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Abstract 

An effort has been made in modifying the radial distances of existing radial 

basis functions (RBFs) for the buckling analysis of functionally graded 

material (FGM) rectangular plates. The governing differential equations 

(GDE’s) and boundary conditions are developed by employing the energy 

principle. The novelty of the present modified RBFs is that they are suitable 

for analyzing plates with varying aspect ratios. In the present analysis, 

thirteen different RBFs available in the literature are analyzed. It is found 

that all RBFs are well suited for buckling analysis of FGM plates with a 

different aspect ratio which was not possible with existing RBFs. Existing 

RBFs were suitable for analyzing square plates. To demonstrate the accuracy 

and efficiency of the present method, results are obtained for the buckling load 

parameters with modified radial distances for different aspect ratios. The 

results of several numerical examples have shown that the present modified 

RBF-based meshfree methods are well suited and accurate for analyzing 

rectangular plates. The effect of aspect ratio with grading index , span to 

thickness ratio on the normalized critical buckling load is discussed. 
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1. INTRODUCTION 

Radial basis function (RBF) based meshfree methods are effective techniques that have been widely implemented 

for multivariate data fitting over scattered data. This method is mainly applied to solve higher order partial differential 

equation problems with high convergence order numerically. Therefore, RBF-based meshfree methods have attracted 

many researchers in the recent past. The RBF method proposed as a multi quadric method was firstly implemented by 

Hardy [1] in 1971, and after almost two decades, Kansa [2, 3] has implemented the multiquadric radial basis function 

(MQ-RBF) method to solve various kinds of partial differential equations (PDEs). Many researchers and scientists 

have found the optimal shape parameter utilized in the MQ-RBF[4-8] . Fasshauer [9] explored a relation between 

multigrid finite elements and multilevel RBF with smoothing. Wendland[10]  combined the RBFs with the field of 

Galerkin methods to solve PDEs. Farahani et al. [11] explained the optimal shape parameter of Wendland’s RBF for 
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bending analysis of plates. Ferreira et al. [12-20] utilized the RBFs based meshless method for the analysis of plates 

and shells. Xiang et al.[21-25] utilized inverse multiquadric, Gaussian, and thin-plate spline RBFs based meshless 

method for the analysis of plates. Rodrigues et al.[26] implemented the RBFs -finite differences technique for the 

structural analysis of laminated plates. Roque et al.[27] used the RBF-Finite differences collocation method for the 

analysis of composite plates. Jeeoot [28-38] used RBF based meshless method for the analysis of square plates. Kumar 

et al. [39-47]  used different types of RBFs for the analysis of FGM plates. Neves et al.,[48-50] used the RBF method to 

analyse FGM plates and shells. Maturi et al. [51] investigated static and free vibration analysis of sandwich plates by 

using the RBF technique.  

Recently, many researchers have done various studies on the buckling and vibration analysis of plates in order to use 

it effectively and efficiently but buckling analysis by meshfree methods is available very few. 

Thai et al.[52] investigated static, dynamic, and buckling analysis of FGM and sandwich plate by using modified 

Moving Kriging (MK) interpolation-based meshfree method. Bui et al.[53] investigate buckling analysis using the 

meshfree method under uniformly uniaxial, biaxial, and pure shear loads. Rodrigues et al.[54]  investigated bending, 

vibration, and buckling analysis of laminated plates based on RBFs-differential quadrature collocation. Chu et al.  [55] 

used the Hermite radial basis function collocation method for the buckling analysis of the FGM plate.. Many research 

work[56-62]  carried out for the buckling analysis of plate and shells via nonlocal elasticity theory.  Liew et al.[63] used 

meshfree method for buckling and vibration analysis of plates based on FSDT formulation. Zhang et al. [64] 

implemented Kriging meshless method for thermal buckling of FGM plates. Tan et al. [65] used an Isogeometric-

meshfree technique for the analysis of 3D FGM plates and shells. Zarei and Khosravifard [66]  investigated static and 

buckling analysis using the meshfree technique. The numerous papers published to offer the detailed study on 

vibration of plates, shell, and structure [56-59, 61, 67-105] . Hosseini et al. [106] investigated the effect of various 

parameters on the stress analysis of rotating nano-disk made of FGMs. Nejad et al.  [107] studied the static analysis of 

the BDFG nano-beam via the Rayleigh-Ritz method. Khoram et al. [108] used the Eringen’s nonlocal elasticity theory 

to study the mechanical behaviour of the nanobeam.  Do et al. [109] investigated thermal buckling of FGM plate by 

using improved radial point interpolation function. Asemi et. al  [110] examined the post-buckling analysis of 

orthotropic single-layered graphene sheet applying the nonlocal theory via Galerkin method. Hadi et al.    [111] utilized 

the energy method and stress analysis to investigate the stresses and strains of a FGM beam subjected to an arbitrary 

transvers loading. Farajpour et. al [94] proposed a new explicit formula for the length-dependent persistence length of 

microtubules with consideration of surface effects. Farajpour et. al  [103] proposed a new size-dependent plate model 

based on the higher-order nonlocal strain gradient theory for the buckling of nanoplates. Mohammadi et. al [98] studied 

the free vibration behaviour of rectangular graphene sheet under shear in-plane load by applying  nonlocal elasticity 

theory. Mohammadi et. al [92] investigated the effect of the temperature change on the vibration frequency of 

elastically supported mono-layer graphene sheet via nonlocal elasticity theory.  

To the best of authors’ knowledge, few efforts of researchers have been paid on the performance of RBF-based 

meshfree method in investing FGM rectangular plate. Up to now, there does not exist a proper way to investigate the 

rectangular plate without changing the shape parameters, and it is still an important issue in the RBFs based meshfree 

method to determine the rectangular plate without changing shape parameters. The present study addresses, for the 

first time, a five variable HSDT for buckling analysis of FGM rectangular plate by using thirteen MRBFs based 

meshfree method. The newly proposed expression for MRBFs is implemented and successfully applied for the analysis 

of rectangular FGM plates.  

 

2 MATHEMATICAL FORMULATIONS 

Consider rectangular FGM plate with dimensions (a × b × h) in the cartesian coordinate system (x-y-z). The mid-

plane of the plate is considered the reference plane. The displacement field u, v, and w at any point along the x-, y-and 

z-axes can be expressed as in terms of the mid-plane displacements uo, vo, wo and rotations ϕx and ϕy . 

( )

0
0 x

0
0 y

0

w (x, y)
u u (x, y) z f (z) (x, y)

x

w (x, y)
v v (x, y) z f (z) (x, y)

y

w w x, y


= − + 




= − + 



=

                                                                                               (1) 

Where, 
3

z 3
f (z) p z

h 4h

  
 = −    

 is transverse shear function. 



334 Rahul Kumar et al. 

The volume fraction of the metal phase is obtained by. 

( ) 1 ( )= −m cV z V z                                                                                                                                                 (2) 

The material property variation along the plate thickness is given by the following relations,  
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In the above equations, the young’s moduli of the metallic and ceramic constituents are given by mE and cE  

respectively. The material properties vary according to the power-law distribution where ‘n’ represents the grading 

index. 

 

Strain-displacement relations are expressed as: 
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The stress-strain relation using Hook’s law with respect to the structural axis system (X-Y-Z) for the FGM plate 

may be expressed as  : 
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The GDEs of the plate are obtained using energy principle and expressed as: 
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Where, 
b
xxN , b

yyN are the in-plane forces and b
xyN  is the in-plane shear force. The force and moment resultants in 

the plate are expressed as: 
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Boundary condition for simply supported plate is expressed as 
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3 SOLUTION METHODOLOGY 

RBF-based meshfree method is one of the best and most powerful approaches to solve the system of PDEs with 

higher accuracy. The significant feature of the RBF-based meshfree method is that it does not require meshes. 

However, the method accuracy and stability are extremely dependent on an appropriate choice of a shape parameter 

‘k.’ The modification of radial distance between the nodes for rectangular coordinates is done in such a way that the 

aspect ratio starts changing without changing the shape parameters. The expression used for square plate 

( ) ( )
2 2

= − = − + −j j jr X X x x y y  has been modified as 
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where a and b are the length and breadth of a rectangular plate. And various types of RBFs used in computational 

applications are listed in Table 1. The considered GDEs with five unknown variables  0 0 0 x yu , v , w , and  can be 

interpolated in the form of the modified radial distance between nodes. To eliminate the singularity, an infinitesimally 

small value is added for zero radial distance. All computational calculations are carried out in MATLAB with a 2.7 

GHz Corei7 processor. 

Table 1: Various types of RBFs used in computation applications. 
S. No RBFs 

1 Polynomial, g1= kr  

2 

Gaussian quadratic, g2=
( )2 2k r

e
−

 

3 
Thin Plate Spline, g3=

2klog(r) r  

4 Wendland’s C2, g4= 4(1 k r) (4kr 1)− +  

5 
Wendland’s C4, g5= ( ) ( )( ) ( )( )6 2

1 kr 35 kr 18kr 3− + +  

6 Wendland’s C6,g6= ( ) ( )( ) ( )( ) ( )( )8 3 2
1 kr 32 kr 25 kr 8kr 1− + + +  

7 Hyperbolic secant, g7= ( )sech k r  

8 
Wu-C2 , g8= ( ) ( ) ( ) ( )( )5 2 3 4

1 kr 8 40kr 48 kr 25 kr 5 kr− + + + +  
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9 
Wu-C4,g9= ( ) ( ) ( ) ( ) ( )( )6 2 3 4 5

1 kr 6 36kr 82 kr 72 kr 30 kr 5 kr− + + + + +  

10 
Hardy’s Multiquadric, g10= ( )2 2k r+  

11 
Hardy’s Inverse Quadric g11= ( )

1
2 2k r

−
+  

12 
Inverse Multi-quadratic, g12=

1
21 (kr)

−
 

+ 
 

 

13 
Generalized Inverse Multi-quadratic, g13= ( )( )

2
2

1 kr
−

+  

 

The convergence of results was checked by shifting the shape parameter. When convergence is confirmed and 

stable, the accuracy is likewise checked. Also, in view of stability and accuracy, the authors calculate the shape 

parameter. The discretization of GDEs for five unknown variables is considered by. The value of ‘p’ is also optimized 

for accuracy, and it is found that ‘p=0.9’ is a better choice. 

4 RESULTS AND DISCUSSION 

In this section, various numerical examples are presented and discussed to verify the convergence and accuracy of 

the present theory and RBFs for predicting the buckling analysis of simply supported FGM plates. The material 

properties of FGM used in computing results are Ec=360 GPa, Em=70 GPa, v=0.3. 

4.1 Convergence study 

The first example is performed for the convergence study of the rectangular FGM plate. The obtained results by 

thirteen RBFs are compared with 2-D HSDT via Navier-type analytical solutions [112]  and quasi-3D via Navier 

solution.[113] The aspect ratio is taken as 0.5 with grading index=2. From Table 2, it is observed that all the results 

obtained by modifying RBFs are in good agreement with the 2-D HSDT   and 3-D HSDT result of rectangular FGM 

plate under uniaxial load. In 15x15 nodes, the convergence rate % is less than 1% for all the RBFs.So,15x15 nodes 

are considered throughout the study. 

4.2 Comparison study 

To check the accuracy and effectiveness of the present methodology, various comparison study has been done 

for the buckling analysis of the FGM plate. Table 3 shows the comparison study of an isotropic rectangular plate 

with the 3D result via differential quadrature [114] under biaxial load. The span to thickness ratio is 10. When the 

thirteen RBFs are compared to 3D results via differential quadrature [114] ,it can be observed that as the aspect ratio 

increase from 1 to 2, the diff % decreases for all the RBFs. All the RBFs are in good agreement with the 3D result 

via differential quadrature result in the literature. 

 

Table 1: Convergence and validation study of normalized buckling 2 3/cr cr mN N a E h= of rectangular FGM plate under uniaxial load 

(a/b=0.5, n=2, a/h=20) 

RBFs 

Number of nodes 

Ref. [112]   

 

 

Ref.  [113] 11x11 12x12 13x13 14x14 15x15 16x16 

g1 2.9722 2.9757 2.9790 2.9710 2.9711 2.9730 2.9585 3.0968 

g2 2.8808 2.9321 2.9296 2.9258 2.9106 2.9297 2.9585 3.0968 

g3 2.9316 2.9504 2.9515 2.9548 2.9558 2.9567 2.9585 3.0968 

g4 2.9722 2.9757 2.9790 2.9710 2.9711 2.9730 2.9585 3.0968 

g5 2.9683 2.9655 2.9641 2.9261 2.9614 2.9612 2.9585 3.0968 

g6 2.9521 2.9572 2.9564 2.9575 2.9575 2.9578 2.9585 3.0968 

g7 3.0000 2.9692 2.9498 2.9498 2.9584 2.9625 2.9585 3.0968 

g8 2.9400 2.9453 2.9521 2.9537 2.9555 2.9562 2.9585 3.0968 

g9 2.9522 2.9572 2.9564 2.9575 2.9575 2.9578 2.9585 3.0968 



Journal of Computational Applied Mechanics 2022, 53(3): 332-347 337 

g10 2.9249 2.9374 2.9283 2.9354 2.9330 2.9362 2.9585 3.0968 

g11 2.9865 2.9816 2.9721 2.9715 2.9653 2.9661 2.9585 3.0968 

g12 3.0133 3.0041 2.9782 2.9748 2.9657 2.9640 2.9585 3.0968 

g13 3.0096 3.0151 2.9700 2.9788 2.9626 2.9660 2.9585 3.0968 

 

Table 2: Comparison study for normalized buckling of rectangular isotropic plate under biaxial load. 

Method 

Aspect ratio, b/a 
*Avg diff % 

1 1.25 1.5 1.75 2 

Ref. [114]  1.871 1.552 1.376 1.268 1.198 
 

g1 1.893 1.567 1.387 1.277 1.206 -0.86 

g2 1.893 1.566 1.384 1.273 1.200 -0.64 

g3 1.895 1.569 1.389 1.279 1.208 -1.01 

g4 1.893 1.567 1.387 1.277 1.206 -0.86 

g5 1.895 1.569 1.390 1.280 1.209 -1.05 

g6 1.891 1.566 1.387 1.278 1.206 -0.85 

g7 1.894 1.572 1.387 1.279 1.208 -1.00 

g8 1.891 1.566 1.387 1.278 1.206 -0.85 

g9 1.894 1.568 1.388 1.279 1.208 -0.97 

g10 1.907 1.572 1.387 1.275 1.202 -0.98 

g11 1.897 1.571 1.391 1.281 1.209 -1.13 

g12 1.897 1.571 1.391 1.281 1.21 -1.15 

g13 1.898 1.57 1.39 1.28 1.208 -1.08 

*Where Avg. Diff %= Abs ((Ref. results -Present result-)/ Ref. result) x100 

Table 4: Comparison Study of normalized buckling 2 3/cr cr mN N a E h= of rectangular FGM plate under uniaxial load.  (a/b=0.5, 

a/h=10) 

Methods 

Grading Index 
Average 

diff% Ref 
Average 

diff% Ref 

0 0.5 1 2 5 10 [112] [113] 

Ref. [112] 7.4126 4.8904 3.8221 3.0168 2.509 2.2374 
- - 

Ref  [113] 7.4115 4.8225 3.7137 2.8911 2.4155 2.1911 
- 

2.37 

g1 7.3935 4.8200 3.7187 2.9026 2.4256 2.1929 -0.12 2.25 

g2 7.3586 4.7768 3.6659 2.8474 2.3847 2.1673 1.14 3.47 

g3 7.4079 4.8213 3.7110 2.8892 2.4168 2.1906 0.03 2.40 

g4 7.3935 4.8200 3.7187 2.9026 2.4256 2.1929 -0.12 2.25 

g5 7.4159 4.8272 3.7164 2.8922 2.4185 2.1918 -0.07 2.30 

g6 7.4078 4.8218 3.7117 2.8900 2.4170 2.1904 0.02 2.39 

g7 7.4037 4.8182 3.7144 2.8879 2.4160 2.1816 0.12 2.48 

g8 7.3984 4.8161 3.7074 2.8866 2.4138 2.1872 0.15 2.51 

g9 7.4078 4.8218 3.7117 2.8900 2.4170 2.1904 0.02 2.39 

g10 7.3121 4.7634 3.6709 2.8612 2.3911 2.1645 1.16 3.50 

g11 7.4170 4.8293 3.7191 2.8972 2.4226 2.1944 -0.17 2.20 

g12 7.4181 4.8300 3.7196 2.8974 2.4227 2.1945 -0.18 2.19 

g13 7.4075 4.8235 3.7159 2.8959 2.4217 2.1930 -0.09 2.28 
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Where Avg. Diff %= Abs ((Ref. results -Present result-)/ Ref. result) x100 

Table 4 shows the effect of grading index and RBFs on normalized buckling of FGM plate under uniaxial load. 

Aspect ratio is taken as 0.5 with a span to thickness ratio is 10.The RBFs results are compared with the 2-D HSDT 

[112], and 3-D HSDT [113] result in the literature. It can be observed that RBFs g1, g4, g5, g11, g12 and g13 predict a 

good result as compared 

to 2-D HSDT [112] .g1 

and g10 predict higher 

average diff %. It can 

also be seen that 

normalized buckling 

decrease by increasing 

the value of the grading 

index. 

 

 

 

 

 

 

 
Fig 1: Comparison 

study for RBFs with span to thickness ratio on normalized buckling 2 3/cr cr mN N a E h=  of FGM plate under biaxial load. 

Figure 1 presents the variation of normalized buckling in terms of RBFs and span to thickness ratio. Aspect ratio 

is taken as 0.5 and grading index is 0.5.It can be noticed that g2 and g10 under predict with 2-D HSDT via Navier-

type analytical solutions and quasi-3D via Navier solution  for all span to thickness ratio.g11,  g12 and g13, over 

predicts the HSDT  and under predict with the quasi-3D z results. Overall, the present methodology is good for 

analysing the rectangular plate.  It can also be observed that by increasing the span to thickness ratio, normalized 

buckling also increased.  
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be observed that g2, g10, g11, g12, and g13 take less computational time as compared to other RBFs and g9 takes 

maximum time. 

4.3 Parametric study 

4.3.1 Effect of grading index with an aspect ratio 

In this section, the effect of aspect ratio on normalized buckling of FGM plate (a/h=10, g11) under biaxial 

loading is investigated and presented in Table 5. It is observed that by increasing the grading index for all aspect 

ratio and modes, normalized buckling decreases. It is also noticed that normalized buckling also increases by 

increasing the aspect ratio. Figure 3 represents the effect of grading index on normalized buckling of FGM plate 

under uniaxial loading (a/b=0.5,1). It is noticed that by increasing the grading index for a/b=0.5 and a/b=1, the 

normalized buckling decreases, and after n=5, the effect of the grading index is constant.  

Table 5: Effect of aspect ratio on normalized buckling 2 3/cr cr mN N a E h= of FGM plate under biaxial loading. 

a/b Modes 0 1 2 3 5 10 

 

 
0.5 

1 5.934 2.975 2.318 2.101 1.938 1.756 

2 
9.306 4.680 3.641 3.292 3.025 2.733 

3 
14.614 7.386 5.734 5.166 4.718 4.242 

4 
18.668 9.472 7.345 6.598 5.996 5.372 

 

 
1 

1 9.309 4.681 3.642 3.293 3.026 2.733 

2 
21.556 10.965 8.492 7.614 6.897 6.165 

3 
21.556 10.965 8.492 7.614 6.897 6.165 

4 
32.139 16.509 12.738 11.336 10.145 8.993 

 

1.5 

1 14.640 7.399 5.745 5.177 4.727 4.250 

2 
26.141 13.351 10.323 9.226 8.314 7.406 

3 
38.381 19.833 15.266 13.527 12.020 10.602 

4 
41.945 21.745 16.713 14.771 13.074 11.501 

 

 
2 

1 21.5586 10.965 8.494 7.617 6.900 6.169 

2 
32.129 16.499 12.729 11.331 10.143 8.993 

3 
46.771 24.351 18.685 16.460 14.495 12.706 

4 
56.590 29.748 22.743 19.898 17.332 15.082 

 
 

2.5 

1 29.636 15.186 11.730 10.460 9.391 8.341 

2 
39.178 20.248 15.583 13.805 12.263 10.814 

3 
52.514 27.482 21.044 18.469 16.166 14.114 

4 
67.136 35.632 27.132 23.567 20.305 17.541 

 

 
3 

1 
38.447 19.862 15.293 13.556 12.052 10.633 

2 
46.940 24.432 18.752 16.526 14.559 12.766 

3 
58.918 31.011 23.694 20.707 18.008 15.653 

4 
72.204 38.493 29.262 25.335 21.722 18.705 
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Fig 3: The effect of grading index on normalized buckling 2 3a /cr cr mN N E h=   of FGM plate under uniaxial loading. 

 

4.3.2 Effect of span to thickness ratio with an aspect ratio 

 

Now, the effect of span to thickness ratio with different aspect ratios for normalized buckling of FGM plate (n=2, 

g 12) under biaxial loading is investigated and shown in Figure 4. It is observed that all the aspect ratio shows the 

same nature, and by increasing the span to thickness ratio, normalized buckling also increases, and after a/h=50, the 

influences of a/h is constant. It is also noted that normalized buckling increases by increasing the aspect ratio. 
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Fig 4: The effect of span to thickness ratio with aspect ratio on normalized buckling 2 3a /cr cr mN N E h=   of FGM plate under biaxial 

loading. 

4.3.2 Effect of in-plane loading with aspect ratio. 

Table 6 represents the effect of aspect ratio on normalized buckling 3/=cr cr mN N E h  of FGM plate (a/h=10, 
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n=1,g=11) under uniaxial ,biaxial and pure shear loading . It is observed that by increasing the aspect ratio, normalized 

buckling increases for all the loading. Pure shear loading predicts maximum normalized buckling as compared to 

another loading. 

Table 6 Normalized buckling and counters shape of FGM plate under various types of loading 

a/b Uniaxial loading Biaxial loading Pure shear loading 

 

 
 

0.5 

 
 

3.719  
2.97 

 
14.44 

 

 
 

1 

 
9.36  

4.68 
 

19.6584 

 

 
 

 

1.5 

 
20.876 

 
7.39  

30.882 

 
 

 

 
2 

 
33.03 

 
10.96 

 
44.48 

5 CONCLUSIONS 

Thirteen RBFs have been compared for buckling behaviour of rectangular FGM plate obtained from five variables 

higher-order shear deformation theory. The benchmark results from the literature verify the effectiveness of the 

modified RBFs. The computational speed of RBFs g2, g10, g11, g12, and g13 is reasonable as compared to other 

RBFs taken here. It also concluded that modified radial distances in RBFs are helpful in predicting the buckling 

response of rectangular plates with different aspect ratios, which was not obtained without changing the radial distance 

of RBFs. It is observed that normalized buckling load decreases with an increase in a/b and grading index; however, 

it increases as the span to thickness ratio increases. 
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