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Abstract 

In this study, an exact solution for the bending analysis of a three-dimensional 

(3-D) rectangular plate under transverse loading is presented using the 

fundamentals of elasticity theory. The theoretical model whose formulation is 

based on static elastic principle considered transverse shear deformation and 

still obviates the need for the shear correction factor effect which is associated 

with refined plate theory (RPT). As an improvement to RPT, the equations of 

equilibrium are obtained from elastic principle using 3-D kinematic and 

constitutive relations which is later converted to energy equation using 

general variation to get the deflection and rotation relationship. The solution 

of the equilibrium equation produced an exact trigonometric displacement 

function which is a product of the plate's coefficient of deflection and shape 

function.  By minimizing the general energy equation with respect to the 

coefficients of deflection and shear deformation rotation, a theoretical model 

for calculating the deflection, moment and stresses of thick rectangular plate 

were obtained. The result shows that, at a span - depth ratio between 4 and 

30, deflection values vary between 0.0063 and 0.0054. At the span - depth ratio 

30 and above, a constant value of 0.0054 is noticed, this value is equal to the 

value of the CPT. The value of transverse shear stress along y-z coordinates 

varies between 0.00198 and -0.0001. The value of transverse shear stress along 

y-z coordinates being less than or equal the value showed that this value is the 

same as that of CPT. It can be deduced that at a span - depth ratio between 4 

and 30 the plate is regarded as thick. The plate's span - thickness ratio of 30 

and beyond is regarded as thin or moderately thick because its value at this 

point coincides with the value of the CPT. The comparative analysis between 

the present results and other theories shows that this 3-D predicts the vertical 

displacement, moments and the stresses more accurately than previous studies 

considered in this paper. It was observed that the present theory varied more 

with those of those of 2-D numeric analysis and 2-D HSDT with about 7.83% 

and 6.01%. Meanwhile, the recorded percentage differences showed that a 

derived 2-D HSDT predicted accurately the bending characteristics of the 

plate with 2.55%, proving that assumed deflection is coarser for the thick 
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plate analysis. It is concluded that, unlike an assumed function, a derived 2-D 

theory can give a close form solution, but a typical 3-D theory of elasticity is 

required for an exact solution of a rectangular plate and can be recommended 

for the analysis of any type of rectangular plate with such loading and 

boundary condition. 

 

Keywords: Exact static theory; equilibrium equation; bending of 3-D clamped plate; trigonometric 

model 

1. Introduction 

             Plates are structural elements that are three-dimensional, and whose thickness is little compared with the 

other plane and parallel surfaces [1]. Plates have vast applications in structural, aeronautical, mechanical, naval, and 

Geotechnical engineering for the modeling of retaining walls, ship hulls, roof, and floor slabs, and foundation slabs 

[2, 3].  

As regards geometry, plates can be classified as elliptical, skew, circular, rhombic, square or rectangular. Based 

on the properties of the material, plates are defined as heterogeneous, homogeneous, orthotropic, anisotropic or 

isotropic [4]. Generally, plates can have simply supported, clamped, or free edge conditions. Based on the ratios of 

the thickness (t) to the least lateral dimension (a), plates are classified as thin plates, moderately thick plates and thick 

plates [5, 6]. Rectangular plates with 50 ≤ a/t ≤ 100 have been defined as thin plate, 20 ≤ a/t ≤ 50 as moderately thick 

and a/t ≤ 20 as thick plate where a/t is the span-to-depth ratio, according to [7]. The pertinence and captivating 

attributes of thick plates in engineering structures have increased its research interest among scholars. In engineering, 

thick plates are mostly preferred due to its exceptional features such as; light weight, heavy loads carrying capacities, 

reduction in cost, and high mechanical properties [8]. This study considers isotropic rectangular thick plate for its 

bending analysis. 

Research areas of thick plate analysis include vibration, buckling and bending [9]. Bending occurs when the plate 

deforms at right angles towards the surface of the plate [10] and this occurrence is a result of induced forces and impact 

of moments. The plate begins to fail when the lateral deflection increases as the applied load exceeds the critical load 

[11]. This critical load value which determines the stability of the plate, should be calculated in order to properly 

analyze the plate. Basically, structural breakdown may result from deformations when not examined thoroughly. 

Investigating the bending mannerism of thick plates is therefore necessary so as to make sure that the plates are safe 

for load resistance.  

To depict the bending attribute of thick plates, several theories have been formulated, developed and employed. 

The theories include; CPT, also referred to as Kirchhoff plate theory [12], and refined plate theories (RPT) such as; 

FSDT, TSDT [12], ESDT [13], PSDT [14] and the HSDT [15]. CPT does not account for transverse shear effects; hence 

it cannot determine the exact bending behavior of thick plates. To overcome the limitations of CPT, FSDT was 

introduced but the correction factor was needed [16, 17] for it to give the desired outcome.  

HSDT was created as an amelioration to surmount the shortcomings of CPT and FSDTs. These HSDTs consider 

the deformation effects without the use of correction factors [18, 19] and provides accurate solutions in predicting the 

bending behavior of thick isotropic plates. These RPTs are regarded as 2-D theories as it neglects the normal strain 

and stress along the thickness axis of the plate. Since plates are three-dimensional structural elements, a typical 3-D 

theory ought to be employed to ensure exact bending solutions and this validates the usefulness of this study.  

Various methods such as the analytical methods (closed-form approach) and numerical methods (approximate 

approach) [20], can be used to analyze the bending characteristics of thick plates. Analytical methods are mathematical 

techniques that solve plate problems, satisfying the governing equations on the boundaries of the plate and in all the 

points on the plate surface. They include: Levy series, Navier series, Eigen expansion methods, as well as the method 

of integral transforms [21]. Analytical method has been used by several authors such as [22-24] to solve plate bending 

problems for different support conditions and different loading conditions. 

Where the bending problem seems complicated and closed form solutions are difficult to obtain, numerical 

methods are employed to obtain approximate results. Numerical methods consist of weighted residual, finite element, 

boundary element, finite difference, Bubnov-Galerkin, Variational Galerkin, Variational Ritz, Collocation and 

Variational Kantorovich methods. Several researchers such as [25-27] have widely used numerical methods to analyze 

different plate problems.  

              Energy2 methods can be numerical or analytical. The total energy is same as the addition of all the strain 

energy and potential energy or external work on the continuum [28]. This method consists of Ritz, minimum potential 

energy, Raleigh-Ritz and Galerkin. An analytical method with the energy approach will be considered in this study 

since it yields exact solutions.  
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2. Literature Review 

Ike [29] used the Fourier series method with hyperbolic shear deformation theory to satisfactorily obtain the 

bending solutions of thick beams. Avoiding the shear correction factors of FSDTs, the author was able to achieve 

transverse shear stress free conditions at the top and bottom surfaces of the beam using hyperbolic sine and cosine 

functions. The author failed to apply 3-D plate theory and CSCS boundary condition was not considered.  

Variational method to polynomial shape function were applied by Ibearugbulem et al. [30] to determine the 

displacements and stresses of the CCCC rectangular thick plate. No correction factor was applied to satisfy the zero 

shear-stress state at the plate surfaces. The authors failed to incorporate 3-D theory in their analysis. The use of 

trigonometric energy potential function was not considered. They also failed to address CSCS plates.  

Applying a polynomial displacement function with a modified deformation theory, Onyeka et al. [31], 

determined the lateral critical imposed load used to investigate the trait of an isotropic plate in their static bending 

analysis. The authors failed to employ an energy potential trigonometric function in their study. The authors failed to 

consider plates with CSCS [C -Clamped; S-Simply Supported] and the deflection as well as the shear deformation 

along the direction of the z - axis were not obtained. 

Sayyad and Ghugal [32] solved the bending issue of SSSS rectangular plates with exponential functions and 

refined shear deformation theory to obtain the displacements and stresses. They achieved this without the use of 

correction factor and their result was found satisfactory when compared with other refined theories. They also did not 

apply 3D theory; neither did they use energy potential function.  Their study failed to cover CSCS plates. 

Virtual work principle and HSDT were used by Ghugal and Gajbhiye [13], to analyze the bending of simply 

supported isotropic plate. The authors considered the shear and strain deformation effect without using the shear 

correction factor associated with FSDTs. The state of the zero shear transverse stresses was satisfactory.  Although 

the authors did not consider applying three-dimensional plate theory, they obtained closed-form results that are very 

close to exact 3-D solutions because of their analytical approach. The energy function was not used. They did not 

cover plates with CSCS support conditions. 

The Ritz method was employed by Nwoji et al. [21] to solve SSSS Kirchhoff plate bending problem. The 

authors obtained closed-form solutions using the analytical method. However, the theory employed in their study 

cannot be applied to thick plates to get accurate results. The energy potential function and 3-D theory were not used 

in their study. The authors failed to cover CSCS plates.  

Onyeka & Okeke [33] and Mantari et al. [34] obtained the displacement and stresses in thick rectangular plate 

using shear deformation plate theory. Onyeka and Okeke [33] used 2-D plate theory based on HSDT and applied to 

get the blending solution on a thick plate using polynomial displacement function, but they did not analyze the stresses 

along the thickness axis and this made their solution not to be exact. In the same way, Mantari et al. [34], employed 

trigonometric theory for the static bending analysis of a thick plate. However, both [33] and [34] failed to consider 

plates with the CSCS boundary condition.  

Onyeka et al. [35] applied RPT and polynomial displacement function to analyze thick plates. The authors 

evaluated CSCS plates and the in-plane displacements, deflections, moments, shear force, also the deformation 

rotations at the plates’ arbitrary points.  The strain and stress along the thickness direction were neglected. 

Trigonometric function was not considered in their study. The authors employed incomplete 3-D elasticity theory for 

the three-dimensional equilibrium equations and cannot be reliable for thick plate analysis as they cannot give an exact 

solution.  

Using the numerical approach and the 3-D plate theory, Grigorenko et al. [36] analyzed the bending of all-

round clamped plates. The authors applied two coordinate directions of spline collocation and the results obtained 

were satisfactory. They did not employ analytical methods in their work; therefore, could not obtain exact solutions. 

Their study also failed to address CSCS plates.  

Ibearugbulem et al. [37], analyzed the bending of thick plates with simply supported edges, obtaining exact 

polynomial displacement function from the governing equation with an analytical technique. The trigonometric 

function was not applied. The solutions of polynomial function as used tend to infinity while the application of 

trigonometric function which is employed in this study, yields closed form solution. Their study was three-

dimensional, but they failed to cover plates with CSCS support conditions.  

To solve the bending problem of isotropic thick plate with simply supported edges (SSSS), Onyeka and 

Mama [38] employed trigonometric shape functions with direct vibrational energy technique. Although the authors 

employed the 3-D plate theory, they failed to use the energy potential functional and plates with CSCS boundary 

conditions were not addressed.  

Three-dimensional elasticity theory was used by Hadi et al [39] to investigate the bending of rectangular plate 

that consists of functionally graded material with the variable exponential properties. Using a numerical example, the 

authors studied the impact of several functionally-graded variation on the stress and displacement fields. Their study 
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showed significant effects of graded material properties on the plate’s behavior. The authors presented exact solutions 

of the stresses and displacements.  However, the authors failed to consider trigonometric functions which produce a 

reliably exact solution and CSCS bounded rectangular plates. 

Recently, most researchers have employed non-classical elasticity theories to analyze plates [40]. Couple 

stress theory, nonlocal elasticity theory, surface theory, strain gradient theory and nonlocal strain gradient theory have 

been used to study nanostructures [41, 42]. Applying consistent couple-stress theory and nonlocal elasticity theory, 

Nejad et al [43-47] have presented studies on elasticity, buckling and vibrations of beams made of functionally graded 

materials (FGM).  The elasticity of FGM structures of variable thickness was also presented by Hosseini et al [48, 49]. 

Mohammadi et al [50-82], also presented studies on the elasticity, vibration and buckling behavior of nano structured 

plates and beams. A 3-D plate theory for bending analysis of rectangular thick plates was not considered. These authors 

failed to analyze the bending behavior. Their study was not centered on isotropic rectangular plates. neither did they 

consider the three-dimensional plate theory, not consider CSCS plate boundary condition in their analysis.  

Nonlocal strain gradient elasticity theory and Hamilton’s principle were employed by Hadi et al [83], Hosseni 

[48], Mohammadi [79], Shishesaz and Hosseni [84], and Shishesaz et al [85] to analyze FGMs. Mazarei et al [86] used 

von Mises yield criterion to formulate a plastic model for its analysis. The authors in [83] examined the effects of 

material constant and small-scale parameters. In [48] and [84], the authors investigated the effect of graded index, 

higher order stresses and thickness profile on stresses.  Couple-stress theory was applied by Hadi et al [87], Gorgani 

et al [88], and Barati et al [89] to capture the size effects of FGMs. These scholars failed to analyze isotropic thick 

plates. The 3-D plate elasticity theory and bending analysis was also not taken into account during their investigations.  

More so, many scholars have performed different studies using the refined plate theory, but very few studies have 

been carried out applying 3-D plate theory on the bending of thick plates of different boundary conditions using 

different methods and techniques. Since plates are three-dimensional elements, analyzing the shear distortion 

aftermath in the spatial dimensions along x, y and z axes, will eliminate the problem of unreliable design due to 2-D 

application in the construction industry. This research gap has prompted this present study.   

             This present study, unlike the previous studies which were gleaned from the displacement functions and 

refined plate theories and some orthotropic 3-D buckling and vibration analysis, considered the 3-D theory of elasticity 

with trigonometric function in order to achieve a close form (exact) solution in determination of bending 

characteristics of plate under CSCS boundary condition. The analytical technique was used to design the methodology 

via a variation calculus. The advantages of the applied technique are that, it gives exact results, in order to adequately 

meet the governing equations in the plate domain and across the edges of the plate. The method circumvents the 

tedious process of solving double Fourier which is associated with exact solution processes using Euler’s formulation. 

Most of the former studies in this regard employed the numerical method to avoid this tedious process, but it is 

recorded that the numerical method appears limited as it produces approximate solutions [30] and the stresses & 

displacements at any point in the plate cannot be determined. More so, trigonometric functions produce an exact 

solution unlike polynomial, exponential and hyperbolic whose exact function tends to infinity [35]. Furthermore, a 

plate which is a 3-D element is ought to analyse as such to ensure accuracy and structural safety, unlike previous 

studies which made some comfortable assumptions about the kinematics of deformation and state of state by 

neglecting the stress along the thickness axis of the plate. Hardly can one see works a typical 3-D bending analysis of 

thick plates based on based on the variational principle and trigonometric functions. This research gap attracts more 

attention; hence this research work is needed as the gap is worth filling. Meanwhile the limitation can be seen in this 

work, as the mathematical complexity exists in the 3-D analysis of plate. In a thorough mathematical way, the 

governing equations of the bending problem is unravelled using analytical technique to get satisfactory closed form 

solutions. The focus of this work is to study the exact bending behaviour of a three-dimensional rectangular plate with 

support conditions of two opposite short edges clamped and simply supported on two opposite long edges (CSCS), 

subjected to uniform distributed transverse loads. The effect of deflection and the stresses on the plate will be 

determined.  

 

3. Research Methodology 

          The research methodology of this study is presented by considering a rectangular plate in the Figure 1 to be 

deformable in three dimensional (x, y, z) Cartesian coordinates: length (a), width (b) and thickness (t). The theoretical 

framework is based on the 3-D static elastic theory of plate. 
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Fig 1: An element of thick rectangular plate showing middle surface 

      An analytical modelling approach based on energy method was used to obtain formulas for the analysis. The 

procedures of formulating the potential energy equation in the form of the kinematics and three-dimensional 

constitutive relations for a static elastic theory of plate, thereafter, the governing equations were derived and solved to 

obtain formula for the analysis.  

3.1. Basic Assumptions 

         The basic assumptions made in the formulation of the plate theory includes:  

(i) The plate material is isotropic, homogenous and linearly elastic. 

(ii) The load intensity of the plate is transverse distributed uniform load. 

(iii) A flat x-z or y-z section, which is normal to the middle x-y plane before bending shall no longer remain 

normal to the middle x-y surface after bending.  

(iv) The elastic yield stress exists at a considerable small deflection. 

3.2. Kinematics 

          As shown in Figure 2, the spatial dimensions of the plate along x, y and z-axes are a, b and t respectively. 

The displacement field which includes the displacements along x, y and z-axes: u, v and w are obtained assuming that 

the x-z section and y-z section, which are initially normal to the x-y plane before bending go off normal to the x-y 

plane after bending of the plate (see Figure 2). 
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           Considering the assumption of the thick plate as stated in section 3.1, the deformation diagram in Figure 2 

can be resolved using trigonometric relations for small angles, the algebraic relationship between the slope along the 

x axis and y becomes: 

𝑠𝑥 =
𝜕𝑢

𝜕𝑧
                                                                                                                                                                 (1) 

𝑠𝑦 =
𝜕𝑣

𝜕𝑧
                                                                                                                                                                 (2) 

          The non-dimensional form of the in-plane displacement along x and y axis can be written as presented in 

Equation (2) and (3) gives: 

𝑢 = 𝑡𝑠. 𝑠𝑥                                                                                                                                                               (2) 

𝑣 = 𝑡𝑠. 𝑠𝑦                                                                                                                                                              (3) 

Where: 

𝑧 = 𝑡𝑠                                                                                                                                                                      (4) 

           Thus, the three non-dimensional coordinates normal strain components were derived using strain-

displacement expression according to Hooke’s law and presented in Equation (4) - (7): 

      𝑥 =  
1

a
.

𝜕𝑢

𝜕𝑅
                                                                                                                                                            (5) 

𝑦 =
1

aβ
.
𝜕𝑣

𝜕𝑄
                                                                                                                                                          (6) 

𝑧 =
1

t
.
𝜕𝑤

𝜕𝑠
                                                                                                                                                            (7) 

          Similarly, the three non-dimensional coordinates shear strain components were derived using strain-

displacement expression according to Hooke’s law and presented in Equation (8) - (10): 


𝑥𝑦

=
1

aβ
.
𝜕𝑢

𝜕𝑄
+

1

a
.
𝜕𝑣

𝜕𝑅
                                                                                                                                        (8) 


𝑥𝑧

=
1

t
.
𝜕𝑢

𝜕𝑠
+ 

1

a
.
𝜕𝑤

𝜕𝑅
                                                                                                                                          (9) 


𝑦𝑧

=
1

t
.
𝜕𝑣

𝜕𝑠
+

1

aβ
.
𝜕𝑤

𝜕𝑄
                                                                                                                                        (10) 

Where: 

𝑥 = 𝑎𝑅                                                                                                                                                                   (11) 

𝑦 = 𝑏𝑄                                                                                                                                                                  (12) 

3.3. Constitutive Relations 

         According to Hooke’s law, the 3-D constitutive relation was obtained and result is separated into two 

equations, one for the normal stress- normal strains relation:  

[

σx

σy

σz

]  =
E

(1 + μ)(1 − 2μ)
 [

(1 − μ) μ μ
μ (1 − μ) μ

μ μ (1 − μ)
] [

εx

εy

εz

]                                                                 (13) 

And the other is the for shear stress- shear strains relation: 

[

τxz

τyz

τxy

] =
E

2(1 + μ)
[

γxz

γyz

γxy

]                                                                                                                                      (14) 

         The three normal stress components were obtained by substituting Equations 4 to 7 into Equation 13 and 
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simplifying the outcome as: 

𝑥 =
E

(1 + μ)(1 − 2μ)
[ (1 − μ) 

ts

a
.
𝜕𝑠𝑥

𝜕𝑅
+ 

ts

aβ
.
𝜕𝑠𝑦

𝜕𝑄
+ 

1

t
.
∂w

∂S
]                                                      (15) 

𝑦 =
E

(1 + μ)(1 − 2μ)
[ts .

𝜕𝑠𝑥

𝑎𝜕𝑅
+

(1 − 𝜇)ts

𝑎𝛽
.
𝜕𝑠𝑦

𝜕𝑄
+


𝑡
.
𝜕𝑤

𝜕𝑆
]                                                               (16) 

𝑧 =
E

(1 + μ)(1 − 2μ)
[ts .

𝜕𝑠𝑥

𝑎𝜕𝑅
+
ts

𝑎𝛽
.
𝜕𝑠𝑦

𝜕𝑄
+

(1 − 𝜇)

𝑡
.
𝜕𝑤

𝜕𝑆
]                                                               (17) 

          The shear three stress components were obtained by substituting Equations 8 to 10 into Equation 14 and 

simplifying the outcome as: 

𝑥𝑦 =
𝐸(1 − 2)

(1 + 𝜇)(1 − 2𝜇)
. [

ts

2𝑎𝛽

𝜕𝑠𝑥

𝜕𝑄
+

ts𝜕𝑠𝑦

2𝑎𝜕𝑅
]                                                                                           (18) 

𝑥𝑧 =
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [
𝑠𝑥

2
+

1

2𝑎

𝜕𝑤

𝜕𝑅
]                                                                                                        (19) 

𝑦𝑧 =
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [
𝑠𝑦

2
+

1

2𝑎𝛽

𝜕𝑤

𝜕𝑄
]                                                                                                     (20) 

3.4. Strain Energy 

          Strain energy is defined as the average of the product of stress and strain indefinitely summed up within the 

spatial domain of the body. This mathematically expressed as: 

𝑈 =
𝑎𝑏𝑡

2
∫ ∫ ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝜏𝑥𝑦𝑥𝑦

+ 𝜏𝑥𝑧𝑥𝑧
+ 𝜏𝑦𝑧𝑦𝑧

)

0.5

−0.5

1

0

1

0

𝑑𝑅 𝑑𝑄 𝑑𝑆                           (21) 

          Substituting the values of stresses and strains into Equation 21, and integrate its dot product with respect to 

dS gives: 

U =
Et3𝑎𝑏

24(1 + μ)(1 − 2μ)a2
∫ ∫ [(1 − μ) (

𝜕𝑠𝑥

𝜕𝑅
)

2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄
+

(1 − μ)

𝛽2
(

𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2β2
(

𝜕𝑠𝑥

𝜕𝑄
)

2
1

0

1

0

+
(1 − 2)

2
(

𝜕𝑠𝑦

𝜕𝑅
)

2

+
12. (1 − 2)

2t2
(a2𝑠𝑥

2 + a2𝑠𝑦
2 + (

𝜕w

𝜕𝑅
)

2

+
1

β2
(

𝜕w

𝜕𝑄
)

2

+ 2a. 𝑠𝑥

𝜕w

𝜕𝑅
+

2a. 𝑠𝑦

𝛽

𝜕w

𝜕𝑄
) + 0

∗ 2
μa

t2
. ( 

𝜕𝑠𝑥

𝜕𝑅
.
𝜕w

𝜕𝑆
+

1

β
.
𝜕𝑠𝑦

𝜕𝑄
.
𝜕w

𝜕𝑆
) +

(1 − μ)a2

𝑡4
(

𝜕w

𝜕𝑆
)

2

] dR dQ                           (22) 

Where: 

𝐷∗ =
𝐸𝑡3

12(1 + 𝜇)(1 − 2𝜇)
                                                                                                                                (23) 

3.5. Energy Equation Formulation 

          Total Energy Expression be the algebraic summation of strain energy (U) and external work (V). That is: 

 = U − V                                                                                                                                                         (24) 

𝑉 = 𝑎𝑏𝑞𝐴1 ∫ ∫ ℎ
1

0

1

0

𝑑𝑅 𝑑𝑄                                                                                                                              (25) 

         Substituting Equations 22 and 25 into Equation 24 gives: 
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 =
𝐷∗𝑎𝑏

2𝑎2
∫ ∫ [(1 − 𝜇) (

𝜕𝑠𝑥

𝜕𝑅
)

2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄
+

(1 − 𝜇)

𝛽2
(

𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2𝛽2
(

𝜕𝑠𝑥

𝜕𝑄
)

2

+
(1 − 2)

2
(

𝜕𝑠𝑦

𝜕𝑅
)

21

0

1

0

+
6(1 − 2)

𝑡2
(𝑎2𝑠𝑥

2 + 𝑎2𝑠𝑦
2 + (

𝜕𝑤

𝜕𝑅
)

2

+
1

𝛽2
(

𝜕𝑤

𝜕𝑄
)

2

+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎. 𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
)

+
(1 − 𝜇)𝑎2

𝑡4
(

𝜕𝑤

𝜕𝑆
)

2

] 𝑑𝑅 𝑑𝑄 − ∫ ∫ 𝑎𝑏𝑞ℎ𝐴1𝜕𝑅𝜕𝑄 
1

0

1

0

                                              (26) 

3.6. Governing Equation 

           

         The solution of the governing equation in trigonometric form is obtained in line with the work of Onyeka, 

et al. [34] by minimizing the total potential energy functional with respect to deflection to give the exact deflection 

equation, shear deformation rotation in x-axis and shear deformation rotation in y-axis as presented in Equation 27, 

28 and 29 respectively: 

ℎ = [1   𝑅   𝐶𝑜𝑠 (𝑐1𝑅)  𝑆𝑖𝑛 (𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

] . [1   𝑄   𝐶𝑜𝑠 (𝑐1𝑄)  𝑆𝑖𝑛 (𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

] /𝐴1                             (27) 

𝑠𝑥 =
𝑐

𝑎
. ∆0. [1   𝑐1𝑆𝑖𝑛 (𝑐1𝑅)  𝑐1𝐶𝑜𝑠 (𝑐1𝑅)] [

𝑎1

𝑎2

𝑎3

] . [1   𝑄   𝐶𝑜𝑠 (𝑐1𝑄)  𝑆𝑖𝑛 (𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

]                   (28) 

𝑠𝑦 =
𝑐

𝑎β
. ∆0. [1   𝑅   𝐶𝑜𝑠 (𝑐1𝑅)  𝑆𝑖𝑛 (𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

] . [1     𝑐1𝑆𝑖𝑛 (𝑐1𝑄)  𝑐1𝐶𝑜𝑠 (𝑐1𝑄)] [

𝑏1

𝑏2

𝑏3

]               (29) 

Let: 

𝑤 = 𝐴1. ℎ                                                                                                                                                            (30) 

𝑠𝑥 =
𝐴2

𝑎
.
𝜕ℎ

𝜕𝑅
                                                                                                                                                     (31) 

𝑠𝑦 =
𝐴3

𝑎𝛽
.
𝜕ℎ

𝜕𝑄
                                                                                                                                                    (32) 

Substituting Equation 30, 31 and 32 into 26, gives: 

 =
𝐷∗𝑎𝑏

2𝑎4
[(1 − 𝜇)𝐴2

2𝑘𝑥  +
1

𝛽2
[𝐴2. 𝐴3 +

(1 − 2)𝐴2
2

2
+

(1 − 2)𝐴3
2

2
] 𝑘𝑥𝑦 +

(1 − 𝜇)𝐴3
2

𝛽4
𝑘𝑦

+ 6(1 − 2) (
𝑎

𝑡
)

2

([𝐴2
2 + 𝐴1

2 + 2𝐴1𝐴2]. 𝑘𝑧 +
1

𝛽2
. [𝐴3

2 + 𝐴1
2 + 2𝐴1𝐴3]. 𝑘2𝑧)

−
2𝑞𝑎4𝑘ℎ𝐴1

𝐷∗
]                                                                                                                       (33) 

Minimizing Equation 33 with respect to 𝐴2 gives: 
𝜕

𝜕𝐴2

= (1 − 𝜇)𝐴2𝑘𝑥  +
1

2𝛽2
[𝐴3 + 𝐴2(1 − 2)]𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

[𝐴2 + 𝐴1]. 𝑘𝑧 = 0             (34) 

Minimizing Equation 33 with respect to 𝐴3 gives: 
𝜕

𝜕𝐴2

=
(1 − 𝜇)𝐴3

𝛽4
𝑘𝑦 +

1

2𝛽2
[𝐴2 + 𝐴3(1 − 2)]𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

([𝐴3 + 𝐴1]. 𝑘2𝑧) = 0    (35) 

Rewriting Equations 34 and 35 gives: 

[(1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧] 𝐴2 + [
1

2𝛽2
𝑘𝑥𝑦] 𝐴3

= [−6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑧] 𝐴1                                                                                         (36) 
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[
1

2𝛽2
𝑘𝑥𝑦] 𝐴2 + [

(1 − 𝜇)

𝛽4
𝑘𝑦 +

1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧] 𝐴3

= [−
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄] 𝐴1                                                                                       (37) 

Solving Equations 36 and 37 simultaneously gives: 

𝐴2 = 𝑀𝐴1                                                                                                                                                          (38) 

𝐴3 = 𝑁𝐴1                                                                                                                                                           (39) 

Let: 

𝑀 =
(𝑟12𝑟23 − 𝑟13𝑟22)

(𝑟12𝑟12 − 𝑟11𝑟22)
                                                                                                                                     (40) 

𝑁 =
(𝑟12𝑟13 − 𝑟11𝑟23)

(𝑟12𝑟12 − 𝑟11𝑟22)
                                                                                                                                     (41) 

Where: 

𝑟11 = (1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧                                                                   (42) 

𝑟22 =
(1 − 𝜇)

𝛽4
𝑘𝑦 +

1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧                                                             (43) 

𝑟12 = 𝑟21 =
1

2𝛽2
𝑘𝑥𝑦;  𝑟13 = −6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧;  𝑟23 = 𝑟32 = −
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧               (44) 

Minimizing Equation 33 with respect to A1 gives: 

𝜕𝛱

𝜕𝐴1

=
𝐷∗𝑎𝑏

2𝑎4
[6(1 − 2) (

𝑎

𝑡
)

2

([2𝐴1 + 2𝐴2]. 𝑘𝑧 +
1

𝛽2
. [2𝐴1 + 2𝐴3]. 𝑘2𝑧) −

2𝑞𝑎4𝑘ℎ

𝐷∗
] = 0            (45) 

That is: 

6(1 − 2) (
𝑎

𝑡
)

2

([𝐴1 + 𝑈𝐴1]. 𝑘𝑧 +
1

𝛽2
. [𝐴1 + 𝑉𝐴1]. 𝑘2𝑧) −

𝑞𝑎4𝑘ℎ

𝐷∗
= 0                                              (46) 

Factorizing Equations (46) and simplifying gives: 

6(1 − 2) (
𝑎

𝑡
)

2

𝐴1 ([1 + 𝑈]. 𝑘𝑧 +
1

𝛽2
. [1 + 𝑉]. 𝑘2𝑧) =

𝑞𝑎4𝑘ℎ

𝐷∗
                                                              (47) 

𝑇𝐴1 =
𝑞𝑎4𝑘ℎ

𝐷∗
                                                                                                                                                      (48) 

𝐴1 =
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)                                                                                                                                                   (49) 

Where: 

𝑇 = 6(1 − 2) (
𝑎

𝑡
)

2

∗ ([1 + 𝑈]. 𝑘𝑧 +
1

𝛽2
. [1 + 𝑉]. 𝑘2𝑧)                                                                         (50) 

3.7. Numerical Analysis 

          The numerical analysis of a rectangular thick plate whose Poisson’s ratio is 0.3 under CSCS boundary 

conditions as shown in the Figure 4 and carrying uniformly distributed load (including self-weight) is presented. An 

exact trigonometric function as was obtained in the Equation 27 and applied here to get the actual values of the shape 

functions, coefficients of deflection and shear deformation rotations at x and y axis of the plate.  

           The boundary conditions of the plate in Figure 3 are as follows: 

R- Direction 

(a) When R = 0, deflection (w) = 0.                                                                                                    (51)  

(b) When R = 0, bending moment (w’’) = 0, (𝑖𝑒.
𝑑2𝑤

𝑑𝑅2 = 0)                                                                      (52) 

(c) When R = 1, deflection (w) = 0.                                                                                                    (53) 

d) When R = 1, bending moment = 0, (𝑖𝑒.
𝑑2𝑤

𝑑𝑅2 = 0)                                                                                  (54) 

Q - Direction 

(e) When Q = 0, deflection (w) = 0.                                                                                                    (55) 
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(f) When Q = 0, slope (w’) = 0, (𝑖𝑒.
𝑑𝑤

𝑑𝑄
= 0)                                                                                               (56) 

(g) When Q = 1, deflection (w) = 0.                                                                                                    (57) 

(h) When Q = 1, slope (w’) = 0, (𝑖𝑒.
𝑑𝑤

𝑑𝑄
= 0)                                                                                                 (58) 

 

 
Fig 3: CSCS rectangular plate 

          The derived trigonometric deflection 𝑤 (𝑥, 𝑦) functions is subjected to a CSCS boundary condition to get 

the particular solution of the deflection. This can be achieved by substituting the following boundary conditions into 

Equations (51) to (58) and solving for the equation gave non-trivial solution as: 

𝑠𝑖𝑛𝑔1 = 0;  2𝐶𝑜𝑠 𝑔1 + 𝑔1 𝑆𝑖𝑛 𝑔1 − 2 = 0                                                                                                    (59) 

The value of 𝑔1 that satisfies Equation (59) is: 

𝑔1 = 𝑚𝜋 ; 𝑔1 = 2𝑚𝜋 [𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑛 = 1, 2, 3 … ]                                                                                     (60) 

Substituting Equation (60) into derivatives of Equation (27) and satisfying the boundary conditions of Equations 

(51) to (58) gave; 

𝑎0 = 𝑎1 = 𝑎2;   𝑏1 = 𝑏3 = 0; 𝑏0 = −𝑏2 = 0                                                                                               (61) 

Substituting the constants of Equation (60) and (61) into Equation (27) gave; 

𝑤 = 𝑎3𝑆𝑖𝑛(𝑚 𝜋𝑅. ). 𝑏2(𝐶𝑜𝑠2𝑛𝜋𝑄 − 1)                                                                                                        (62) 

Recall; 

𝑤 = ℎ. 𝐴1 

Let 𝑚 = 𝑛 = 1 

Therefore: 

𝑤 = 𝑎3. 𝑏2(𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠 2𝜋𝑄 − 1)                                                                                                             (63) 

Let the amplitude, 

𝐴1 = 𝑎3. 𝑏2                                                                                                                                                            (64) 

And the shape function of the plate be: 

ℎ = 𝑆𝑖𝑛 𝜋𝑅. (𝐶𝑜𝑠 2𝜋𝑄 − 1)                                                                                                                             (65) 

Thus, the exact trigonometric deflection 𝑤 (𝑥, 𝑦) functions under CSCS boundary condition becomes: 

𝑤 = (𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠2𝜋𝑄 − 1)𝐴1                                                                                                                     (66) 

                    Table 1: Trigonometric form of stiffness coefficients of CCCC rectangular plate 
Deflection form 𝒌𝒙 𝒌𝒙𝒚 𝒌𝒚 𝒌𝒛 𝒌𝟐𝒛 𝒌𝒉 

Trigonometry 3𝜋4

4
 

𝜋4 4𝜋4 3𝜋2

4
 

𝜋2

4
 

2

𝜋
 

 

a 

b 

𝑸 

𝑹 
O 

S 

C 

S 

C 
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3.8. Exact Displacement and Stress Expression 

The value of 𝐴1 𝐴2, 𝐴3 in Equation (30) or (49), (31) or (38) and (32) or (39) is substituted into Equation 1 and 2 

where appropriate to get the in-plane displacement along x-axis becomes: 

𝑢 = 𝑡𝑠.
𝑀

𝑎
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑅
                                                                                                                                   (67) 

And the in-plane displacement along y-axis becomes 

𝑣 = 𝑡𝑠.
𝑁

𝑎𝛽
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑄
                                                                                                                                 (68) 

Substitute Equation 49 into Equation 66, the deflection equation of the plate becomes: 

𝑤 = ( 𝐶𝑜𝑠2𝜋𝑅 − 1). (𝐶𝑜𝑠2𝜋𝑄 − 1).
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)                                                                                         (69) 

The value of 𝐴1, 𝐴2 and 𝐴3 Equation (30) or (49), (31) and (32) is substituted into Equation 15 -17 where 

appropriate to get the three normal stress elements as: 

𝑥 =
E

(1 + μ)(1 − 2μ)
[ (1 − μ) 

ts

a
.
∂2ℎ

∂𝑅2
𝐴2 + 

ts

aβ
.
∂2ℎ

∂𝑄2
𝐴3 + 

1

t
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

∂h

∂S
𝐴1]                     (70) 

𝑦 =
E

(1 + μ)(1 − 2μ)
[
ts

𝑎
 .

∂2ℎ

∂𝑅2
𝐴2 +

(1 − 𝜇)ts

𝑎𝛽
.

∂2ℎ

∂𝑄2
𝐴2 +



𝑡
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

∂h

∂S
𝐴1]                            (71) 

𝑧 =
E

(1 + μ)(1 − 2μ)
[
ts

𝑎
 .

∂2ℎ

∂𝑅2
𝐴2 +

ts

𝑎𝛽
.

∂2ℎ

∂𝑄2
𝐴3 +

(1 − 𝜇)

𝑡
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

∂h

∂S
𝐴4]                            (72) 

The value of 𝐴1, 𝐴2 and 𝐴3 in Equation (30) or (49), (31) and (32) is substituted into Equation 18 -20 where 

appropriate to get the three shear stress elements as: 

𝑥𝑦 =
𝐸(1 − 2)

(1 + 𝜇)(1 − 2𝜇)
. [

ts

2𝑎𝛽
.

∂2

∂𝑅 ∂𝑄
𝐴2 +

ts

2𝑎
.

∂2

∂𝑅 ∂𝑄
𝐴3]                                                                   (73) 

𝑥𝑧 =
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [

𝐴2

2𝑎

∂h

∂𝑅
+

1

2𝑎
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑅
]                                                                             (74) 

𝑦𝑧 =
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [

𝐴2

2𝑎

∂h

∂𝑄
+

1

2𝑎𝛽
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑄
]                                                                         (75) 

3.8. Exact Bending Moment Expression of the Plate 

         The bending moment in the direction of the main reinforcement of the plate is established by determining 

the relationship between the established deflection and moment using the Hooke’s law principle by considering shear 

deformation effect as: 

𝑀𝑥 = 𝐷∗ [(
𝜕2𝑤

𝜕𝑥2
+ 𝜇

𝜕2𝑤

𝜕𝑦2
) + (

𝜕𝜃𝑆𝑥

𝜕𝑥
+ 𝜇

𝜕𝜃𝑆𝑦

𝜕𝑦
)]                                                                                    (76) 

Thus: 

𝑀𝑥 =
𝐸𝑡3

12(1 + 𝜇)(1 − 2𝜇)
[
𝐴1

𝑎2
(

𝜕2ℎ

𝜕𝑅2
+

𝜇

𝛽2

𝜕2ℎ

𝜕𝑄2
) + (

𝐴2

𝑎

𝜕ℎ

𝜕𝑅
+ 𝜇

𝐴3

𝑎𝛽

𝜕ℎ

𝜕𝑄
)]                                         (77) 

Similarly: 

𝑀𝑦 = 𝐷∗ [(
𝜕2𝑤

𝜕𝑦2
+ 𝜇

𝜕2𝑤

𝜕𝑥2
) + (

𝜕𝜃𝑆𝑦

𝜕𝑦
+ 𝜇

𝜕𝜃𝑆𝑥

𝜕𝑥
)]                                                                                 (78) 

Thus: 

𝑀𝑦 =
𝐸𝑡3

12(1 + 𝜇)(1 − 2𝜇)
[
𝐴1

𝑎2
(

𝜕2ℎ

𝛽2𝜕𝑄2
+ 𝜇

𝜕2ℎ

𝜕𝑅2
) + (

𝐴3

𝑎𝛽

𝜕ℎ

𝜕𝑄
+ 𝜇

𝐴2

𝑎

𝜕ℎ

𝜕𝑅
)]                                    (79) 

4. Results and Discussions  

          A parametric data for the trigonometric stiffness coefficient, kx, kxy, ky, kz, k2z and kq for CSCS shape 

functions is presented in Table 1. The Equation for different coefficient can be found in the nomenclature section and 

a graph representing its numerical values can be found in the Figure 4. This stiffness coefficients were used to obtain 

the value of the shape functions, coefficient of deflection and rotation of the plate material when subjected to a 
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uniformly distributed transverse load under the same boundary conditions. The theoretical interpretation of the plate 

as regards to its performance and boundary condition showed that it is a rectangular plate which is clamped and simply 

supported at the two opposite edges (CSCS). This depicts that the plate was clamped at the first edge towards right, 

simply supported at the third edges while the second and fourth edges of the plate were simply supported. The physical 

description of the plate’s model showed that, the two clamped edges are supported by a column and continuous over 

the span of the plate while the remaining two edges are supported by a beam and situated adjacent towards the other 

clamped supported edge. This makes the study very significant because such boundary condition exist depending on 

the type of beam/column support in the plate structure. So, whenever a case of such support exists in the structure, 

analysing the plate as if is any other boundary e.g. CCCC, will not account for all the forces (stresses) acting on it. 

This is because, forces are generated due to the applied load on the structure thereby will introduce significant errors 

in the analysis and not predict an accurate or reliable result for the design if they are not considered. Thus, for a safe 

structural design of plate (slab) in a building or any type of structure with CSCS boundary conditions (BCs), plate 

analysis with CSCS BCs like this is required. 

         The present work obtained non-dimensional result of displacement, moment and the stresses of the plate by 

expressing the deflection and rotation functions of the plate in the form of trigonometry to analyse the effect of aspect 

ratio of the bending characteristics of the plate. The graph in Figure 5 showed that ky and kxy are having the highest 

coefficient followed by kx while k2z, kz and kq contains the lowest amount of stiffness coefficient. The numerical results 

of the non-dimensional displacements (u, v & w) and the stresses characteristics of a 3-D clamped rectangular plate 

which was subjected to uniform distributed load was obtained using the established exact trigonometric displacement 

function. 

 
 

Fig 4: Stiffness coefficient for the CSCS plate boundary condition 

         A graphic representation of results of the non-dimensional value of bending moment coefficient of a square 

thick rectangular plate while Table 2 and 3 contains the displacements, normal stresses and shear stresses of the plate 

at different span-thickness aspect ratio. Hence, for the purpose of result discussion, only the square is considered for 

the numeric values of bending moment of this study while the stress and displace analysis is presented in the aspect 

ratio of 1 and 1.5 respectively.  

         The numerical comparative analysis was presented to show the disparities between the present study and the 

literature under review to show the effect of aspect ratio on the 3-D bending, deformation and stress analysis of 

rectangular plate at varying aspect ratio. The span-thickness ratio considered is ranged between 4, 5, 10, 15, 20, 50, 

100 and CPT, which is obviously seen to span from the thick plate, moderately thick plate and thin plate [34]. Table 4 

showed the results of the numerical analysis performed for the span-thickness ratio of 4, 5 and 10 while Table 5 

showed the results of the numerical analysis performed for the aspect ratio of 5 and 10 respectively.  
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Fig. 5: Graph of Bending Moment versus Span-thickness ratio of the plate 

                 The graph in the Figure 5 showed that as the aspect ratio of the plate increase, the bending moment 

along x and y coordinates (Mx and My) decrease. This is quite expected because the relationship between the bending 

moment and the deflection in the plate section. Thus, the deflection (w) which occurs at the plate due to the applied 

load increase with increases in the value of the span-thickness ratio of the plate. This implies that, the span-bending 

curvature increase causes deflection in the mid-plane of the plate. 

 

Table 2: The result of displacements and stresses of a CSCS aspect ratio of 1.0 

β =
a

t
 𝑤 𝑢  𝑣  𝜎𝑥   𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜏𝑦𝑧 

4 0.00220 -0.00255 -0.00351 0.17302 0.24402 0.17062 -0.0864 0.00622 0.00198 

5 0.00208 -0.00258 -0.0034 0.17193 0.23703 0.16953 -0.0853 0.00405 0.00120 

10 0.00192 -0.00262 -0.00323 0.17084 0.22736 0.16844 -0.0838 0.00097 0.00020 

15 0.00189 -0.00263 -0.00320 0.17070 0.22552 0.16830 -0.0835 0.00037 0.00023 

30 0.00187 -0.00264 -0.00318 0.17060 0.22441 0.16820 -0.0833 0.00002 -0.0001 

50 0.00187 -0.00264 -0.00318 0.17060 0.22417 0.16820 -0.0833 -0.0001 -0.0001 

100 0.00187 -0.00264 -0.00318 0.17059 0.22407 0.16819 -0.0833 -0.0001 -0.0001 

CPT 0.00187 -0.00264 -0.00317 0.17059 0.22403 0.16819 -0.0833 -0.0001 -0.0001 

         The non-dimensional result in the Tables 2 shows that as the span-thickness ratio of the plate increase, the 

in-plane displacement along x and y axis (u and v) increases too, whereas, the deflection (w) which occurs at the plate 

due to the applied load decrease with increases in the value of the span-thickness ratio of the plate. On the other hand, 

the stress perpendicular to the x, y and z axis (𝑥 ,𝑦 & 𝑧) decreases as the span-depth ratio of the plate increases. 

Meanwhile, the increase at the span-thickness ratio of the plate increases the value shear stress along the x-y (𝑥𝑦) 

while the span - depth ratio causes a decrease in the value shear stress along the x-z and y-z plane (
𝑥𝑧

 & 
𝑦𝑧

). These 

decreases continue until the plate structure deflects beyond the elastic yield stress, hence, failure occurs.  

          Table 2 shows that, at a span - depth ratio between 4 and 30, the value of deflection varies between 0.00208 

and 0.00187. At the span - depth ratio 30 and above, a constant value of 0.00187 is noticed, this value is equal to the 

value of the CPT. This is quite expected since we assumed in CPT analyses that at span-thickness ratios of 100 and 

above, a plate can be taken as being thin. Similarly, it can be seen that, at a span - depth ratio between 4 and 30, the 

non-dimensional value of transverse shear stress along y-z coordinates varies between 0.00198 and -0.0001. The value 

of transverse shear stress along y-z coordinates being less than or equal the value showed that this value is the same 

as that of CPT. This constant value of -0.0001 from 30 and above confirmed the finding in the value of deflection 

obtained. It can be deduced that the value of deflection and shear stress varies more as the plate is thicker and vary 
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less as the span - depth increase (thinner plate) under the same loading capacity/condition. It can be said that at a span 

- depth ratio between 4 and 30 the plate is regarded as thick. The span - thickness ratio of 30 and beyond, the plate is 

regarded as thin or moderately thick because its value at this point coincides with the value of the CPT. 

Table 3: Displacement and stresses of a CSCS plate aspect ratio of 1.5 

β =
a

t
 𝑤 𝑢  𝑣  𝜎𝑥  𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑥𝑧 𝜏𝑦𝑧 

4 0.00626 -0.00716 -0.00648 0.39975 0.36024 0.35784 0.01263 0.01263 0.00205 

5 0.00595 -0.00712 -0.00623 0.39505 0.34934 0.34694 0.00816 0.00816 0.00124 

10 0.00553 -0.00711 -0.00588 0.38892 0.33438 0.33198 0.00199 0.00199 0.00021 

15 0.00546 -0.00711 -0.00582 0.3878 0.33156 0.32916 0.00082 0.00082 0.00026 

30 0.00541 -0.00711 -0.00578 0.38714 0.32985 0.32745 -0.1521 0.00012 -0.0001 

50 0.00540 -0.00711 -0.00577 0.38699 0.32949 0.32709 -0.1519 -0.0000 -0.0001 

100 0.00539 -0.00711 -0.00577 0.38693 0.32934 0.32694 -0.1519 -0.0000 -0.0001 

CPT 0.00539 -0.00716 -0.00577 0.38691 0.32928 0.32688 -0.1519 -0.0000 -0.0001 

          The non-dimensional result in the Tables 3 shows that as the span-thickness ratio of the plate increase, the 

in-plane displacement along x and y axis (u and v) increases too, whereas, the deflection (w) which occurs at the plate 

due to the applied load decrease with increases in the value of the span-thickness ratio of the plate. On the other hand, 

the stress perpendicular to the x, y and z axis (𝑥 ,𝑦 & 𝑧) decreases as the span-depth ratio of the plate increases. 

Meanwhile, the increase at the span-thickness ratio of the plate increases the value shear stress along the x-y plane 

(𝑥𝑦) while the span - depth ratio causes a decrease in the value shear stress along the x-z and y-z plane (
𝑥𝑧

 & 
𝑦𝑧

). 

These decrease continue until the plate structure deflects beyond the elastic yield stress, hence, failure occurs.  

          Table 3 shows that, at a span - depth ratio between 4 and 30, the value of deflection varies between 0.0063 

and 0.0054. At the span - depth ratio 30 and above, a constant value of 0.0054 is noticed, this value is equal to the 

value of the CPT. This is quite expected since we assumed in CPT analyses that at span-thickness ratios of 100 and 

above, a plate can be taken as being thin. Similarly, it can be seen that, at a span - depth ratio between 4 and 30, the 

non-dimensional value of transverse shear stress along y-z coordinates varies between 0.00198 and -0.001. The value 

of transverse shear stress along y-z coordinates being less than or equal the value showed that this value is the same 

as that of CPT. This constant value of -0.0001 from 30 and above confirmed the finding in the value of deflection 

obtained. It can be deduced that the value of deflection and shear stress varies more as the plate is thicker and vary 

less as the span - depth increase (thinner plate) under the same loading capacity/condition. It can be said that at a span 

- depth ratio between 4 and 30 the plate is regarded as thick. The span - thickness ratio of 30 and beyond, the plate is 

regarded as thin or moderately thick because its value at this point coincides with the value of the CPT. 

         Study in the Table 2 and 3 shows that as the aspect ratio of the plate increase, the in-plane displacement 

along x and y axis (u and v) decrease whereas, the deflection (w) which occurs in the plate due to the applied load 

increase with increases in the value of the span-thickness ratio of the plate. On the other hand, the stress perpendicular 

to the x, y and z axis increases as the span-depth ratio of the plate increases. This implies that, as the length of the 

plate material increases, more stresses are induced in the plate which consequently leads to the failure of the plate 

material if the plate material are stretched beyond the elastic limit. This means that the failure in a plate structure is 

bound to occur as the more stresses are induced within the plate element which affects the performance in terms of 

the serviceability of the plate. Thus, caution must be taken when selecting the depth and other dimensions along the x 

and y co-ordinate of the plate to ensure accuracy of the analysis and safety in the construction. 

Table 4: Comparative deflection analysis for square plate at varying span-thickness ratio (𝛃 = a/t) 

between present study and past studies  

β =
a

t
 

Present 

Study Onyeka et al.  [35] 
Wang et al.  [90] 

Reddy [91] 

4 0.00626 -0.00716 -0.00648 0.39975 

5 0.00595 -0.00712 -0.00623 0.39505 

10 0.00553 -0.00711 -0.00588 0.38892 

 

         In summary, there are three categories of rectangular plates. The plates whose deflection and vertical shear 

stress do not vary much with CPT is categorized as thin plate. Hence, the plate whose deflection and transverse shear 

stress varies very much from zero is categorized as thick plates. Thus, the span-thickness ratio for these categories of 
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rectangular plates are: Thick plate is categorized as the plate with the span to thickness ratio∶ 𝑎/𝑡 ≤  30 while the thin 

or the moderately thick plate is categorized as the plate with the span to thickness ratio: 𝑎/𝑡 ≥ 30. Meanwhile, the 

present theory stress prediction shows that the result of the displacement and stress of thin and moderately thick plate 

using the 3-D theory is the same for the bending analysis of rectangular plate under the CSCS boundary condition.  

 

Table 5: Non-dimensional values bending moment for CSCS square plate from different scholars [35, 44, 

41 and 43] 

β =
a

t
 

Point (a/x, b/y) 
Present Study Onyeka et al. [35] 

Xiao et al. 

[44] 
Kant & Hinton [41] Lee et al. [43] 

5 (0.5,0.5) 0.0275 0.0281 0.0299 0.0292 0.0292 

10 (0.5,0.5) 0.0274 0.0266 0.0255 0.0258 0.0258 

 

         The result of comparative analysis performed in the Table 4 and 5 showed the disparity between different 

theories used in the plate analysis especially as it concerns thick plate. This theory includes the analytical and 

numerical process of RPT using different approaches. A percentage difference evaluation was adopted as presented 

in Table 6 to compare and show the validity of the derived relationships in the deflection analysis. The result of 

percentage difference evaluation in Table 6 showed that the plate with the largest thickness (a/t of 4) gives a percentage 

difference of 0.551% between the present study and the work of Onyeka et al. [34]. There is no deflection result 

available in the literature for the work of Reddy [9], therefore the percentage difference evaluation with the present 

study could not be determined. On the other hand, the result percentage difference analysis between the present study 

and the work of Onyeka et al. [34], Wang et al. [90] and Reddy [9] at span-depth ratio of 5 is 5.140%, 26.532% and 

37.456% respectively. More, so, the plate at 10 span-depth ratio gives a percentage difference of 5.731%, 2.367% and 

6.212% of the work [34], Reddy [9], when compared with the present study.  

         Table 5 showed that, the percentage difference between the present study and Reddy [9] in deflection 

analysis, decreases as the plate is getting thinner while the percentage difference between the present study and Onyeka 

et al. [34], increases as the plate is getting thinner. This shows that the HSDT is best suitable for thick plate (
𝑎

𝑡
≥ 30), 

unlike the FSDT as it includes shear correction factor which made transverse shear stress variation not uniformly 

distributed. The calculated average percentage difference between the present study and the work of Onyeka et al. 

[34], Reddy [9] is 5.67%, 14.45% and 21.83%. The small difference the work of Onyeka et al. [34]when compare with 

present exact 3-D theory is quite expected because they used HSDT with a derived deflection function from the 

elasticity principle which make their solution close-form whereas Reddy [9] used an assumed deflection function 

which give higher difference when compare with exact 3-D theory of elasticity (Present study). The total average 

difference between the present study and exact HSDT [34] and FSDT is 5.7% and 18.1%. It can be deduced that the 

present study using 3-D theory proved the exactness of the theory and derived relationship because of its small 

difference of 5.7% with the derived RPT, a value which could be negligible in the statically analysis. On the other 

hand, the difference of 18% which is too high show that the theory used by Reddy [9] over predict the deflection that 

may occur due to external load on the structure which proved that their theory is in-exact and therefore unreliable for 

thick plate analysis under such loading and boundary condition.  

         Table 6: Percentage difference between the present study and work of authors in [34], and [9] 
Percentage (%) Difference Evaluation 

β =
a

t
 

Onyeka et al.  [34] Reddy [9] 

4 0.551 - 

5 5.140 37.456 

10 5.731 6.212 

Average % Difference 5.67 21.83 

Total Ave.% Difference 5.7                18.1 

Overall Total Ave.% Difference 11.9 

          A percentage difference evaluation was adopted as presented in Table 6 to compare and show the validity 

of the derived relationships in the deflection analysis. The result of percentage difference evaluation in Table 6 showed 

that the plate with the largest thickness (a/t of 5) gives a percentage difference of 0.551% between the present study 

and the work of Onyeka et al. [35], Xiao et al. [92], Kant & Hinton [93] and Lee et al. [94] is 2.18%, 8.727%, 6.18 and 

6.18%. On the other hand, at the span-depth ratio of 10, the result percentage difference analysis between the present 
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study and the work of Onyeka et al. [35], Xiao et al. [92], Kant & Hinton [93] and Lee et al. [94] is 2.92%, 6.93%, 

5.84%, 5.84% and 6.18% respectively. It is observed that the percentage different between the present study and those 

of Kant & Hinton [93] and Lee et al. [94] are the same that all the span – depth ratio in consideration; this is quite 

expected as both authors used a numerical method. The average percentage different between the present and both 

[93, 94] is 6.10. 

          Table 6 showed that, the percentage difference between the present study and Xiao et al. [92], Kant & Hinton 

[93] and Lee et al. [94] in bending moment analysis, decreases as the plate is getting thinner while the percentage 

difference between the present study and Onyeka et al. [35], increases as the plate is getting thinner. This shows that 

the HSDT with derived deflection function is best suitable for thick plate (
𝑎

𝑡
≥ 30), unlike the HSDT with assumed 

displacement [92], Numeric Mindlin theory [93] and Levy [94] whose transverse shear stress variation not uniformly 

distributed. 

          The calculated average percentage difference between the present study and the work of Onyeka et al. [35], 

Xiao et al. [92], Kant & Hinton [93] and Lee et al. [94] is 2.55%, 7.83%, 6.01% and 6.01%%. The small difference the 

work of Onyeka et al. [35] when compared with present exact 3-D theory is quite expected because they used HSDT 

with a derived deflection function from the elasticity principle which make their solution close-form whereas Xiao et 

al. [92], used an HSDT assumed deflection function which give higher difference when compare with the exact 3-D 

theory of elasticity (Present study). 

Table 7: Percentage difference between the present study and work of authors in [35, 92-94] 
Percentage (%) Difference Evaluation 

β =
a

t
 Onyeka et al. [35] Xiao et al. 

[92] 
Kant & Hinton [93] Lee et al. [94] 

5 2.182 8.727 6.182 6.182 

10 2.920 6.934 5.839 5.839 

Average % Difference 2.55 7.83 6.01 6.01 

Total Ave.% Difference 5.6  

            The total average difference between the present study and exact HSDT [35] and 2-D HSDT with assumed 

function is 2.55% and 7.83%.  This showed that the deflection function when derived from the principle of elasticity 

give a close-form solution. It can be deduced that the present study using 3-D theory proved the exactness of the theory 

and derived relationship because of its small difference of 7.83% with the derived RPT, a value which could be 

negligible in the statically analysis. On the other hand, the difference of 7.83%, which is too high show that the theory 

used by Xiao et al. [92] and Numerical approach [93, 94] over predict the deflection that may occur due to external 

load on the structure, which proved that their theory is inexact and therefore unreliable for thick plate analysis under 

such loading and boundary condition.  

          However, the overall average percentage difference between the present study and those of 2-D HSDT [35, 

92] is about 5.19%, the difference being less than or equal than 5% is acceptable in the statically analysis as the same. 

Meanwhile, the overall average percentage difference between the present study and those of the 2-D numeric analysis 

[93, 94] is about 6.01%, the difference being more than 5% is not acceptable as it shows a clear difference which means 

that numerical analysis is an approximate method as they over-predict the moment which causes bending of the plate 

section. Furthermore, the overall average percentage difference values of moment of the present theory and those of 

Onyeka et al. [35], Xiao et al. [92], Kant & Hinton [93] and Lee et al. [94] is 5.6%. This showed that at the 94 % 

confidence level, both theory and methods are the same for a thick plate analysis.  

         It is worth to note that the 2-D RPT with exact deflection gives a closer result when compared with exact 3-

D plate theory than those 2-D RPT with an assumed deflection and other RPT and CPT in the thick plate analysis. 

Meanwhile, the values predicted by the present theory are in close relationship with previous scholars [35, 92]. The 

slightly higher average percentage difference of 2.55% showed the coarseness of RPT in the plate analysis because of 

over-predicting the stresses in the plate. Hence, exact 3-D theory is required to achieve efficiency.  

          Thus, the present model using the six stress elements to yield the exact solution for the analysis of thick 

plate that is clamped supported at opposite edges and the other edges simply supported (CSCS). Hence, the result of 

the present analysis, which contains all the stress element with an exact deflection function ensured that the variation 

of the stresses through the thickness of the plate which induced stresses can be used in confidence for bending analysis 

of plate.  

4. Conclusion 
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         The 3-D bending and stress analysis of thick rectangular plate using 3-D elasticity theory has been 

investigated. From the study, the following important points has been drawn: 

i. Trigonometric shape function predicts a close-form solution than polynomial displacement function. 

ii. The present theory stress prediction shows that the result of the displacement and stress of thin and 

moderately thick plate using the 3-D theory is the same at span-thickness ratio beyond 50% for the 

bending analysis of rectangular plate under the CSCS boundary condition. 

iii. Plate analysis required 3-D analogy for a true solution, but the 2-D shear deformation theory gives an 

unrealistic solution. 

iv.        The 3-D exact plate model developed in this study is variationally consistent and can be used in the 

analysis of any category of the plate. 

Nomenclature 

CPT Classical plate theory  

RPT Refined plate theories  

FSDT First order shear deformation plate theory 

TSDT Trigonometric shear deformation theory  

ESDT Exponential shear deformation theory  

PSDT Polynomial shear deformation theory  

HSDT Higher order shear deformation plate theories  

CCCC Clamped supported at all the edges. 

SSSS Simply supported at all the edges. 

CSCS Clamped at two adjacent edges and the other simply supported 

CCFS Clamped at the first and second edges and the other edges, free and simply supported respectively. 

𝑤 Deflection 

𝑢 In-plane displacement along x-axis  

𝑣  In-plane displacement along y-axis  

𝜃𝑠𝑥 Shear deformation rotation along x axis  

𝜃𝑠𝑦 Shear deformation rotation along the y axis 

𝜀𝑥 Normal strain along x axis 

𝜀𝑦 Normal strain along y axis  

𝜀𝑧 Normal strain along z axis  

𝛾𝑥𝑦 Shear strain in the plane parallel to the x-y plane 

𝛾𝑥𝑧 Shear strain in the plane parallel to the x-z plane  

𝛾𝑦𝑧 Shear strain in the plane parallel to the y-z plane 

x Horizontal co-ordinate 

y Diagonal co-ordinate 

z Vertical co-ordinate 

a Spatial dimensions of the plate along x -axes  

b Spatial dimensions of the plate along y-axes  

t Spatial dimensions of the plate along z-axes  

R Non-dimensional form of coordinates x-axes 

Q Non-dimensional form of coordinates x-axes 

S Non-dimensional form of coordinates x-axes 

β Aspect ratio (b/a)  

𝜇 Poisons ratio 

𝐸 Modulus of elasticity of the plate 

𝜎𝑥 Stress normal along x axis 

𝜎𝑦 Stress normal along the y axis 

𝜎𝑧 Stress normal along the z axis 

𝜏𝑥𝑦 Shear stress along the x-y axis 
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𝜏𝑥𝑧 Shear stress along the x-z axis 

𝜏𝑦𝑧 Shear stress along the y-z axis 

𝐷∗ Rigidity for three-dimensional thick plate 

𝐷 Rigidity of the CPT or incomplete three-dimensional thick plate 

  Total potential energy function  

𝑈 Algebraic summation of strain energy  

𝑉 External work for buckling load 

ℎ Shape function of the plate 

𝐴1 Coefficient of deflection  

𝐴2 Coefficient of shear deformation along x-axis 

𝐴3 Coefficient of shear deformation along y-axis 

𝑞 Uniformly distributed load of the plate 

∫  Integral operation

1

0

 showing upper and lower limit from 0 to 1 

∬  Double integral operator

1

0

 showing upper and lower limit from 0 to 1 

∭  Triple integral operator showing upper and lower limit from 0 to 1 

𝑘𝑥 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅2
)

21

0

1

0

𝑑𝑅𝑑𝑄 Double integral operation with fourth partial derivative of h with respect to R 

𝑘𝑥𝑦

= ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄 Double integral operation with fourthpartial derivative of h with respect to R and Q 

 𝑘𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑄2
)

21

0

1

0

𝑑𝑅𝑑𝑄 𝐷ouble integral operation with fourth partial derivative of h with respect to Q 

𝑘𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

2
1

0

1

0

𝑑𝑅𝑑𝑄 Double integral operation with second partial derivative of h with respect to R 

𝑘2𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

2
1

0

1

0

𝑑𝑅𝑑𝑄 𝐷ouble integral operation with second partial derivative of h with respect to R 

𝑘ℎ = ∫ ∫ ℎ

1

0

.

1

0

𝑑𝑅𝑑𝑄 Double integral operation with  partial derivative of h with respect to R an Q 
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