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Abstract 

In this paper, nonlinear dynamic analysis of sandwich plate with viscoelastic 

and flexible core and shape memory alloy embedded composite face sheets is 

performed. In order to simulate the dynamic behavior of sandwich plate, a 

higher order global-local theory based on the superposition principle is used. 

One of the most important advantage of presented theory is considering the 

thickness variation and transverse shear stresses, which is especially 

necessary in the study of thick sandwiches with soft core. In order to 

simulate the behavior of the shape memory alloy (SMA) wires, material 

properties variation are considered continuously in whole of the plate. In 

order to accurately investigate the behavior of the shape memory alloy, a 

written code is using an algorithm for solving the dynamic phase 

transformation base on modified Brinson model. The kinematic equations of 

phase transformation of embedded SMA wires are coupled with the 

equations of motion that leads to the nonlinearity and complexity of the 

equations. So to solve the equations, a development iterative method based 

on the formulation of nonlinear transient finite elements method with a 

dynamic phase transformation algorithm is used. The results show that the 

vibration amplitude of the sandwich plate is reduced due to energy 

dissipation because of the phase transformation of the SMA wires. Also, the 

core of the sandwich plate is considered of viscoelastic material. Due to the 

specific properties of the viscoelastic materials, the dynamic behavior of the 

structure and its consequence, the overall damping of the structure is 

affected. One of the previously unexplored studies is the simultaneous 

investigation of the damping effect of viscoelastic cores and embedded SMA 

wires. In other words, in this case, the sandwich plate has two different 

damping mechanisms with different function and nature that affect each 

other. 

Keywords: Sandwich plate; Global-local theory; Dynamic behaviour; Flexible viscoelastic core; Shape 

Memory alloy; three-dimensional elasticity correction 

1. Introduction 

In the last decades, with the development of science and technology in the world, new and growing needs in 
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different sciences and industries have led to the development of new materials and structures that can meet the needs 

of different fields. Among these materials, which are used in various industries due to their different properties, are 

composites made in combination with various materials such as shape memory alloys (SMA) and viscoelastic 

materials. Shape memory alloys are different from other metals because they are capable of performing the solid-to-

solid phase transformation which is used for a variety of engineering purposes; Because of this ability, depending on 

the stress and temperature, this material has two different crystalline lattice structures. Therefore, shape memory 

alloys have two distinct capabilities: 1) Shape memory effect (SME), 2) Super Elastic Effect (SE) [1]. 

It should be mentioned that for viscoelastic materials, viscose behaviour, unlike elastic behaviour, continuously 

depreciates mechanical energy during loading process. Whereas in fully elastic materials, mechanical energy is 

stored during loading process and released after loading. Some of the most important engineering materials when 

dealing with external forces simultaneously store and depreciate the applied mechanical energy. Such a structural 

reaction is called viscoelastic behaviour. The structural equations of viscoelastic behaviour inherently include not 

only stress and strain but also the rates of stress and strain changes. The behaviour of an elastic material is similar to 

that of a spring, while the behaviour of a viscoelastic material is measured with a damper [2]. So in general, a model 

can be designed to investigate the behaviour of a viscoelastic material with a combination of springs and dampers.  

One of the first studies on composites with embedded SMA was conducted by Rogers in 1990 [3]. Ostachowicz 

et al. [4, 5] calculated natural frequency and buckling of composite plate with SMA using first shear order theory. 

Their results show that the use of SMA wires has a great effect on increasing the natural frequency of the structure 

and the critical buckling temperature. Turner [6] developed a fundamental model and finite element formulation to 

investigate the thermo mechanical response of composites with SMA under thermal and mechanical loads. Tsai and 

Chen [7] investigated the dynamic stability of composite beams reinforced with SMA wires under harmonic forces. 

Roh and Kim [8] investigated the optimization of composite sheets with SMA wires under low velocity impacts. 

Roh and Kim [9] also studied the low velocity impact of a composite sheet with SMA wires, except that they used 

one-dimensional constitutive model of shape memory alloys to simulate SMA wires, while in their previous research 

experimental values for simulation SMA behaviour.  

It is also worth noting that extensive studies have been conducted on composite and viscoelastic plates. When 

the theory of viscoelastic was developed by researchers, the solution method was based on Laplace transforms. 

Laplace transform equations are used in stress-strain, strain-displacement relations [2]. Hashin [10] examined 

viscoelastic issues with constant properties. Wang and Tsai [11] used a finite element method to analyse the quasi-

static and dynamic analysis of linear viscoelastic sheets. In studying the viscoelastic properties, Lake and Wineman 

[12] changed the Poisson's coefficient. They concluded that the Poisson's ratio in viscoelastic materials is time-

dependent or has a complex frequency ratio. Yang et al. [13] examined the vibrational and damping effects of 

composite plates made of a combination of crane fibres and viscoelastic layers. Various studies have also been 

conducted to solve the elastic and orthotropic structure. Eshmatov [14] uses the Kelvin–Voigt  model and provides 

an exponential function for its relaxation function. Actual models based on these assumptions cannot really show the 

effect of dynamic loading. If the same assumptions are made for nonlinear models, an integral differential equation 

is created, which in many cases can be solved by numerical methods such as Runge-Kutta. The numerical method 

developed by Eshmatov allows to solve systems that have nonlinear integral differential equations. Schovanec et al. 

[15] have studied fixed cracks, static and dynamic crack propagation in non-homogeneous viscoelastic materials 

under shear conditions. Schovanec and Walton [16] examined the conditions of crack propagation in a 

heterogeneous linear viscoelastic object under quasi-static loading and calculated the released energy ratio. Assie et 

al. [17] obtained the dynamic response of impact on a viscoelastic plate by a finite element. The methods used were 

such that the equation of motion was obtained integrally. A solid linear viscoelastic model was used to describe the 

viscoelastic behaviour. Also Assie et al. [18] investigated the behaviour of viscoelastic composite plates under 

triangular loading; they used the Richard model to describe the viscoelastic properties. Zhang et al. [19] studied the 

free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core based on 

a modified Fourier-Ritz method. In their study, Sandwich plate made of a viscoelastic core and porous FG face 

sheets. Hosseini and Khorasani [20] presented a finite element formulation for dynamic analysis of sandwich plates 

with viscoelastic core under large deformation using incremental updated Lagrangian approach together with the 

Newmark integration scheme. Sheng et. al. [21] examined analytically and experimentally vibration 

characteristics of a sandwich plate with viscoelastic core. They found that sandwich with periodic constrained-layer 

damping treatment had better performance comparing to the traditional constrained-layer damping behaviour. Ledi 

ei. al. [22] presented a new method for the studying the viscoelastic material properties of a symmetric three layered 

viscoelastic sandwich beam. Also their using the experimental vibration tests to determine resonant frequencies and 

loss factors. 

Sandwich plates are one of the most important structures in which SMA wires or viscoelastic materials are used. 

Since the three-dimensional analytical solution of sandwich plates has many limitations, the analysis of such 
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structures based on the two-dimensional theory of plates and shells is very practical and noteworthy. The basis of 

these theories is to convert three-dimensional models to two-dimensional by eliminating the dependence of the 

model on thickness. For this purpose, various methods such as equivalent single-layer theories, layer wise theories, 

and theories based on the principle of superposition (zigzag and global-local) have been proposed [23]. However, 

some of the theories presented also have shortcomings. For example, if there are significant changes between the 

properties of the layers or if the structure is made up of a large number of layers, global theories will not be able to 

properly assess local displacements. As a result, calculated strain and stress by these theories will not be accurate. 

Thus, equivalent single-layer theories such as classical theory (CLT), first-order shear theory (FSDT), and upper-

order shear theory (HSDT) [24-27] do not provide accurate results in such cases. Equivalent single-layer theories [28-

31] are commonly used to analyse the overall behaviour of structures. In layer wise theories, each layer of the plate 

or shell is considered as an independent layer, and in each layer, the description of the displacement field is used 

independently. The resulting models are also called layered (local) or local theories [32-35]. Although this theory has 

good accuracy and correctly displays the zigzag effects of displacement in composites, the number of independent 

parameters depends on the number of layers and therefore the time of their calculations is high [36]. Therefore, 

theories based on the principle of superposition were presented that in addition to considering the global and local 

behaviour of the sandwich plate, it has fewer independent parameters and independent of the number of layers and 

therefore requires less time to analyse the structure [37]. Totally, a limited number of papers have been published for 

studying the dynamic and static response of the sandwich plates with flexible soft core. These include published 

articles by Moreira and Rodrigues [38], Elmalich and Rabinovitch [39], Rabinovitch and Frostig [40], Cetkovic and 

Vuksanovic [41], and Wu and Chen [42]. Also, Ghaznavi and Shariyat [43] presented a new higher order global-local 

theory for examining the static, frequency, and dynamic behaviour of sandwich plates with soft cores and auxetic 

core. Also they studied the behaviour of sandwich plates with flexible soft and hard cores and composite face sheets 

embedded SMA wires [44, 45]. They considered the behaviour of shape memory alloy to be symmetrical and 

asymmetrical which had a significant effect on the damping of sandwich plates [46]. Also the study of the behaviour 

of smart sandwiches has attracted the attention of many researchers in recent years [47-79]. 

In this paper, by presenting the higher global-local theory based on the superposition principle, which can 

consider changing the thickness of the core accurately, the behaviour of thick and thin sandwich plates with 

embedded SMA wires in the composite face sheets as well as viscoelastic core is analysed. One of the most 

important features of the presented theory is the correction of obtained shear stresses and the effect of this correction 

on the total results. It should be mentioned that kinematic equations of SMA phase transformation are coupling with 

motion equations, which leads to the nonlinearity and complexity of problem. For this purpose, an incremental 

iterative method based on the nonlinear transient finite element formulation that merged with the mentioned 

dynamic phase transformation algorithm has been used to solve the equations. Initially, the performance of the 

modified Brinson model for simulating shape memory alloy behaviour under different conditions and various cyclic 

loads is investigated. In the following, the results of the dynamic analysis of thin and thick sandwich plates with 

composite face sheets with embedded SMA wires and flexible core or viscoelastic core are discussed and also the 

effect of different parameters of viscoelastic core on the overall behaviour of the sandwich and its damping is 

investigated. Finally, the results of the different cases are compared with each other. It should be mentioned that in 

order to increase the accuracy of the model, the behaviour of SMA wires is considered asymmetric in tension and 

pressure, which is a more realistic assumption, therefore a more accurate estimate of the role of embedded SMA 

wires in structural damping is obtained. 

2. The Governing Equations of Phase Transformation and Motion of Sandwich Plate with Viscoelastic Core 

and SMA Wires Embedded in Composite Face Sheets 

2.1. Description of The Displacement Field According to The Presented Theory 

   The geometry of the studied sandwich plate and coordinate system and the considered deformation kinematics are 

presented in Figure 1. The origin of the general coordinate system is located on the middle page of the sandwich and 

the z axis is considered positive upwards. The length and width of the sandwich sheet in the direction of x and y are 

denoted a and b, respectively, the total thickness of the sandwich plate is denoted H. Also, the thickness of the upper 

layer, the thickness of the core and the thickness of the lower layer are considered h1, h2, h3 respectively. 
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Fig 1: Geometrical parameters and deformation kinematics of the in-plane and out of plane displacement components of the considered 

sandwich plate with composite face sheets embedded SMA wires and a flexible viscoelastic core. 

Regarding SMA wires, it should be noted that the SMA wires are placed on both the upper and lower surface in both 

x and y directions (perpendicular to each other) and also is considered that the wires are placed in the middle of each 

face sheet. In the following, deformation field of the three-layer sandwich plate is presented. Generally, the in-plane 

displacement components are considered to be composed of global as well as local terms: 
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Where Gu  and Gv  are the global and Lu  and Lv  are the local components. After imposing the continuity 

conditions of the displacement components at the interfaces between layers and by using third-order global and first 

order local components, Eq. (1) eventually leads to the following: 
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Where H is the Heaviside’s function. As shown in Eq. (2) and Eq. (3), the final deformation of the sheet is 

calculated based on the principle of superposition. The purpose of this superposition is to simultaneously consider 
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the effect of the displacement field of each layer along with the effect of the total displacement of the sandwich 

sheet so that the behavior of each layer can be studied separately and accurately, While not ignoring the overall 

behavior of the sandwich sheet and consider its effect on the behavior of each layer. In other words, the major defect 

of layer wise theories that neglect the general behavior of the sandwich panel is covered by using this method. And 

also, the defect of equivalent single-layer theories such as third shear order theory, etc., which ignores the behavior 

of each layer separately and only studies the behavior of the whole plate, has also been well resolved. Note that, 

based on the present description of deformation kinematics, the net rotations of the layers are now non identical and 

variable. As it was mentioned, one of the advantages of the presented theory is to consider the changes of transvers 

displacement of the sandwich panel (W) as follow: 
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Where H is the Heaviside’s function and uw , lw , mw  are denoted out of plane deflection of the upper and lower 

composite face sheet and the middle plane of the core respectively, and  ( )zL  å  are interpolation functions.  

As can be seen in Eq. (4), since rigidity of the upper and bottom layer of sandwich face sheets is much higher and 

their thickness is much smaller than those of the core, a uniform and a quadratic transverse distribution of the out of 

plane deflection w are adopted for the face sheets and the core, respectively. Therefore, a three-layer sandwich plate 

has a total of 15 independent displacement parameters: 
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2.2. The Finite Element Form of the Motion Governing Equations of Sandwich Panel 

It should be noted that all theories of plate and shell, including global-local theory, are two-dimensional, so a 

two-dimensional finite element method must be used to solve them. In this regard, a representative plane, e.g., the 

mid surface of the plate, may be discretized by means of appropriate elements and shape function. In the present 

research, nine-node quadrilateral elements are used to trace in-plane variations of the displacement components: 
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In which, N  and 
( )e  respectively, are denoted the shape functions matrix and vector of the nodal values of the 

displacement. According to Eq. (5): 
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The stress components may be computed according to the generalized Hooke’s law as follows: 
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Where C(i), (i = 1, 2, 3) is the matrix of the elastic parameters in the transformed, i.e., geometric, coordinates of the 

sandwich plate. The governing equations are calculated through using Hamilton’s principle. If the strain energy and 

work of the externally applied loads (including the inertia forces) are denoted by U and V, respectively, one may 

write as follows [24]: 
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Where A,  , q are area and volume of the element, intensity of the externally applied distributed load to the 

sandwich plate, respectively. Substituting Eq. (9) and Eq. (10) into Eq. (8) leads to the following result, for any 

arbitrary time interval: 
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Since 
( )e  is an arbitrary and generally nonzero vector, the governing equation of the sandwich plate becomes: 
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or in a compact form 

(13) ( ) ( )e e FM K +  =  

Which various algorithms can be used to solve Eq. (13); the algorithm used in this paper is Newmark’s method, 

which has a higher accuracy for dynamic problems. 

2.3. Modified the Motion Governing Equations of Sandwich Panel with Embedded Shape Memory Alloy Wires in 

Composite Face Sheets 

In this section, the obtained governing equations are modified base on considering the embedded SMA wires in 

the composite face sheets of sandwich panel. In the initial conditions, SMA wires are without any tension, but since 

the sandwich plate is subjected to mechanical loads, the supralastic behavior due to phase transformation of the 

SMA wires appears in the stress-strain relations of the corresponding layer. In other words the SMA wire shows a 

pseudo-elastic behavior at temperatures higher than the austenite finish temperatures (Af). Loading the SMA lower 

than the martensite start stress (σMs) leads to the martensite to austenite phase transformation and unloading to stress 

levels below the austenite start (σAs) activates a martensite to austenite phase transformation. These phase 

transformation makes a hysteteresis loop in the strain-stress curve of the SMA wires. The resulting hysteresis loop 

may consume a remarkable portion of the surrounding energies. The modified pseudo-elastic Brinson’s constitutive 

law of the SMA may be rewritten as [45]: 
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Where EA, EM, l   are denoted moduli of the martensite and austenite phases of the SMA, the maximum 

recoverable strain, respectively, and the subscript ‘‘0” associates with global or local events of phase 

transformations and are time-history-dependent and non-stationary values as they change at the beginning of each 

event.  T  represents the fraction of the material that is purely temperature-induced martensite with multiple 

variants and 
S  denotes the fraction of the material that has been transformed, or oriented, by stress into a single 

martensite (detwined) variant, and   shows total martensite volume fraction. The transformation calculations may 

be divided into the different regions [46]. 

It should be noted that theses parameters are different in tension and compression. 0s  is initial martensite 

volume fraction and s is the stress-induced martensite volume fraction before the current transformation. Because 

of the embedded SMA wires and their pseudoelasticity effect, the stress-strain relation of the layer with SMA wires 

is modified as follows: 
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Where 
sxV , syV  are the volume fraction and the modulus of elasticity of the embedded SMA wires in the 

intended composite layer in x and y directions, respectively. As it was mentioned before, Stress-strain diagram of the 

SMA is usually an asymmetric one which the tensional transformation stresses are smaller and the relevant strains 

are larger [81-85]. In present research, anisotropy of the SMA behaviors is considered the dynamic analysis of 

sandwich plates with embedded SMA wires; so Eqs. (15) can be rewrite as follow: 
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Where the t and c subscripts denote for the tensile and compressive stresses, respectively. There is no obligation 

to alignment of the SMA wires with the main directions of the composite plate, so the wires can be angled with the 

main directions of the composite plate.  In the geometric coordinates system of the composite plate, which   is the 

angle of the SMA wires with the x-axis of the intended plate, we can express Eq. (16) with the use of rotational 

transformation matrix as follows: 
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Where Esx and Esy are the modulus of elasticity of the SMA wires in the x and y directions, respectively. These 

moduli are related to the volume fraction of the SMA according to Voigt (rule of mixtures) model that can be 

different in x and y directions: 

( ) ( )A M AE E E E = + −
 

(19) 

For a composite layer containing SMA wires, the equivalent material properties of the composite layer, in the 

wire axes directions, may be computed as follow: 

Where subscripts s, c, l and t denote SMA, composite and directions parallel and normal to the SMA wire, 

respectively. In addition to the effect of SMA wires phase transformation, which makes the equations nonlinear, the 

effect of force due to the presence of SMA wires should also appear in governing equations and finite element 

relations of sandwich panel. By considering this effect, the principle of minimum total potential energy is rewritten 

as follows: 

(21) 
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By replacing the above equations in the minimum total potential energy principle: 

Finally: 
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( )] [ ( )]= F
 

(24) 

Where in the above equation, ( )  and ( )F  matrices are related to the SMA wires status. In other words, the 

effect of SMA wires appears in two forms in equations. Depending on the state of the material in terms of the level 

of stress and the applied load, the phase of the shape memory alloy is determined, and as a result, the physical 

properties of the SMA wires, including their Young's modulus, are determined and effectively are affected 
( )

 

in the Eq. (24). But  ˆ s
 substantially has a force nature. Therefore, it can be summed up with the force vector (right 

component of Equation (24)). In other words, the force vector is also affected by the SMA wires. Therefore, in Eq. 

(24), the stiffness matrices and the force vector are a function of the martensitic volume fractional ( ) of SMA 

wires. On the other hand, martensitic volume fractional ( ) changes momentary in different parts of the composite 

face sheets, and at different times. Since martensitic volume fraction is a function of stress distribution and it is also 

a function of the displacement field, therefore, the martensitic volume fractional (


) and totally the properties of 

the material are unknown parameters. As a result, the presence of SMA wires in the sandwich panel leads to 

complexity and non-linearity of governing equations. Therefore, in order to solve these nonlinear dynamic 

equations, an iterative method has been proposed, which is presented in detail at the following sections. 

2.4. Modeling Viscoelastic Behavior of the Sandwich Core Using Real Time Finite Element Simulation 

In viscoelastic materials, the material's response is affected by its loading rate, followed by a slow and 

continuous change in the response at a decreasing rate. The rate of loading affects the time dependent response of a 

viscoelastic material. For instance, the longer it takes to reach the final value of stress at a constant rate of loading, 

the larger the corresponding strain. For this reason, viscoelastic materials store a history of their response and have 

some kind of memory. This memory effect is evident in the constitutive relationship between the stress and strain 

tensors [86]. One way to determine these constitutive equations for linear viscoelastic materials is to use the 

Boltzmann superposition principle. Suppose an arbitrary strain input is coming through superposition of small strain 

increments: 

1 0

( ) [ ( )]

tn

j

j

t d s
=

=  =   

 

(25) 

Where “s” is any arbitrary time interval between time 0 and t that the strain is assumed to be constant during it. 

The increase in strain up to time “t” is related to the corresponding stress increments by using following Hooke's 

law: 

1 1

( ) ( ) ( )
n n

j j j j

j j
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= =

=  − = −    (26) 

By considering the appropriate ranges, the following constitutive equation can be supposed: 

0
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t
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(27) 

The generalized Maxwell solid model is typically used to simulate viscoelastic solid materials [87-88] that is a 

combination of springs and dashpots. This model can be written in the form of prony series for the stress relaxation 

function as follows: 

( )

( )
1

t
N j

E t E E e
jj


−

= + 
=

 (28) 

Where N is the number of Maxwell elements, jE  is the elastic coefficient ( E
 is the long-term elastic modulus 

corresponding to the system’s steady-state elastic response), and j  is the relaxation time related to the damping 

coefficients of dashpots as
E





.By replacing the above equation in Eq. (28) and separating its viscoelastic and 

elastic terms from each other, it can be written: 
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By defining a time step 1n nt t t+ = − , that 1nt + and nt indicate the time of the current step and the time of the 

previous step, respectively, and also by considering 
( )

( )
t

t
E






= , it is possible to present recursive formula for 

internal stress variables. The transition from differential coefficient to discrete time steps leads [80]: 
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e e ds
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− −− + +
−++

= + 


H H  
(30) 

Where j jE E= is the normalized elastic modulus of the jth element. Eq. (40) can rewrite in a recursive 

formula in 3D tensor representation by integrating analytically [80]: 
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Considering the internal stress variables defined by Eq. (32) and the elastic contribution, the stress of linear 

viscoelastic Maxwell material can be defined as follows: 

1 1 1
0 1
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= + 
=

H   (33) 

To obtain governing equations in the finite element form, the same path of linear elastic materials is applied. As 

was mentioned in previous sections, the FE form of the elastic material is: 
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(34) 

Where is the elastic modulus matrix of the sandwich plate with embedded SMA wires in composite face 

sheets. So, based on the viscoelastic Maxwell material definition, the above equations can be modified as follow: 
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(35) 

Where  infinity is the stable modulus matrix of the viscoelastic material; and Aj is defined as follow:  

1
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Using the definition of internal force: 

int [ ]Tf d K


=     = 
 

(37) 

And considering Eq. (44), it can modified for the viscoelastic Maxwell material: 
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Where 
1n+  and 

n are the displacement vectors of nodes in the current time step and the previous time step. 

Also, K
T

 (tangent stiffness matrix) and K
hist

 (history stiffness matrix) include: 
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And 1n
hist
+

H  is the history vector at the current time step: 
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It is possible to rewrite
1n

j
+

H  for each element as follow: 
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(42) 

Finally, the constructive equation for sandwich panel with viscoelastic core and composite face sheets with 

embedded SMA wires can be rewritten in the following form: 

1 1
( )] [ ( )]
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n n
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+ +
=
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Where F
hist

 is: 

1
 

n n
F K

hist hist hist
+

= −H    (44) 

It should be mentioned that ( )T  and ( )extF   affected by the embedded SMA wires in the composite face 

sheets as explained in the previous section. In order to calculate the natural frequencies of sandwich plate, complex 

eigenvalue form of Eq. (44) is used. In order to calculate the natural frequencies of sandwich plate, the complex 

eigenvalue problem of Eq. (44) takes the form as Daya and Potier-Ferry can be written as follow [81]: 

   ( ) *2 0K M− =
 

(45) 

Where 
*  is the complex Eigen frequency. If the complex Eigen frequencies are obtained, the natural 

frequencies and the loss factors of the sandwich plate with the viscoelastic core and embedded SMA wires can be 

computed as follows [82]: 
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2.5. Correction of the Results According to the Dynamic 3D Theory of Elasticity 

Determining the transverse components of stress, especially the transverse shear stress components, is of great 

importance in the design process of sandwich structures. In most existing equivalent single-layer, layerwise, and 

even zigzag theories, transverse shear stresses are calculated with the approach of using governing equations 

directly. For this reason, the amount of shear stresses calculated between the layers is not continuous. This issue 

affects the accuracy of calculated shear stresses. For this reason, in many cases, such as first- shear order theory, it is 

necessary to use the shear correction factor [83]. Cho and Kim [84], Zhen and Chen [85] and Shariyat [86] have done 

a lot of research on sandwich plates with stiff cores and showed that even the third order shear deformation plate 

theory may lead a discrepancy of the order of 40% with respect to the 3D elasticity theory when a constitutive-law-
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based formulation is applied. It is clear that for sandwich plates with soft cores, constitutive-law-based results are 

more unreliable. Although the presented global-local theory can accurately describe transverse variations of a 

sandwich plate with a flexible core, predictions of the whole displacement and stress fields of sandwich plate have 

to be modified based on the 3D theory of elasticity: 

(47) 
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Therefore, it follows from Eq. (48) and Eq. (49): 
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And 
( )i
yz  is calculated in the same way. Then, after calculating the modified shear transvers stresses base on the 

3D elasticity theory, the obtained results are applied for all whole calculation of the sandwich plate. For this 

purpose, modified transverse shear stresses for all nodes are replaced in the total stress matrix of the sandwich. Also 

using the following equations, the corrected displacement vector of the sandwich panel is obtained based on the 

corrected stress field: 
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Also it should be noted that before calculating the corrected displacement based on the Eq. (49), the 1n

j

+
H  

must be modified according to Eq. (50): 
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By using the above equations, finally the corrected displacement vector is obtained. The velocity and 

acceleration vectors is corrected base on the corrected displacement vector that obtained from Eq. (50): 

( )
1 1 1 2 3

a a an n nn nCorrected Corrected
= − − −

+ +
Φ Φ Φ Φ Φ  (51) 

  
51 4 1

a an nn nCorrected
Corrected

= + +
+ +

ΦΦ Φ Φ  (52) 

It should be noted that nΦ , nΦ  and nΦ  were corrected at the end of previous time step (nth time step). So in 

fact, all parameters of the Eq. (51) and (52) are modified using 3D theory of elasticity. In previous researches that 

have attempted to correct shear stresses using 3D theory of elasticity, only the transverse shear stress have been 

modified without correcting the displacement, velocity, and acceleration fields of the plate [23, 83, 87, 88]. While in 
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this article, in addition to stress, the inertia effects have not been considered too. 

2.6. The Proposed Solution Algorithm 

There are many numerical methods for solving the obtained constructive equation, among them, Newmark's 

method is one of the most useful methods for structural dynamic problems [89]. The time-dependent governing 

system of Eq. (50) is a nonlinear one as well. Due to the nature of the shape memory alloy and dependency of many 

parameters on   of the SMA wires, nonlinearity of the governing equations is of a very complex. Therefore, an 

iterative method must be used in order to solve this problem. The iterative method starts with an initial guess for 

required parameters such as displacement vector. The problem is then solved and the displacement is recalculated 

after updating 00 0,, ,s     quantities and checking whether a global/local loading/unloading or reverse loading 

event of SMA wires is in progress, based on the obtained displacement and stress fields. This process is repeated till 

a proper convergence criterion holds, e.g. 
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1

1

1

1 m

r r
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+

−

+

+
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

−


 

(53) 

Where m and r denote the time step the iteration counter, respectively, and  is a sufficiently small number 

called the convergence tolerance. The proposed flowchart in Figure 2 shows the main steps of the presented 

algorithm for solving this complex nonlinear problem. Presented flowchart only summarizes the general steps of the 

solution. For example, the step to determine the martensitic volume fraction ( ) and the other properties of SMA 

itself has a proposed complex algorithm with several steps in which Brinson’s constitutive model has been modified, 

in order to add the cyclical loading and local loading/unloading capabilities and consider the different behaviours of 

SMA wires in tension and compression that is more realistic assumption. Changes and behaviour of memory alloys 

everywhere are examined independently. Also, Changes in the properties of the SMA wires at each point of the 

sandwich panel have been considered independently and continuously over time with the change behaviour of the 

viscoelastic core by using the proposed algorithm. In such a way that part of the sandwich panel and then the SMA 

wires can be loaded, while another point of the SMA wires can be in unloaded locally. For example, the time of 

updating the initial properties of SMA wires such as  0 0, ,, s     during cyclic loading/ unloading is determined 

by presented algorithm. Choosing an appropriate t  at the beginning of the algorithm is essential for the 

convergence of the problem and its rate ( criticalt t   ). However, the algorithm is designed to correct this issue by 

using bisection technique. The numerical reason for the better convergence in a dynamic analysis when t  is 

reduced lies in the role of the mass matrix in the equivalent stiffness matrix. 

3. Numerical Results 

3.1. Verification of the Results 

The results of the modified Brinson’s constitutive model and the written code for it are examined at first. For this 

purpose, the obtained results are compared with the results of the experimental test in the valid reference [90]. The 

available experimental results are two tensile tests at temperatures of 50 C and -10o C, as shown in Figure 3. The 

first test was performed at a temperature the end of the above TAf, while the second test was done at a temperature 

below the TMf. As can be seen in both tests, the stress-strain curves predicted by the present model are very 

consistent with the experimental results for two different ambient temperatures. Also, in order to further validate, the 

natural frequencies and loss factors of sandwich plates have been compared with the results available in valid 

references [91-93].The results for the sandwich plate are considered in different modes of boundary condition of all 

edges clamped (CCCC) and opposite sides clamped (CFCF). The first three natural frequencies, and the 

corresponding loss factors, are calculated under different boundary conditions of CCCC and CFCF, and are 

compared with the numerical results obtained by Araujo et al [91] and Huang et al. [92] and experimental result of 

Wang et al. [93]. All mentioned results are shown in Table 1. As can be seen, results obtained from the presented 

code and proposed algorithm in different boundary conditions are found to be in good agreement with the published 

ones. 
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Fig 2: Presented algorithm for solving the dynamic behavior of sandwich panel with embedded SMA wires in composite face sheets 

and viscoelastic material as a core. 
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Table 1: Natural frequencies and corresponding loss factors of sandwich plate with viscoelastic core under different boundary 

conditions. 

Mode no. 

1 2 3 

frequenc

y 

Loss 

factor 

frequenc

y 

Loss 

factor 

frequenc

y 

Loss 

factor 

CCCC  

(Araujo et al., [91]) 
87.66 0.1886 150.1 0.163 170.99 0.152 

Present 87.055 0.1735 145.386 0.1428 177.812 0.153 

CFCF  

(Huang et al., [92]) 
95.09 0.1315 112.7 0.1274 187.25 0.139 

Present 98. 0165 0.1861 113.7835 0.1302 184.458 0.120 

CCCC (Experimental)  

(Wang et al., [93]]) 
38 0.092 68.5 ------ 90.3 0.158 

Present 38.325 0.073 66.128 0.055 87.427 0.125 

 

 

 

 
Fig3: Comparing the stress–strain curves predicted by the present model for a monotonically loaded SMA wire with the 

experimental results [90], in two different ambient temperatures. 
 

4. Sandwich Panel with Viscoelastic Core and Embedded SMA Wires in Composite Face Sheets 

In this section the effect of the simultaneous existence of two damping mechanisms of viscoelastic core and 

embedded SMA wire on the energy absorbing of the structure and on each other has been investigated. For this 

purpose, three following sandwich panels with exactly the same properties have been analyzed under dynamic 

loading and the results have been compared: 

1. Sandwich panel with viscoelastic core, 

2. Sandwich panel with embedded SMA wires in composite face sheets, 

3. Sandwich panel including both mentioned damping mechanism.  

The plate is loaded by a uniformly distributed rectangular impulse pressure on its upper surface. Effects of the 

SMA wires and viscoelastic core are studied on the transient responses, i.e. after removal of the applied load. The 

following non dimensional quantity is defined to extract the results: 
3

2

4

0

100 skinE h
W w

a q
=

 
The anisotropic material properties of the embedded shape memory alloy wires and viscoelastic core is presented 

in Table 2 and Table 3. Mechanical properties of the composite face sheet are as following:  

E1=E3=20.7 GPa, E2 =221.0 GPa, G12=G23=5.79 GPa, G13=3.29 GPa, υ12=υ23=0.23. 
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Table 2:. Properties of SMA material with asymmetric behavior in tension and compression. 
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Table 3: Viscoelastic core material properties [94]. 
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Figure 4 shows the dimensionless deformation of the three mentioned cases for the thick and thin sandwich 

panel. As can be seen, in both the thin and thick sandwich panel, effect of the existence of the viscoelastic core is 

clearly visible. The best performance in terms of energy absorption, respectively, belongs to the following:  

1. Sandwich panel with the viscoelastic core, 

2. Sandwich panel with the viscoelastic core and embedded SMA wires, 

3. Sandwich panel with the embedded SMA wires. 

This is true for both thick and thin panels. Because viscoelastic damping, unlike SMA wires, is not dependent on 

stress levels, the damping of the viscoelastic core begins with the first cycle and continues until complete energy 

absorption. 

It is noteworthy that the damping of the sandwich panels with viscoelastic core and SMA wires are less than if 

the sandwich have only viscoelastic core, in both thin and thick sandwiches. In other words, contrary to popular 

belief, the addition of SMA wires to the sandwich panels with viscoelastic core, reduces the effect of the viscoelastic 

core and thus reduces the damping of structure. The reason for this is the increased stiffness of the structure due to 

the presence of embedded SMA wires in the composite face sheets.  

While SMA wires are only effective in absorbing structural energy within a determined range of stresses (in the 

phase transformation area). For this reason, the embedded wires initially played an active role in the damping of the 

structure, and over time this role faded to eventually disappear altogether. This is clearly seen in the example of 

thick sandwich panel. 

In such a way that the damping of the structure is practically eliminated from the time of 0.04 seconds and the 

sandwich is continuing to oscillate with a constant amplitude. At this time, the SMA wires are out of phase 

transformation area due to the stress level and no longer have damping effect in the structure. It should be mentioned 

that in thin sandwich panel, the embedded SMA wires have not had any effect on the damping of the structure from 

the very beginning.  
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(a) 

 
(b) 

Fig 4: Effect of different damping mechanisms on the time variations of the non-dimensional lateral deflection at the midpoint for: 

a) thick sandwich plate (  = 4a h ), b) thin sandwich plate (  = 10a h ). 

 

Figure 5 shows the hysteresis loops of the embedded SMA wires in upper and lower layer of the thick sandwich 

plates with SMA wires and viscoelastic core and the sandwich plates with SMA wires and normal core. As can be 

seen, in the first cycle, the behavior of both plates (with and without viscoelastic core) in the top and bottom layers 

is the same. Therefore, the size of the biggest cycles in both plates is equal. But under the influence of the 

viscoelastic core, the embedded SMA wire loops in the sandwich plates shrink rapidly and disappear after a few 

cycles. While on the plate with the elastic core, the SMA wires are still active, and are damping the applied energy. 

Therefore, it can be concluded that the simultaneous existence of two damping mechanisms, viscoelastic core and 

SMA wires, reduces the effectiveness of each of these mechanisms alone. However, using both mechanism 

simultaneously increases the damping of the structure. There is also a difference between the behavior of the 

embedded SMA wires in the upper and lower layers, which is due to the thickness of the plate and the flexibility of 

the core. The asymmetry behavior of SMA wires in tension and compression is also well evident due to the precise 

simulation of SMA model. 
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(a) 

 
(b) 

Fig 5: Transformation histories of the embedded SMA wires at the midpoint of the thick sandwich plate (  = 4a h ) with a 

viscoelastic core and elastic core: (a) upper layers, (b) lower layers. 
 

Time variations of the martensite volume fraction (ξ) of the midpoints of the upper and lower layers of the thick 

sandwich plate for both cases are shown in Figure 6. In this figure, the effect of using viscoelastic core on reducing 

the efficiency of embedded SMA wires can be clearly seen. In a way, the viscoelastic core makes the martensite 

volume fraction of the SMA wires zero after 0.015 seconds, indicating that the SMA wires are out of phase 

transformation area. And they no longer have a role in damping the structure. However, structural fluctuations 

continue to decrease due to the presence of viscoelastic core to eventually be eliminated. 
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(a) 

 
(b) 

Fig 6: Time variations of the martensite volume fraction of the midpoints of the upper and lower layers of the thick sandwich 

plate: 

(a) with embedded SMA wires and viscoelastic core, (b) with embedded SMA wires and elastic core. 

 

Transformation histories of the embedded SMA wires of the thin sandwich plates with viscoelastic and elastic 

core is shown in Figure 7. Totally, in thin plates, the embedded SMA wires have undergone a phase transformation 

area less than in the thick sandwich plates. This is due to the lower stress level of the embedded wires in the face 

sheets. For this reason, Figure 4-b shows that the SMA wires did not actually cause a noticeable damping in the 

structure. As mentioned above, since in these plates the level of the SMA wire’s stress is low compared to the 

required phase transformation stress, adding the viscoelastic core eliminates all the damping effect of the SMA 

wires. So that the wires in the top layer have only one cycle in the tensile part.  
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(a) 

 
(b) 

Fig 7: Transformation histories of the embedded SMA wires at the midpoint of the thin sandwich plate (  = 10a h ) with a 

viscoelastic core and elastic core: (a) upper and (b) lower layers. 

 

Figure 8 also shows the performance of the embedded SMA wires in a different way. Time variations of the 

martensite volume fraction of the midpoints of the upper and lower layers of the thin sandwich plate is shown in this 

figure. This parameter is a component to indicate the phase transformation of the SMA wires. In the case of thin 

sandwich panel with the embedded SMA wires and viscoelastic core, the SMA wires have virtually no phase 

transformation and have entered the phase transformation zone in only one cycle, to a very small extent. This can be 

seen in a different way in Figure 7. While the core is elastic, the SMA wires are relatively more active, although 

they still enter in to the phase transformation area very little. In general, the effect of embedded SMA wires on thick 

sandwich panels is greater than on thin panels. This issue is shown clearly in Figure 4 to 8. 
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(a) 

 
(b) 

Fig 8: Time variations of the martensite volume fraction of the midpoints of the upper and lower layers of the thin sandwich 

plate: 

(a) with embedded SMA wires and viscoelastic core, 

(b) with embedded SMA wires and elastic core. 
 

5. Conclusion 

In this paper, the nonlinear dynamic analysis of sandwich plates with the embedded SMA wires in the composite 

face sheets and viscoelastic core is investigated parametrically. In order to accurately examine the effect of the 

embedded SMA wires in the composite face sheets, the instantaneous changes in martensitic volume fraction of 

SMA wires are continuously studied. Also considering the asymmetrical behavior of shape memory alloys in tension 

and compression are other features of this research. In other words, to analyze the behavior of shape memory alloy 

wires the kinematic equations of phase transformation of the SMA coupled with the motion equations, which leads 

to nonlinear and more complex equations. Modified Brinson’s constitutive model has been used to model the 

behavior of SMA wires. In order to consider the effect of viscoelastic core, a standard linear model, which is one of 

the most suitable models for analyzing solid viscoelastic materials, has been used in real time method. Also, the 

global-local higher order theory with 3d elasticity correction has been used to solve the equations of the sandwich 

panel so that in addition to using the high solution speed, the results are also very accurate. Another feature of the 
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presented theory is considering variation of the sandwich thickness, which is necessary for the analysis of thick 

sandwich panels, especially with flexible cores. Because in many cases, due to the deformation of the soft core, the 

behavior of the upper face sheet is practically not similar to that of the lower one, which due to the presence of 

embedded SMA wires in the composite face sheets and their damping properties, this difference in behavior plays a 

significant role in dynamic response of the structure. After studied different cases, finally it could be concluded:  

✓ The effect of embedded shape memory wires on damping is negligible compared to viscoelastic core. 

However, SMA wires embedded in the thick sandwich panel are more effective than in the thin 

sandwich panel. 

✓ Results confirm, for the first time, that the hysteresis loops of the stress-strain loops of the embedded 

SMA wires may shrink or even disappear in presence of the structural damping such as viscoelastic 

core; so that, the common belief that two types of damping, i.e., the damping due to the phase 

transformation and the structural damping are combined without significant interactions, is incorrect.   

✓ The damping effect of the viscoelastic core, regardless of the stress level of the structure and the applied 

load to the sandwich panel, starts from the beginning of loading and continues until the moment of 

complete absorption of the sandwich panel energy.     

✓ Embedded SMA wires require a certain level of stress to act as a damping mechanism. And this effect 

gradually decreases until they are completely eliminated and are no longer effective in damping the 

sandwich panel. 

✓ In cases where the load applied to the structure is high, the use of Shape memory alloy wires is more 

effective in the damping of the panel, while if the intensity of the transient load applied to the structure 

is low, it is better than viscoelastic core to absorb fluctuations and to damp the applied energy. 
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