nanoplates were taken into account, higher order shear deformation plate theory was adapted in order to 

provide more precise results when analysing the nanoplate by Daneshmehr A. et al. [17]. Based on 3rd order beam 

theory with shear deformation, free vibration characteristics of FG nano beams were investigated by presenting a 

Navier type solution. Along thickness direction, the material properties of FG nano beam were changed continuously 

as per power-law by Ebrahimi et al. [18].  “In their study, attention was given to examine nano beam's dynamic and 

stability in a generic condition of non-uniform bending stress. Higher order deformation theory was used to develop 
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the governing equations of motion for a functionally graded material plate” by Hadji et al. [19]. Various higher order 

shear deformation theories have been established for bending and free vibration of FG plates. The pull-in behaviour 

of functionally graded materials (FGM) cantilever micro/nano-beams under the influence of electrostatic force was 

studied. By adopting the skew-symmetric portion of the rotation gradients, the coupling tensor becomes skew-

symmetric fulfilling consistent couple stress theory by Haghshenas Gorgani H. et al. [20]. 2D and quisi 3D theories of 

shear deformation were used to analyze behaviour of free vibration, static bending and elastic buckling of FGB with 

simply supported by Hebbar N. et al. [21]. Based on the notion of strain gradients, the stress distribution in a 

functionally graded nanodisk of varying thickness was examined. When a nanodisk rotates at a constant angular 

velocity, it is presumed to be under thermal and mechanical loads Hosseini, M. et al. [22].  To study composite 

nanoplate's nonlinear vibration analysis lipid face sheets and a functional graded (FG) core were used to create a 

composite nanoplate. The FG core's material characteristics vary in three different directions. The viscoelastic impact 

of the lipid layers was investigated using the Kelvin-Voigt model. The nonlinear differential equation of the vibration 

analysis of the composite nanoplate was obtained utilising the Von-Karman hypotheses by Huang Y. et al.  [23]. 

“Using higher order theory of shear and normal deformation, free vibration analysis of FG elastic, rectangular, and 

simply supported plates was described. Although heterogeneous, the mechanical characteristics of FG material were 

modified smoothly with regard to spatial coordinates” by Jha et al. [24]. Two directional FG beams behaviour of 

buckling was presented with various boundary conditions. Properties of beam material were changed by 

accommodating various gradation exponents in x and z directions by Karamanlı [25]. Based on Winkler and Pasternak 

elastic foundation, the free vibration of homogeneous and FG plates was testing. The elastic foundation was a 

combination of Pasternak and Winkler electric support with parabolically and linearly variable stiffness coefficients 

along the directions by Ketabdari M. J. et al. [26]. Bidirectional functionally graded nanobeams' ability to bend under 

magnetic and mechanical force was examined. It was assumed that the Winkler-Pasternak foundation supports the 

nanobeam. The mechanical behaviour of nanobeam was described using Eringen's nonlocal elasticity theory and the 

Timoshenko beam model by Khoram et al.  [27]. By using classical and first order shear deformation plate theories, 

the bending, free vibration, and buckling responses of FG porous micro-plates were investigated by Kim et al. [28]. 

Presented bending and analysis of free vibration of FGB on natural surface position of shear deformation theory. 

Boundary settings were satisfied with no shear correction factor by Larbi et al. [29].  The free vibration behaviour of 

a rectangular graphene sheet subjected to a shear in-plane force was investigated. “The vibration analysis of 

orthotropic single-layered graphene sheets (SLGSs) exposed to shear in-plane force has been studied using nonlocal 

elasticity theory” by Mohammadi M. et al. [30]. Lipid face sheets and a functional graded (FG) core are used to create 

a composite nanoplate to study the composite nanoplate's nonlinear vibration analysis. The FG core's material 

characteristics vary in three different directions. The viscoelastic impact of the lipid layers was investigated using the 

Kelvin-Voigt model. “The nonlinear differential equation of the vibration analysis of the composite nanoplate was 

obtained utilising the Von-Karman hypotheses” by Mohammadi M. et al. [31]. In their investigation of vibration 

analysis, the FG material with core and two layers of lipid were used. The nonlinear differential governing equations 

were derived from nonlocal elasticity theory. The viscoelastic action of the lipid layers were modelled using the 

Kelvin-Voigt equation by Mohammadi M. et al. [31, 32]. The small-scale consequences of buckling in a nanoplate 

constructed from any arbitrary bi-directional functionally graded (BDFG) materials were examined. The effects on 

buckling load at tiny scales were investigated using the Eringen's nonlocal theory. The least potential energy method 

was used to obtain the governing equations by Nejad M. Z. et al.  [33]. 1st order beam theory with shear deformation 

was developed to determine static and vibration of FGBs. Transverse shear stiffness improved by using plane stress 

and equilibrium equation by Nguyen T.K. et al.  [34]. Discussed the effect of size dependency in FG material based 

on beam theory of Timoshenko. Along the thickness, material properties of FG nano beams were varied based on 

power law by Rahmani O. et al. [35]. Considered the surface effect in investigation of vibration frequencies of nano 

beams and for satisfaction of surface balance equations of continuum surface elasticity, to proposed Gurtin-Murdoch 

model by Safarabadi M. et al. [36]. The fundamental frequency of FGB was investigated using classical, first-order, 

and third-order theories with various boundary settings by Şimşek M. [37]. Free and forced vibration of a Timoshenko 

beam with bi-directional functionally graded material was explored under the influence of a moving load. In both 

axial and thickness dimensions, the beam characteristics varied exponentially by Şimşek M. [38]. Using higher order 

shear deformation theory, free vibration analysis of a simply supported FG plate with porosity was investigated. The 

material characteristics of FG porous plate changed over thickness of plate by Slimane, M. et al. [39]. FG material 

plates were analysed to determine behaviour of vibration and static, based on theory of HSD with modification of 

transverse displacement by finite element model by Talha M. et al.  [40]. FG beams were analysed to determine static 

bending and vibration analysis with various theories of HSD. With transverse shear strain boundary settings to satisfy 

top and bottom surface of beam by Thai, H.T et al. [41]. An improved theory of shear deformation was developed for 

analysis of static bending and vibration of FGBs. The shear correction factor was not necessary by shear deformation 

theory by Vo, T. P. et al. [42]. Bending and free vibration analysis of FG beams on two-parameter elastic foundations 



396 Chandra Mohana Reddy and Venu kumar Nathi 

were carried out using simple higher order and normal deformation theory. For this purpose, the shear strain shape 

function was considered. The proposed theory took into account the effects of transverse shear as well as thickness 

stretching by Lazreg. H. et al. [19].From the literature, it is observed that most of the studies dealt with analysis on 

non-porous functionally graded materials such as beams, and plates using first and second order theories. This 

intrigued us to investigate the effect of porosity in functionally graded materials adapting 5th order theory. 

 

This paper focuses on the critical buckling analysis of 2D-FGBs based on the power-law variation of material 

properties with various end conditions, aspect ratios, gradient indexes and porosity index. A unique shear shape 

function was derived and 5th order theory was adapted to take into account the effect of transverse shear deformation 

to get the zero shear stress conditions at top and bottom surfaces of FG beam. 

 

 

 

2.  Materials and Methods 

 

In this research work, a rectangular beam of Functionally Graded Material (FGM) with length L in x direction, 

width b in y direction, and thickness h in z direction is consider as shown in Figure 1. Material properties are assumed 

to vary continuously along length i.e., x- direction and thickness i.e., z- direction. Through the thickness direction, 

FGM rectangular beam is created by grading ceramic and metal phases. Here, upper surface (z= +h/2) with metal and 

lower surface (z= -h/2) with ceramic. The middle surface of beam is the reference surface i.e. (z=0). 

 

 
Figure 1: Geometry of Functionally Graded Beam 

 

 

Material properties of FGBs are the function of volume fraction of constituent materials. The functional 

relationship between the thickness coordinate and material properties are assumed. The volume fraction of metal (Vm) 

according to power-law distribution in two directions (x and z) can be expressed as: 

 

𝑉𝑓(𝑥, 𝑧) =  (
𝑧

ℎ
+

1

2
)
𝑝𝑧

(
𝑥

𝐿
+

1

2
)
𝑞𝑥

         (1) 

 

Where h and z represent the thickness of beam and thickness coordinate, L and x represents the length of beam 

and length coordinate respectively. Origin (O) is rectangular beam’s mid surface (x, y) thus z 𝜖 [-h/2, h/2].  The Eq.1 

shows the relation between volume fraction evolution, thickness and length of beam through power law exponent 

valves. Here ‘p and q’ indicates the volume fraction behaviour along beam’s thickness and length Figure 2 shows 

variation of volume fractions of metal in thickness and length direction. 
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Figure 2: Volume fractions of metal in thickness (z/h) and length(x/L) direction 

 

 

           

2.1 Formulation of Functionally Graded Porous Beams 

 

Porosities appear as a defect in FGBs because of technical and penetration problems in production process. 

Porosities in the beam are two types namely even and uneven as shown in Figure3. “The properties of efficient material 

of FG beam such as modulus of elasticity E, Poisson’s ratio γ and mass density ρ, are to be found by using modified 

rule of mixture in which the porosity represented by α, affects averagely on the material volume fraction of each 

constituent”. As a result, the material property P(x, z) can be written for each type of porosity in coordinates of x and 

z directions. 

 
Figure 3: Representation of Bi-Directional FGB with  even (a) and uneven (b) porosity distributions 

 

 

Material properties of functionally graded (FG) material of porous beam (even distribution) can be defined as: 

 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+

1

2
)
𝑝𝑧

(
𝑥

𝐿
+

1

2
)
𝑝𝑥

+ 𝑃𝑚 −
𝛼

2
(𝑃𝑐 + 𝑃𝑚)     (2) 

 

Here α represents coefficient of porosity which can defined as ratio between void volume and complete volume (0 

≤ α< 1). “The subscripts m denotes the metal and c denote the ceramic phases. ‘Px’ and ‘Pz’ are non-negative variables 

which define the AFG (along axis) and FG (along thickness) power indexes, respectively. These are related to volume 

fraction change along axis and thickness". The Material properties of beam, i.e.  Young’s Modulus ‘E’, Poisson’s ratio 

‘𝑣’ and mass density ‘ρ’ of functionally graded material porous beam (even) is given below: 

 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
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𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
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1
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2
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The material properties of beam, i.e., Young’s Modulus ‘E’ and mass density ‘ρ’ of functionally graded material 

porous beam (uneven) is given below: 

 



398 Chandra Mohana Reddy and Venu kumar Nathi 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
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𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
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2.2 Displacement field and constitutive équations 

 

Consider the functionally graded rectangular beam as shown in (Figure 1), for analytical result of buckling 

analysis.  The accurate buckling of beams depends upon transverse shear and normal deformation. Therefore, any 

refinement of classical beam theory is generally meaningless. In this regard, the effect of transverse shear and normal 

strain is considered. The present theory has important features as follows. 

 

The displacement equations are based on Reddy advanced a refined higher order beam theory. 

 

 

𝑈(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + z∅(𝑥, 𝑡) − 𝑓(𝑧) (∅(𝑥, 𝑡) +
𝜕𝑤0

𝜕𝑥
(𝑥, 𝑡))     (7) 

𝑊(𝑥, 𝑧, 𝑡) =  𝑤0(𝑥, 𝑡)          (8) 

 

From above equations, u is axial displacement, w transverse displacements and u0, w0 are axial displacement at 

any point on neutral axis, 
𝜕𝑤0

𝜕𝑥
is bending slope and ϕ is shear slope. For determining the distribution of transverse 

shear deformation, shape function 𝑖. 𝑒. 𝑓(z) is used. 
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Relationship between stress and strain of two directional FGM beam coordinate axes is given by, 

 

𝜎𝑥 =
𝐸(𝑥,𝑧)

1−𝜇2
ԑ𝑥          (14) 

 

𝜏𝑥𝑧 = 
𝐸(𝑥,𝑧)

2(1+𝜇)
𝛾𝑥𝑧          (15) 

 

 

2.3 Formulation of buckling 

 

The strain energy of bi-directional functionally graded beam can be written as: 

𝑼 =     
𝟏

𝟐
∫ ∫ (𝝈𝒙𝜺𝒙  + 𝝉𝒙𝒛𝜸𝒙𝒛)𝒅𝒛𝒅𝒙

+
𝒉

𝟐

−
𝒉

𝟐

𝑳

𝟎
        (16) 

 



Journal of Computational Applied Mechanics 2022, 53 (3): 393-413 399 

Substituting eq. 9, eq. 11, eq. 14 and eq. 15 into Eq. 16, the strain energy can be obtained and written in the form 

of: 

 

𝑈 =     
1

2
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From external axial load the potential work can be given by: 

 

𝑉 = −
1

2
∫ 𝑁0 (

𝑑𝑤

𝑑𝑥
)
2

𝑑𝑥
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−𝐿 2⁄
         (19) 

 

 

Total potential energy (Π) of the beam is the sum of total strain energy and potential work. 

 

Π = 𝑈 + 𝑉          (20) 
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Boundary conditions proposed 𝑎𝑟𝑒  𝜃𝑗(𝑥),φj(𝑥) and ψj(𝑥) as the shape functions and 𝝎 is the natural frequency 

of beam. To use the complex number 𝑖 = √−1 in determining unknown coefficients𝐴𝑗, 𝐵𝑗 , and 𝐶𝑗. 

 

By substituting the eq. 21, eq. 22 and eq. 23 in eq. 21 and then by using principle of minimum potential energy eq. 

24, the system of equations given in eq. 25 is obtained to calculate critical buckling loads of two directional FGBs.  

 

 
∂Π

∂Aj
= 0,

∂Π

∂Bj
= 0,

∂Π

∂Cj
= 0              j = 1,2,3, … . , m      (24) 

 

The values of Aj, Bj and Cj represented with qj, leads to 

 

(

 
 

[
 
 
 
 
[𝑆11]

[𝑆12]
𝑇

[𝑆13]
𝑇

[𝑆12]

[𝑆22]

[𝑆23]
𝑇

[𝑆13]

[𝑆23]

[𝑆33]]
 
 
 
 

− 𝑁𝑐𝑟

[
 
 
 
 
[0]

[0]

[0]

[0]

[𝐾N0]

[0]

[0]

[0]

[0]]
 
 
 
 

)

 
 

{
 
 

 
 
𝐴

𝐵

𝐶}
 
 

 
 

=

{
 
 

 
 
{0}

{0}

{0}}
 
 

 
 

     (25) 

 

The stiffness and geometric stiffness matrices are [Ski] and [𝐾N0], respectively. The stiffness and geometric 

stiffness should be symmetric and in max size. The stiffness and geometric stiffness components are given by,  

 

 

𝑆11(𝑖, 𝑗) = ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
[(𝑥 +

𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑗−1] 𝑑𝑧𝑑𝑥   (26) 
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𝑆12(𝑖, 𝑗) = (𝑓 − 𝑧) ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
[(𝑥 +

𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥 (27) 

 

𝑆13(𝑖, 𝑗) = 𝑓 ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
[(𝑥 +

𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑗−1] 𝑑𝑧𝑑𝑥   (28) 

 

𝑆22(𝑖, 𝑗) = (𝑧2 − 𝑧𝑓 + 𝑓2) ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿

2

−
𝐿

2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥 +

(𝑓 ′)2 ∫
𝐸(𝑥,𝑧)

2(1+𝜇)

𝐿

2

−
𝐿

2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥    (29) 

 

𝑆23(𝑖, 𝑗) = (𝑓2 − 𝑧𝑓) ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿

2

−
𝐿

2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑗−1] 𝑑𝑧𝑑𝑥 +

(𝑓 ′)2 ∫
𝐸(𝑥,𝑧)

2(1+𝜇)

𝐿

2

−
𝐿

2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

] 𝑑𝑧𝑑𝑥     

   (30) 

 

𝑆33(𝑖, 𝑗) = (𝑓)2 ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿

2

−
𝐿

2

[(𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑗−1] + (𝑓 ′)2 ∫
𝐸(𝑥,𝑧)

2(1+𝜇)

𝐿

2

−
𝐿

2

[(𝑥 +

𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

(𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

] 𝑑𝑧𝑑𝑥        (31)  

 

𝐾𝑁0(𝑖, 𝑗) = ∫ [(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥
L 2⁄

−L 2⁄
   (32) 

3. Results 

 

Buckling analysis of 2D FGBs, “which are affected by thickness ratio, aspect ratio, gradation indexes, type of 

porosity and volume fraction porosity, is presented. The numerical investigations on Simply Supported (SS), 

Clamped- Clamped (CC) and Clamped-Free (CF) beams at different boundary conditions are carried out” as shown 

in Table 1. 

 
Table 1: Various kinematic boundary conditions for numerical computations 

 

Buckling behaviour is presented to discuss and validate the accuracy of current theory. Functionally graded 

material porous beam is considered for numerical results, made of Alumina and Aluminium with the material 

properties as follows. 

 

Alumina: EC=380 GPa,  ρc = 3960 kg/m3, μc = 0.3 

Aluminium: Em=70 GPa,  ρc = 2702 kg/m3, μc = 0.3 

 

According to power-law distribution, the functionally graded beam material properties are varying in thickness (h) 

and axial (L) directions. For representation of results, the following dimensionless critical buckling (𝑁cr) parameter 

is used: 

 

𝑁̅cr =
12𝑁𝑐𝑟𝐿

2

𝐸2𝑏ℎ3
      (33) 

 

Consider the homogeneous beam and different number of terms with displacement functions. The result of 

dimensionless critical buckling is presented with various gradient indexes in x and z directions, aspect ratios and 

boundary conditions. For comparison purpose, previous result [19, 25] was used in terms of critical buckling load as 

shown in Table 2. It can be observed that dimensionless critical buckling of SS, CF and CC beams, the response is 

Boundary condition X= -L/2 X= L/2 

Simply Supported u=0, w=0 w=0 

Clamped-Camped u=0, w=0, 𝜙=0, w’=0 u=0, w=0, 𝜙=0, w’=0 

Clamped - Free u=0, w=0, 𝜙=0, w’=0  
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very quickly and polynomial expansion is at 6 terms. But for better accuracy purpose, the polynomial expansion at 12 

terms was considered. In terms of aspect ratios (L/h=5 and L/h=10) and gradient exponents in both directions (Px and 

Pz), dimensionless critical buckling decreases for SS, CC and CF beams while gradient exponents in both directions 

increased. It is found that the aspect ratio effect becomes very important because the critical buckling increases when 

the aspect ratio increases, refer in Figure 3, Figure 4 and Figure 5. On other hand, critical buckling value is more in 

CC beam and critical buckling value is less in CF beam, refer in Table 3, Table4 and Table 5. 

 

It is interesting that the shear deformation effect becomes significantly important as the buckling mode number 

increases. Critical buckling loads of CC beam with px=0 and pz=0 is 158.9365 and 223.9449 for L/h=5 and L/h=20 

respectively. On the other hand, critical buckling loads with Px=10 and Pz=10 are 29.6924 and 41.4715 respectively. 

The above differences were obtained while choosing different values of aspect ratio and gradient indexes. The 

difference is 40% and 25% for the beams whose aspect ratio are L/h=5 and L/h=20. Finally, the reduction in 

dimensionless critical buckling load because of gradient index variation in x direction is more than gradient index 

variation in z direction. 

 

Table 2: Verification and convergence studies, dimensionless critical buckling load of FGM beams with respect to various boundary 

conditions and aspect ratio (L/h) change. 

 

L/h Theory Boundary Conditions 

SS CC CF 

5 

HBT (37) 48.5959 152.1470 13.0594 

RBT (23) 48.5959 152.1474 13.0594 

Present 

2 terms 57.9255 158.9365 13.1567 

4 terms 48.6212 154.0366 13.0605 

6 terms 48.5967  152.1476 13.0598 

8 terms 48.5967 152.1476 13.0598 

10 terms 48.5967 152.1476 13.0598 

12 terms 48.5967 152.1476 13.0598 

20 

 53.2364 208.9510 13.3730 

 53.2364 208.9514 13.3730 

Present 

2 terms 63.1487 223.9449 13.4740 

4 terms 53.2641 212.0982 13.4053 

6 terms 53.2373 208.9520 13.3733 

8 terms 53.2373 208.9520 13.3733 

10 terms 53.2373 208.9520 13.3733 

12 terms 53.2373 208.9520 13.3733 
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Figure 4: Changes in Dimensionless Critical Buckling(Ncr) of SS beam at various aspect ratios and gradient index along x- direction 

and z-direction. 
 

 

 

 

 

 

 
 

 

 
 

Figure 5: Changes in Dimensionless Critical Buckling (Ncr) of CF beam at various aspect ratios and gradient index along x- 

direction and z-direction. 
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Table 3: Influence of gradient exponents and aspect ratio on Dimensionless Critical Buckling (Ncr) of a simply Supported (SS) bi-

directional FGB, L/h=5 and L/h=20. 

Beam 

Theory 

P

x 

L/h=5                               Pz  L/h=20                             Pz 

0 0.5 1 2 5 10  0 0.5 1 2 5 10 

P

R

E

S

E

N

T 

2 terms  

 

0 

 

 

0 

57.9255 

 

39.9844 

 

34.1754 27.7932 20.6974 16.8085 

 

63.1487 44.1455 39.1361 32.1206 26.0992 19.0721 

4 terms 48.6212 

 

32.1832 

 

24.8970 

 

19.1813 

 

15.9522 

 

14.0891 

 

53.2641 

 

34.7554 

 

26.5762 

 

20.8298 

 

17.5939 

 

16.2188 

 
6 terms 48.5967 31.8671 24.5846 19.0717 15.6443 14.052 53.2373 34.538 26.5628 20.7194 17.4851 15.9108 

8terms 48.5967 31.8671 24.5846 19.0717 15.6443 14.052 53.2373 34.538 26.5628 20.7194 17.4851 15.9108 

10terms 48.5967 31.8671 24.5846 19.0717 15.6443 14.052 53.2373 34.538 26.5628 20.7194 17.4851 15.9108 

12terms 48.5967 31.8671 24.5846 19.0717 15.6443 14.052 53.2373 34.538 26.5628 20.7194 17.4851 15.9108 

 

P

R

E

S

E

N

T 

2 terms 

0.5 

42.1948 32.9583 26.3422 22.1370 17.4962 14.9984 

 

46.0124 34.1355 29.2454 24.7136 19.8606 16.2300 

4 terms 36.2622 24.2707 21.6925 18.0601 14.2708 13.2486 40.8332 28.8303 22.8219 18.8080 16.7887 15.7644 

6 terms 34.2661 23.9975 19.5814 16.2418 13.9975 12.7551 38.5498 26.5212 21.5104 17.8789 15.6763 14.3517 

8terms 34.2661 23.9975 19.5814 16.2418 13.9975 12.7551 38.5498 26.5212 21.5104 17.8789 15.6763 14.3517 

10terms 34.2661 23.9975 19.5814 16.2418 13.9975 12.7551 38.5498 26.5212 21.5104 17.8789 15.6763 14.3517 

12terms 34.2661 23.9975 19.5814 16.2418 13.9975 12.7551 38.5498 26.5212 21.5104 17.8789 15.6763 14.3517 

 

P

R

E

S

E

N

T 

2 terms 

1 

34.3150 29.9112 22.4256 19.2858 15.8368 13.9927 

 

37.4197 33.2965 24.0944 20.7095 17.1008 15.1566 

4 terms 26.7018 20.0436 18.3474 16.0315 13.5911 11.9714 30.8095 23.8067 20.7983 16.7845 15.7654 14.7412 

6 terms 24.9841 18.9438 16.3134 14.2739 12.7432 11.777 28.5114 21.1158 18.0351 15.7654 14.2178 13.1639 

8terms 24.9841 18.9438 16.3134 14.2739 12.7432 11.777 28.5114 21.1158 18.0351 15.7654 14.2178 13.1639 

10terms 24.9841 18.9438 16.3134 14.2739 12.7432 11.777 28.5114 21.1158 18.0351 15.7654 14.2178 13.1639 

12terms 24.9841 18.9438 16.3134 14.2739 12.7432 11.777 28.5114 21.1158 18.0351 15.7654 14.2178 13.1639 

 
P

R

E

S

E

N

T 

2 terms 

2 

26.4353 22.9589 18.5090 16.4247 14.1430 12.9302 

 

28.8270 3.1455 19.9435 17.6957 15.3073 14.0274 

4 terms 17.6782 15.6756 13.6672 12.6546 11.6371 10.6136 20.8377 17.8349 15.8265 14.2125 13.5933 12.7689 

6 terms 16.6305 14.0792 12.9402 12.009 11.172 10.5804 18.6445 15.5444 14.217 13.1936 12.3587 11.7218 

8terms 16.6305 14.0792 12.9402 12.009 11.172 10.5804 18.6445 15.5444 14.217 13.1936 12.3587 11.7218 

10terms 16.6305 14.0792 12.9402 12.009 11.172 10.5804 18.6445 15.5444 14.217 13.1936 12.3587 11.7218 

12terms 16.6305 14.0792 12.9402 12.009 11.172 10.5804 18.6445 15.5444 14.217 13.1936 12.3587 11.7218 

 

P

R

E

S

E

N

T 

2 terms 

5 

18.5555 16.9583 14.5924 13.5591 12.4353 11.8479 

 

20.2343 17.6524 15.7926 14.6774 13.5000 12.8787 

4 terms 12.6733 11.6707 10.9629 10.6501 10.3323 9.6099 14.1332 13.8303 13.4219 12.3080 11.7887 10.7644 

6 terms 10.9891 10.4125 10.1431 9.8973 9.6208 9.4239 11.9315 11.281 10.9963 10.7647 10.5351 10.3466 

8terms 10.9891 10.4125 10.1431 9.8973 9.6208 9.4239 11.9315 11.281 10.9963 10.7647 10.5351 10.3466 

10terms 10.9891 10.4125 10.1431 9.8973 9.6208 9.4239 11.9315 11.281 10.9963 10.7647 10.5351 10.3466 

12terms 10.9891 10.4125 10.1431 9.8973 9.6208 9.4239 11.9315 11.281 10.9963 10.7647 10.5351 10.3466 

 

P

R

E

S

E

N

T 

2 terms 

10 

14.9738 12.9112 12.8121 12.2538 11.6539 11.3460 

 

17.3286 15.0847 13.9058 13.3028 12.6734 12.3468 

4 terms 10.6463 10.2436 9.8357 9.6225 9.4036 9.1808 12.8095 12.2067 11.7983 11.3845 10.7654 10.2412 

6 terms 9.5846 9.423 9.3411 9.2555 9.1472 9.079 10.351 10.1871 10.1164 10.0577 9.9951 9.9442 

8terms 9.5846 9.423 9.3411 9.2555 9.1472 9.079 10.351 10.1871 10.1164 10.0577 9.9951 9.9442 

10terms 9.5846 9.423 9.3411 9.2555 9.1472 9.079 10.351 10.1871 10.1164 10.0577 9.9951 9.9442 

12terms 9.5846 9.423 9.3411 9.2555 9.1472 9.079 10.351 10.1871 10.1164 10.0577 9.9951 9.9442 
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Figure 6: Changes in Dimensionless Critical Buckling(Ncr) of CC beam at various aspect ratios and gradient index along x- direction 

and z-direction. 
 

Table 4: Influence of gradient exponents and aspect ratio on Dimensionless Critical Buckling (Ncr) of a Clamped–Free (CF) bi-

directional FGB, L/h=5 and L/h=20. 

 

Beam Theory 

 

Px 

  

L/h=5                               Pz 

  

L/h=20                             Pz 

0 0.5 1 2 5 10 0 0.5 1 2 5 10 

P 

R 

E 

S 

E 

N 

T 

2 terms 

 

 

 

0 

 
  

13.1567 8.5002 6.5813 6.1569 4.2806 4.0025 

 

13.474 9.4362 7.4292 6.3097 4.4942 4.1011 

4 terms 13.0605 8.4963 6.5417 6.1269 4.2761 3.9318 13.4053 8.9265 6.828 6.2872 4.4441 4.0458 

6 terms 13.0598 8.4921 6.5355 6.1103 4.2706 3.875 13.3733 8.671 6.6676 6.2429 4.3972 4.0042 

8 terms 13.0598 8.4921 6.5355 6.1103 4.2706 3.875 13.3733 8.671 6.6676 6.2429 4.3972 4.0042 

10 terms 13.0598 8.4921 6.5355 6.1103 4.2706 3.875 13.3733 8.671 6.6676 6.2429 4.3972 4.0042 

12 terms 13.0598 8.4921 6.5355 6.1103 4.2706 3.875 13.3733 8.671 6.6676 6.2429 4.3972 4.0042 

  

P 

R 

E 

S 

E 

N

T 

T 

2 terms 

0.5 

8.0567 5.8789 4.9315 4.214 3.5131 3.2319 

 

8.251 6.2037 5.0574 4.3218 3.6011 3.3194 

4 terms 7.2877 5.4698 4.6708 4.0933 3.4932 3.2273 7.4977 5.894 4.7355 4.15 3.5903 3.3184 

6 terms 7.0856 5.245 4.4708 3.8912 3.4851 3.2204 7.1982 5.3258 4.5428 3.9648 3.5756 3.3131 

8terms 7.0856 5.245 4.4708 3.8912 3.4851 3.2204 7.1982 5.3258 4.5428 3.9648 3.5756 3.3131 

10terms 7.0856 5.245 4.4708 3.8912 3.4851 3.2204 7.1982 5.3258 4.5428 3.9648 3.5756 3.3131 

12terms 7.0856 5.245 4.4708 3.8912 3.4851 3.2204 7.1982 5.3258 4.5428 3.9648 3.5756 3.3131 

  

P 

R 

E 

S 

E 

N

T 

T 

2 terms 

1 

6.5147 4.0847 4.0071 3.6874 3.189 2.9229 

 

6.6718 4.2582 4.1136 3.7809 3.2682 2.9949 

4 terms 
4.9895 3.9618 3.6677 3.4437 3.1156 2.8976 5.2628 4.0385 3.8344 3.5326 3.1676 2.9713 

6 terms 
4.7501 3.9273 3.5693 3.288 3.0559 2.8895 4.8131 3.981 3.6224 3.3467 3.1293 2.966 

8terms 
4.7501 3.9273 3.5693 3.288 3.0559 2.8895 4.8131 3.981 3.6224 3.3467 3.1293 2.966 

10terms 
4.7501 3.9273 3.5693 3.288 3.0559 2.8895 4.8131 3.981 3.6224 3.3467 3.1293 2.966 

12terms 
4.7501 3.9273 3.5693 3.288 3.0559 2.8895 4.8131 3.981 3.6224 3.3467 3.1293 2.966 

  

P 

R 

E 

2 terms 
2 

5.5069 3.984 3.7308 3.3403 2.9715 2.7775 
 

5.6397 4.212 3.8246 3.4242 3.0449 2.8456 

4 terms 3.8641 3.4642 3.3333 3.1535 2.7731 2.6319 4.013 3.512 3.409 3.2565 2.7931 2.7231 
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S 

E 

N

T 

T 

6 terms 3.3266 3.0399 2.9109 2.8034 2.6995 2.6201 3.3687 3.0812 2.9544 2.8531 2.7605 2.6848 

8terms 3.3266 3.0399 2.9109 2.8034 2.6995 2.6201 3.3687 3.0812 2.9544 2.8531 2.7605 2.6848 

10terms 3.3266 3.0399 2.9109 2.8034 2.6995 2.6201 3.3687 3.0812 2.9544 2.8531 2.7605 2.6848 

12terms 3.3266 3.0399 2.9109 2.8034 2.6995 2.6201 3.3687 3.0812 2.9544 2.8531 2.7605 2.6848 

  

P 

R 

E 

S 

E 

N

T 

T 

2 terms 

5 

4.562 3.4789 3.3246 3.0562 2.8038 2.672 

  

4.672 3.6037 3.4075 3.1323 2.8727 2.7373 

4 terms 3.3575 2.8698 2.7002 2.6876 2.6751 2.5687 3.8074 2.9172 2.7652 2.7209 2.6963 2.6221 

6 terms 2.6056 2.549 2.5225 2.4985 2.4713 2.4517 2.6448 2.59 2.5661 2.5466 2.5266 2.5099 

8terms 2.6056 2.549 2.5225 2.4985 2.4713 2.4517 2.6448 2.59 2.5661 2.5466 2.5266 2.5099 

10terms 2.6056 2.549 2.5225 2.4985 2.4713 2.4517 2.6448 2.59 2.5661 2.5466 2.5266 2.5099 

12terms 2.6056 2.549 2.5225 2.4985 2.4713 2.4517 2.6448 2.59 2.5661 2.5466 2.5266 2.5099 

  

P 

R 

E 

S 

E 

N

T 

T 

2 terms 

10 

3.8716 3.1407 3.0402 2.8602 2.6912 2.6032 
 

3.965 3.2582 3.1153 2.9307 2.757 2.6666 

4 terms 3.2895 2.8218 2.6736 2.6679 2.5623 2.4594 3.4632 2.892 2.7761 2.7151 2.5859 2.5097 

6 terms 2.4602 2.4458 2.4387 2.4312 2.422 2.4161 2.5042 2.4917 2.4865 2.482 2.4773 2.4734 

8terms 2.4602 2.4458 2.4387 2.4312 2.422 2.4161 2.5042 2.4917 2.4865 2.482 2.4773 2.4734 

10terms 2.4602 2.4458 2.4387 2.4312 2.422 2.4161 2.5042 2.4917 2.4865 2.482 2.4773 2.4734 

12terms 2.4602 2.4458 2.4387 2.4312 2.422 2.4161 2.5042 2.4917 2.4865 2.482 2.4773 2.4734 

 

 

 
Table 5: Influence of gradient exponents and aspect ratio on Dimensionless Critical Buckling (Ncr) of a Clamped –Clamped (CC) bi-

directional FGB, L/h=5 and L/h=20 

Beam Theory 

Px 
L/h=5                               Pz 

  

L/h=20                             Pz 

  0 0.5 1 2 5 10 0 0.5 1 2 5 10 

P 2 terms 
 

158.9365 122.5485 99.6567 75.3119 61.868 55.6679 

 

223.9449 145.3673 120.7954 92.0269 75.6084 68.0466 
R   

E 4 terms 
  

154.0366 109.2299 88.7769 67.1795 55.1166 49.5197 212.0982 136.3455 111.601 84.3995 69.26 62.2636 

S 6 terms 
0 

152.1476 102.2706 79.4841 60.8789 46.8876 40.989 208.952 135.87 104.564 81.4659 68.3278 61.9983 

E 8 terms 
  

152.1476 102.2706 79.4841 60.8789 46.8876 40.989 208.952 135.87 104.564 81.4659 68.3278 61.9983 

N 
10 

terms 

  
152.1476 102.2706 79.4841 60.8789 46.8876 40.989 208.952 135.87 104.564 81.4659 68.3278 61.9983 

T 
12 

terms 

  
152.1476 102.2706 79.4841 60.8789 46.8876 40.989 208.952 135.87 104.564 81.4659 68.3278 61.9983 

  
P 

2 terms 

0.5 

127.8892 93.2582 75.2935 62.3699 54.1302 49.3828 

 

151.5329 115.2725 92.0089 76.2192 66.1587 60.3617 
R 

E 4 terms 106.0476 81.2347 66.8361 55.4874 48.2014 44.0127 141.7227 107.3517 84.0137 69.7473 60.6042 55.3477 

S 6 terms 99.2477 72.5799 60.1899 49.6849 41.0621 37.0583 137.997 97.6901 80.4927 67.6312 59.417 54.6238 

E 8terms 99.2477 72.5799 60.1899 49.6849 41.0621 37.0583 137.997 97.6901 80.4927 67.6312 59.417 54.6238 

N 10terms 99.2477 72.5799 60.1899 49.6849 41.0621 37.0583 137.997 97.6901 80.4927 67.6312 59.417 54.6238 

T 12terms 99.2477 72.5799 60.1899 49.6849 41.0621 37.0583 137.997 97.6901 80.4927 67.6312 59.417 54.6238 

  
P 

2 terms 

1 

101.4178 81.3095 66.1367 56.972 50.6376 46.7694 

 

122.7763 93.4013 79.5904 68.441 60.4662 56.6593 
R 

E 4 terms 78.4186 64.1603 58.8801 50.7441 45.1226 41.6871 113.0688 87.3846 73.9506 63.7547 56.7147 52.4069 

S 6 terms 72.0965 57.371 50.0395 43.489 37.7669 34.8965 104.967 79.8061 68.7443 60.2078 54.3487 50.6889 

E 8terms 72.0965 57.371 50.0395 43.489 37.7669 34.8965 104.967 79.8061 68.7443 60.2078 54.3487 50.6889 

N 10terms 72.0965 57.371 50.0395 43.489 37.7669 34.8965 104.967 79.8061 68.7443 60.2078 54.3487 50.6889 

T 12terms 72.0965 57.371 50.0395 43.489 37.7669 34.8965 104.967 79.8061 68.7443 60.2078 54.3487 50.6889 

  

   P 
2 terms 

2 
65.339 53.2299 47.4257 42.0262 38.0555 35.7599 

 
83.9394 71.3455 66.5682 57.036 52.4932 45.9645 

R 

E 4 terms 52.0859 44.9839 41.2635 37.7752 34.5086 32.7052 77.3668 63.9899 57.8252 52.8705 49.2062 43.0003 
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Table 6: Influence of gradient exponents and porosity distribution on dimensionless critical buckling of a simply supported (SS) bi-

directional FGB at aspect ratio L/h=5 

 

 

 

Px&Pz 

Even Porosity    

 

Px&Pz 

Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 48.5967 
 

45.7193 
 

42.8418 
 

39.9644 
 

 0 48.5967 
 

47.6513 
 

46.7001 
 

45.7429 
 

  

0.5 29.5340 

 

26.9418 

 

24.3844 

 

21.8672 

 
0.5 29.5340 

 

28.6764 

 

27.8117 

 

26.9390 

 
1 20.1681 

 
17.5884 

 
15.0565 

 
12.5794 

 
1 20.1681 

 
19.3115 

 
18.4452 

 
17.5674 

 
2 16.2151 

 
13.5680 

 
10.9572 

 
8.3334 

 
2 16.2151 

 
15.2852 

 
14.3322 

 
13.3492 

 
5 12.7122 

 
9.9435 

 
7.1980 

 
4.0961 

 
5 12.7122 

 
11.7151 

 
10.6875 

 
9.6199 

 
10 10.9131 

 
8.0461 

 
5.1912 

 
2.2872 

 
10 10.9131 

 
9.8839 

 
8.8196 

 
7.7124 

 

 

S 6 terms 52.0859 44.9839 41.2635 37.7752 34.5086 32.7052 77.3668 63.9899 57.8252 52.8705 49.2062 43.0003 

E 8terms 52.0859 44.9839 41.2635 37.7752 34.5086 32.7052 77.3668 63.9899 57.8252 52.8705 49.2062 43.0003 

N 10terms 52.0859 44.9839 41.2635 37.7752 34.5086 32.7052 77.3668 63.9899 57.8252 52.8705 49.2062 43.0003 

T 12terms 52.0859 44.9839 41.2635 37.7752 34.5086 32.7052 77.3668 63.9899 57.8252 52.8705 49.2062 43.0003 

  
P 

2 terms 

5 

69.572 57.2582 51.7524 47.6821 44.4838 42.3261 

 

71.5203 63.2222 58.2613 54.3607 50.2835 44.726 
R 

E 4 terms 
51.4789 41.3347 37.9774 34.7934 32.2753 31.6354 64.7068 56.1517 52.1387 49.3398 46.5296 41.0364 

S 6 terms 
38.8736 35.9539 34.3754 32.8629 31.4291 30.5739 56.6544 51.0849 48.3535 46.064 44.275 39.2438 

E 8terms 
38.8736 35.9539 34.3754 32.8629 31.4291 30.5739 56.6544 51.0849 48.3535 46.064 44.275 39.2438 

N 10terms 
38.8736 35.9539 34.3754 32.8629 31.4291 30.5739 56.6544 51.0849 48.3535 46.064 44.275 39.2438 

T 12terms 
38.8736 35.9539 34.3754 32.8629 31.4291 30.5739 56.6544 51.0849 48.3535 46.064 44.275 39.2438 

  
P 

2 terms 

10 

58.7607 49.1095 46.334 43.9697 41.9739 40.5332 

 

59.4069 54.4013 51.6011 48.3565 45.3177 43.2683 
R 

E 4 terms 42.5257 38.2603 35.0544 32.9754 31.2458 30.1158 53.7372 49.5846 47.4422 45.036 43.5163 42.8596 

S 6 terms 34.0354 32.4928 31.6666 30.8931 30.1758 29.6924 49.3624 46.2902 44.7404 43.4092 42.3085 41.4715 

E 8terms 34.0354 32.4928 31.6666 30.8931 30.1758 29.6924 49.3624 46.2902 44.7404 43.4092 42.3085 41.4715 

N 10terms 34.0354 32.4928 31.6666 30.8931 30.1758 29.6924 49.3624 46.2902 44.7404 43.4092 42.3085 41.4715 

T 12terms 34.0354 32.4928 31.6666 30.8931 30.1758 29.6924 49.3624 46.2902 44.7404 43.4092 42.3085 41.4715 
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Figure 7: Dimensionless critical buckling of SS beam with even porosity(a) and uneven porosity(b) at aspect ratio L/h=5 

 
 

Table 7: Influence of gradient exponents and porosity distribution on dimensionless natural frequencies of a clamped free (CF) bi-

directional FGB at aspect ratio L/h=5 

 

 
(a)  

 

Px&Pz 

Even Porosity 
 

 

Px&Pz 

Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 13.0598 

 

12.2865 

 

11.5133 

 

10.73998 

 

 

0 13.0598 

 

12.8188 

 

12.5774 

 

12.3354 

 
0.5 5.2450 

 

4.9344 

 

4.6239 

 

4.3133 

 
0.2 5.2450 

 

5.1482 

 

5.0513 

 

4.9541 

 
1 3.5693 

 

3.1392 

 

2.7091 

 

2.2790 

 
0.4 3.5693 

 

3.4347 

 

3.2995 

 

3.1636 

 
2 2.8034 

 

2.5895 

 

1.9729 

 

1.5466 

 
0.6 2.8034 

 

2.6656 

 

2.5254 

 

2.3820 

 
5 2.4713 

 

2.4097 

 

1.8442 

 

1.1850 

 
0.8 2.4713 

 

2.4314 

 

2.4010 

 

2.3705 

 
10 2.4161 

 

2.2491 

 

1.5878 

 

0.8744 

 
1 2.4161 

 

2.2919 

 

2.1773 

 

2.1180 
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(b) 

Figure8:  Dimensionless critical buckling of CF beam with even porosity(a) and uneven porosity(b) at aspect ratio L/h=5 

 
Table 8: Influence of gradient exponents and porosity distribution on dimensionless natural frequencies of a clamped –clamped (CC) 

bi-directional FGB at aspect ratio L/h=5 

 

 
 

(a)     

 

Px&Pz Even Porosity  Px&Pz Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 152.1476 

 

143.1385 

 

134.1298 

 

125.1211 

 

 

0 152.1476 

 

149.4467 

 

146.7450 

 

144.0420 

 
0.5 79.5799 

 

66.9392 

 

56.0951 

 

43.8802 

 
0.5 79.5799 

 

74.0703 

 

70.8625 

 

67.5864 

 
1 50.0395 40.5802 

 

29.6512 

 

16.2285 

 
1 50.0395 47.6853 

 

44.4575 

 

41.1400 

 
2 37.7752 30.5594 

 

19.9019 

 

8.0306 

 
2 37.7752 37.5312 

 

34.3137 

 

30.9742 

 
5 31.4291 24.3759 

 

14.3698 

 

3.4870 

 
5 31.4291 31.0705 

 

28.0959 

 

25.0209 

 
10 29.6924 21.4129 

 

12.0228 

 

2.1304 

 
10 29.6924 27.8827 

 

25.1091 

 

22.2949 
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(b) 

Fig 9.  Dimensionless critical buckling of CF beam with even porosity(a) and uneven porosity(b) at aspect ratio L/h=5 

4. Discussion 

Figure 7 shows the dimensionless critical buckling load versus the gradient indexes in length (px) and thickness (pz) 

direction for different porosity distribution patterns when α = 0.1. It can be observed that the difference between 

different porosity distribution patterns can be reduced with increase in gradient index. “Which indicates that the 

porosity distribution in the thickness (z) direction has greater influence on critical buckling than the axial porosity (x 

direction) distribution.” 
Figure. 8and Figure. 9 illustrate the dimensionless critical buckling load versus gradient indexes in length (px)and  
thickness (pz) direction of beam and the total volume fraction of porosity in different modes, respectively. It can be 
seen that the sensitivity of critical buckling to the gradient index of beam and total volume fraction of porosity is 
improved with increase of buckling mode number. 
 Table 6. Showscritical buckling of SS beam that decreases with increase in porosity index, and decreases with increase 

in gradation exponents in x and z directions. Critical buckling value is more in uneven porosity distribution when 

compared with even porosity distribution. 

Table 7 showscritical buckling of CF beam decreases with increase in porosity index, and decreases with increase in 

gradation exponents in x and z directions. Critical buckling value is more in uneven porosity distribution when 

compared with even porosity distribution. Table 8. Showscritical buckling value of CC beam decreases with increase 

in porosity index, and decreases with increase in gradation exponents in x and z directions. Critical buckling value is 

more in uneven porosity distribution when compared with even porosity distribution. 

5. Conclusion 

Two directional FG porous beams were analysed for behaviour of buckling, subjected to various boundary 

conditions (SS, CS, CC, and CF) with UDL. Considering these boundary conditions with different aspect ratios and 

gradation exponents in x and z directions. 5th order shear deformation theory was adapted to determine free critical 

buckling with even and uneven porosity distribution. Based on power-law distribution, effective properties of FG 

porous beams in two directions were determined.  The effect of boundary conditions, distribution of porosity, aspect 

ratios, and gradation exponents on critical buckling analysis through several numerical illustrations was highlighted. 
 

The computed results are compared to those from earlier investigations in terms of dimensionless critical buckling 

loads. The calculated outcomes are found to have a very good correlation with earlier ones. Aspect ratios, gradient 

indexes, and boundary conditions' impacts on the 2D-FGBs' critical buckling loads was explored. The most significant 

findings w.r.t non porous FGBs are listed below: 

❖ The gradient indexes have a significant impact on the dimensionless critical buckling loads of the 2D-FGBs. 

However, the gradient index's impact in the x direction is more profound than its impact in the z direction. 

❖ As the buckling mode number increases, the shear deformation effect becomes more significant. For all 

varieties of BCs, as the buckling mode increases, so does the relative difference between the critical buckling 

loads. 
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❖ The shear deformation effect on the critical buckling loads of the 2D-FGBs reduces as the aspect ratio 

increases. The CC 2D-FGB is found to be significantly more susceptible to the shear deformation effect than 

the other 2D-FGB models. 

 

❖ CC beams experience the highest first critical buckling stresses, followed by SS and CF beams. 

 

❖ By choosing the appropriate gradient indexes, the vibration and buckling behaviours of the 2D-FGBs may 

be regulated to match the design requirements. 

 

❖ The shear deformation impact is quite significant, especially for thick beams, and the proposed theory yields 

accurate findings and is effective in resolving the vibration and buckling behaviours of the 2D-FGBs. 

 

The suggested two-directionally porous beam model is used to examine the buckling behaviour of two-

directionally porous beams. The most significant findings w.r.t porous FGBs are listed below: 

❖ When the volume percentage of porosity increases close to the middle surface, the critical buckling load will 

increase for the same total volume fraction of porosity.  

 

❖ The effect of porosity distribution in the thickness direction is more dominant than the effect of axial direction 

on the critical buckling load. 

 

The porosity parameter is a crucial parameter that must be considered in design of modern structures and the 

percentage of porosity in structure can be affected considerably in its performance and response. The proposed method 

shall be useful to analyse the shear deformation of FGBs, where these FGB surfaces are subjected to high temperature 

at one end and low temperature at the other end. 

 

 

Nomenclature  

x, y, z Different coordinates along length, width, thickness 

directions of beam 

2D Two dimensional 

FGB Functionally graded beam 

SS Simply supported  

CC Clamped-clamped 

CF Clamped free 

FGM Functionally graded material 

L length 

h height 

       𝑉𝑓 Volume fraction 

Pz Gradient index in thickness direction 

qx Gradient index in length direction 

CBT Classical beam theory 

K Shear correction factor 

F(z) Shear shape function 

FG Functionally graded 

DPNPS double-piezoelectric-nanoplate systems 

SLGS single-layered graphene sheets 

HSDT higher order shear deformation plate theory 

3D Three dimensional 

FGP Functionally graded plate 

HSD Higher order deformation 

E modulus of elasticity 

μ Poisson’s ratio 

ρ mass density 

α coefficient of porosity 

𝑓(z) Shear shape function 

     𝜎𝑥 Axial stress 

       𝜏𝑥𝑧 Shear stress 
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Π potential energy 

     𝑈 Strain energy 

    𝑉 potential work 
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