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Abstract 

This work is centered on propagation, reflection and transmission of waves 

in a micropolar fibre reinforced thermo-elastic solid and inviscid liquid 

interface in the presence of magnetic fields. Green and Lindsay thermo-

elastic theory is utilized for non-insulated boundary of the solid media. P-

wave incident at joint surface of the micropolar fibre reinforced thermo-

elastic solid-liquid media in the presence of magnetic field produces four 

coupled reflected waves; quasi-longitudinal displacement (qLD), quasi-

transverse displacement (qTD), quasi-transverse microrotational (qTM) and 

quasi-thermal (qT) wave, and two waves transmitted through the inviscid 

liquid medium; quasi-Longitudinal transmitted (qLT) and quasi-thermal 

transmitted (qTT) waves. Harmonic solution method is employed in 

conjunction with Snell’s laws cum Maxwell’s equation governing 

electromagnetic fields in the formulations and determination of solution to 

the micropolar fibre-reinforced solid/liquid modeled problem. Reflection 

and Transmission coefficients which correspond to reflected waves are 

presented analytically and graphically via numerical computations for a 

particular chosen material using Mathematica Software. Magnetic and 

thermal relaxation times field parameters have varied degree of effects to the 

propagation, reflection and transmission of waves in the media as observed. 

The study would be helpful in understanding the behavior of propagation, 

reflection and transmission of waves in micropolar fibre-reinforecd 

magneto- thermo-elastic-acoustic machination fields in solid/liquid interface 

and future works on the behavior of seismic waves, resulting in fluid 

interaction especially in geotechnical, physics, amongst others. 

Keywords: Micropolar fibre-reinforced, liquid, amplitude ratios, thermal effects, P-wave, magnetic 

fields; 

1. Introduction 

Compressional wave in nature which could as well be described as P-wave (primary waves), travel faster than 

any other type of waves and especially it is twice the speed of secondary waves (SV-waves) via any type of 

material. Propagation of waves through materials for instance; composite materials e.g., fibre-reinforced composites 
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and its deformation and analysis of stress is an interesting area of research in continuum mechanics let alone when 

there are fluid interactions. The strength and weightlessness occasioned by fibre reinforced materials made it 

possible for due recommendation to the fields of engineering, Science and Technology, composite materials in 

aeronautics, astronautics, earthquake sciences and so on, since in principle there exist stresses in solid and fluids to 

which analysis need to be ascertained and especially when they interfaced. Moreover, some materials possess pores 

Cowin and Nunziato [1, 2], Puri and Cowin [3] which constitutes characteristics that influences the chemical 

reactivity of solids and in turn its mechanical reactivity. This made it possible for researchers to sought ways to 

improve on certain materials by proposing new models such as the composite material models, to get rid of the 

anomaly encountered. And subsequently upon this, first grade micro-continuum which is a material property also 

due to deformation in terms of translational and rotational forms, is a major potential concept that characterizes the 

behavior of materials with complex structures in wave propagation, reflection and transmission. It consists of 

micropolar, microstretch, and micromorphic theories Eringen [4]. Thus, it’s of the view that most large bodies such 

as moon, planets and the earth possess angular velocities as proposed by Schoenberg and Censor [5] however, 

different from micro-continuum properties. 

Nevertheless, magnetic fields are vectors which give description of magnetic influences of both magnetized and 

current electricity conducting material. These are encountered in daily activities as in the case of permanent 

magnets. On a different note, thermal wave starts by assuming linear proportionality of heat flux and temperature 

gradient which was deduced from Fourier’s law of heat conduction. Hence, to examine and explain the mechanical 

composition of materials with all these physical phenomena, continuum models are capitalized on. Consequently, 

Lord and Shulman [6] postulated a generalized thermo-elasticity theory by inclusion of thermal relaxation times and 

heat flux terms in Fourier’s law of heat conduction.  Lindsay and Green [7], furthered the work by incorporating two 

time relaxation constants to the model while Green and Naghdi [8-10] gave three forms of relations that provides 

wider treatment to heat flux models.  

In spite of this, several authors McCarthy and Eringen [11], Kumar, Gogna and Debnath [12], Biswas, Sengupta, 

and Debnath [13], Kumar and Singh [14], have contributed to the study of micropolar elasticity theory in the 

literatures especially with effects of stretch, viscoelasticity, amplitude ratios of reflections of waves as the case may 

be. Singh [15] opined the reflection and transmission between micro-polar viscoelastic solid and liquid interfaces 

having stretch. Baljeet [16] accounted for the reflection of elastic plane surface waves with impedance boundary. 

Sengupta and Nath [17], developed a study on surface waves in fibre-reinforced media. Chattopadhyay, 

Venkateswarlu, Saha [18], investigated reflection of quasi-SV waves and quasi-P using both free and rigid boundary 

conditions for a fibre-reinforced medium. Chaudhary, Kaushik and Tomar [19], gave account on reflection and 

transmission of plane waves for two self-reinforced media.  Khan, Anya and Hajra [20] studied the effects of surface 

waves under the influence of gravity for non-homogeneous fibre-reforced media possessing voids. Tauchert [21], 

examined the thermal stresses in micropolar elastic solids. Chattopadhyay and Choudhury [22],studied and deduced 

results on reflection and transmission of waves under the magnetic effects for a self-reinforced medium. Kumar, 

Sharma and Garg [23], worked on reflection of plane waves in transversely isotropic micropolar visco-thermo-elastic 

media. Also, Abd-Alla, Abo-Dahab, Aftab [24], made contributions on the behavior of magneto-thermoelastic 

surface waves in a rotating fiber reinforced viscoelastic media of higher order. Parveen Lata [25], studied reflection 

and refraction of plane waves in a layered nonlocal elastic and anisotropic thermoelastic medium. Eigenvalue 

approach was utilized by Sinha and Bera [26], to solve the problem regarding generalized infinite rotating medium of 

thermo-elasticity with one relaxation parameter by introducing heat source. Sunita, Suresh and Kapil [27], recently 

examined reflection at free surface of fibre-reinforced thermoelastic rotating medium with two- temperature and 

phase-lag. Roy and Acharya [28], examined the Propagation and reflection of plane waves in a rotating magneto-

elastic fibre-reinforced semi space with surface stress. Singh and Sindhu [29], examined the Propagation of waves at 

interface between a liquid half-space and an orthotropic micropolar solid half-space. Also, Gupta [30], investigated 

on waves in micropolar transversely isotropic halfspace and inviscid liquid interface. Anya and Khan [20, 31-33] 

investigated on plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids and also on 

magneto-thermo-elastic waves under GL theory: a case of reflection and propagation. The authors Asemi et al [34-

37], carried out investigations on nanomaterials and nonlinear vibration analysis of piezoelectric 

nanoelectromechanical resonators and also in their research involved incorporated nonlocal effects. Baghani et al 

[38], Farajpour et al [39-46] developed models to study the dynamic and stability analysis of the rotating nanobeam in 

a nonuniform magnetic field considering the surface energy, buckling analysis of variable thickness of materials, 

large amplitude vibration of magneto-electro-elastic nanoplates, and higher-order nonlocal strain gradient plate 

model for buckling of orthotropic nanoplates with thermal effects, piezoelectric nanofilm-based electromechanical 

sensors, as the case maybe. Other authors like Ghayour et al [47], dealt with propagation of wave and its formulation 

in a fluid filled submerged visco-elastic finite cylindrical shells. Goodarzi et al [48] made investigation of the effect 

of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation. Also in a 
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similar vein, some others authors  Mohammadi et al [34-68], modeled a problem in thermo-mechanical vibration 

analysis of annular and circular graphene sheet embedded in an elastic medium, Levy type solution for nonlocal 

thermo-mechanical vibration of orthotropic mono-layer material, nonlinear vibration analysis of the viscoelastic 

composite nanoplate with three directionally imperfect porous FG core, and Hygro-mechanical vibration analysis of 

a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal 

environment. Moosavi et al [66] and Safarabadi et al [54] respectivel studied Vibration analysis of nanorings using 

nonlocal continuum mechanics and shear deformable ring theory and Effect of surface energy on the vibration 

analysis of rotating nanobeam while Danesh et al [64] gave account of axial vibration analysis of a tapered nanorod 

based on nonlocal elasticity theory and differential quadrature method. 

Be that as it may, the current examination is aimed to account for the propagation, reflection and transmission of 

magneto-thermo elastic plane waves at joint surfaces of micropolar fibre-reinforced solid and inviscid liquid 

interfaces under G-L theory when the boundary is not insulated. The formulations were made along the
1 2x x -plane 

and the equations of motions analytically derived. By using appropriate boundary conditions at the interface the 

amplitude ratios were achieved. Four reflected waves exists for incident P-wave at the interface  of the solid 

material; quasi-longitudinal displacement (qLD), quasi-transverse displacement (qTD) or quasi-transverse 

microrotational (qTM), and quasi-thermal waves while two waves exists in the liquid medium owing to no 

insulation of the solid medium; quasi-longitudinal transmitted (qLT) and qausi-thermal transmitted (qTT) waves. In 

addition, Mathematica Software aided in our numerical computations of results. These results i.e., the amplitude 

ratios are equally shown graphically by considering variations in the physical parameters to ascertain their effects to 

the modelled system. Some particular results could also be deduced in the absence of thermal effects, and magnetic 

fields, yielding the results of micropolar fibre-reinforced medium and liquid interface. 

 

2. Formulation of the problem 

The constitutive relations for a micro-polar heat conducting fibre-reinforced linearly elastic anisotropic medium 

with reinforcement direction ‘ a ’ is given by: 

 

1 (– )ij ijmn mn ijmn mn ij o oT TB E P
t

  
 

= +  
 


+ −


                                                                    (1) 

        jimnij mn mnji mnm B E P = +                                                                                                                                   (2) 

 

The deformations and wryness tensors are taken as: 

 

             * *

j,i ,, ,ij jim m mn m nE u    = + =                                                                                    (3) 

 

and the balance laws in the presence of external applied magnetic field jF  under G-L theory are given below: 

 

        ,ij i j jF u + =                                                                                                                                               (4) 

        
*

,ij i jmn mn jm J   + =                                                                                                                                 (5) 

       
2

2
( ) ( )  ( )ij v o o ij ij

i j

T
c T T E

x x t tt
   

    
= + +

   
                                                                                          (6) 

 

The thermal constants 
o  and

o , as stated in the above equations are termed thermal relaxation times equations and 

they satisfy the inequalities 
0 0.o    if 0o  , consequently 0,o   the Eq. (6) predicts a finite speed of 

propagation of thermal signals and if 
0 0o = = , the Eqs. (1) and (6) reduce to the coupled theory. The presumption 

that 0o =  and 0o  is also tenable; in this case the equation of motion continues to be affected by the temperature 

rate, while Eq. (6) predicts an infinite speed for the propagation of heat. In Eq. (1), we have made use of the 

condition 0- oT T T  to replace - oT T  by T  in the last term of Eq. (1). ijK represents conductivity tensor, c is the 

specific heat at constant deformation, ij  denotes the thermal moduli, 
* ,j ju

ij , ,ijm  are the microrotation vector, 
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displacement vector, stress tensor, and couple stress tensor respectively;  is the bulk mass density, J  is the 

microinertia; ,ijmnB jimnB  are characteristics constants of the material and also non symmetric properties of 

,ijmnB jimnB  and 
ijmnQ holds. For simplicity we chose 

1 2 3( , , )a a a a= such that 
3i ia = entails fibre direction such 

that
ij connotes Kronecker-Delta function, jim  is the Levi-Civita tensor. Index after comma represents partial 

derivative with respect to coordinate and superscript dot specifies partial derivative with respect to time. Consider 

the deformation in 
1 2x x -Plane and * *

3(0, 0, ) = . 
0i ijk j kF J H = . Linearized Maxwell equations in tensor form 

governing the electromagnetic field for a perfectly conducting medium as: 

, 0 , 0 , , 0, , 0, 0, ,ijk k j ijk j k ijk k j i i i i i i ijk j kH J E E H H E E u H      = =− = = =  are considered. 0 3 ,i i i iH H h h= +  is induced 

magnetic field and o  is electric permeability and the material lies in 
1 2x x − plane. Thus the magnetic force iF  is 

given as ( )2
0 0 , 0 0 i i iF H e u  = − , 3 0F = and ( )1 2 3 , 3, ,i k k ih x x x u =− , and  1.1 2,2e u u= + . In these equations,

iF  

represents magnetic force, 
iJ is current density,

iH is magnetic vector field
  

and 
o  is magnetic permeability. In 

view of the fact that the tensors are not symmetric in micropolar, Eqs.(4)- (6)  in component form take the forms: 

             

* * 2 2

1 1,11 2 3 2,12 4 1,22 1 3,2 1 0 0 0 1 11 ,(B ) (1 ) ( )oB T
t

u B u B u B H u u    + + + + −


+ = +


                                               (7) 

* 2 2

5 2,11 2 1,12 6 2,22 5 3,1 2 0 01 , 0 2 2(1 ) ( ),oB u B u B u B HT u
t

u    +


+ −


++− =                                         (8)  

* * * * * *

5 3,11 4 3,22 4 3 4 2,1 1,2 32 ( ) ,B B B B u u J    + − + − =                                                                                          (9)          

( )1 , 1 , ii v o o i iK T ρ c T T T β u= + + ,                                                                                                             (10)  

 

where; 

              

2 2
0 01 2 30 0

*2
04 5 6 1 4 30

( 2 2 4 ), ( ), 2( ),

2 ,B 2 , ( 2 ), ,

T L L T

T L T

B B BH H

B B B B BH

         

    

= + + − + + = + + = − 


= = = + + = − 
,                      (11) 

 

l T − ,  are fiber reinforced parameters. We employ the following dimensionless constants for 

convenience: 2 2

1 2 1 2 0 0 1 2 1 2 0 0 0 0 0 0 0( , , , ) ( , , , ), ( , , ) (t, , ), / ,ij ijx x u u c x x u u t c c               = = =
* * 2

3 5 3 0/ ,B c   =

2

0/ij ijm m c = , 
2

1 0T/ ,T c  = where
2

0 1 0 1/ , / ,vC K c B  = = are for the solid medium and 2

0/ ,ij ij c   =  

2

1 2 1 2 01 01 1 2 1 2 0 0 01 01 0 0( , , , ) ( , , , ), ( , , ) (t, , ),x x u u c x x u u t c           = = where
2

01 5 1 01 5 5/ , /vC K c   = = , are for the 

inviscid liquid medium. The dimensionless constants are introduced into Eqs. (7-10) and the upper sign “  ” 

dropped, gives;  

 

    * *

1,11 11 2,12 13 1,22 11 3,2 1, 1 1(1 ) ( ),o T
t

u B u B u B u u + + + − = +


+


                                                                             (12)    

   
*

14 2,11 12 1,12 15 2,22 3,1 2, 1 1(1 ) ( ),o T
t

B u B u B u u u + + − − = +


+


                                                                              (13) 

 

   * * * * * *

12 3,11 13 3,22 7 3 8 2,1 1,2 3( ) ,B B B B u u J   + − + − =                                                                                                 (14) 

   ( ), 9 , ii o i iT T T B u= + +    .                                                                                                                                (15) 

 

Here, * * * * * *

11 12 13 14 15 11 12 13 2 3 2 4 5 6 1 5 4 1( , , , , , , , ) (( ), , , , , , , ) /B B B B B B B B B B B B B B B B B B= + ,
2 3 2

7 4 1 12( K ) / vB B B C= , 

         
2 3 2

8 4 5 1 1( K ) / vB B B B C= , 2

9 1 1( ) / ,o vB T B C = and 2 2

0 0 0( ) / .H   =  
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3. Normal mode analysis and solution of the problem 

In this section, consider joint media of a homogeneous micropalar fibre-reinforced solid in the half-space 
2 0x   

and liquid medium occupying the half-space
2 0x  . This is such that they are in contact at

2 0x = .  Let the normal 

mode analysis or harmonic solution approach be applicable such that the incident waves have the displacement 

chosen as;  

                   
{ ( ) }*

3( , , ( ) ) ( , , ) , 1, 2.j j
i k x p t

i ooT Tu R P e i j


  
−

= = = =−                                                             (16)     

Where R, P, 
*

0 , and 0 are amplitudes of 
*

1 2 3, ,u u   and  respectively.  , is the angular velocity or frequency of 

the wave, c
k


= is the phase velocity of the wave, and k  is the wave number. Making use of Eq. (16) into Eqs. (12- 

15) respectively, yields the non-dimensional equations below: 

 

            2 2 2 * *

1 11 1 2 11 2 0 1( { ( 1)}) { } { } { (1 ) } 0,o ok D c R k B p p P i kiB p ik ick p   − + + − + − =                                                          (17)      

           2 2 2 *

12 1 2 2 1 0 2{ } { ( ( 1))} { } { (1 ) } 0,o ok B p p R k D c P i ikp ik ick p   + − + + + − =                                                           (18) 

           2 2 2 *

8 2 8 1 3 7 0{ } { } { } 0,ikB p R ikB p P k D B Jk c − + + − =                                                                                  (19)     

            2 2 2

9 1 9 2( ) ( ) ( ) 0.o okB ck p R kB ck p P ick k c k − − + + − =                                                                        (20) 

 

Here 2 2 2 2

1 1 13 2 2 14 1 15 2, ,D p B p D B p B p= + = + * 2 * 2

3 12 1 13 2D B p B p= + . 

For non-trivial solution, Eqs.(3.6)-(3.8), becomes the quartic equation as follows: 

 

               4 3 2

1 2 3 4 0.d C d C d C d C+ + + + =                                                                                                                 (21) 

 

Where 2.d k=  This shows that the characteristic Eq. (21) with complex coefficients 
1 2 3, , ,C C C and 

4C (See 

appendix) yields four complex roots; detailing that four waves propagates, with complex phase velocities: 

1 2 3 4, , andc c c c corresponding to the wave number
1 2 3 4, , ,and ,k k k k  in the solid medium respectively. This also 

entails that  the  two dimensional model of magneto-thermo-elastic micropolar fibre-reinforced solid half space 

under G-L theory for a non-insulated boundary have four waves;  quasi-P wave, quasi-SV wave, quasi-transverse 

microrotational wave  and thermal wave travelling in the solid medium. Following [29] for the liquid medium, 

consider
1 2 6 5B B B = = = , 

5 , = and * * *

4 5 1 4 5 0B B B B B= = = = =  into Eqs. (7-10) to obtain the non-dimensional 

equation for a non-trivial solution as: 

 

 2

11 1 12 1 13 0E d E d E+ + =                                                                                                                                (22) 

 

Where 2

1 * ,d k= and
11 12 13, ,E E and E given in appendix, are complex coefficients of the characteristic equation in 

the inviscid liquid medium such that Eq. (3.10) possesses two complex phase velocities: 5 ,c and 
6c   corresponding 

to the wave number 5 ,k  and
6.k Thus, in the liquid medium quasi-longitudinal and quasi-thermal wave can 

propagate. Any one of four waves can be chosen as incident wave.  

In Fig. 1, when quasi-P wave 0( )A  is incident at the boundary 2 0x =  of a  rotating magneto-thermo-elastic  

micropolar fibre-reinforced non-insulated anisotropic solid at the boundary and liquid interface under G-L theory, 

there exist reflected waves as quasi-P (
1A ) or qLD, quasi-SV (

2A ) or qTD, quasi-TM (
3A ) and quasi-thermal 

(
4A ). Also the transmitted waves exists as; transmitted qLD (

5A ) and transmitted thermal wave (
6A ), See Fig.1 
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Fig 1: Schematic of the problem showing incidence, reflected and transmitted 

waves in the solid/liquid interface under magnetic effects. 

 

3.1 Boundary conditions 

22 22 22 22 21 12 23 ,2 ,2, 0, 0,  0,l l lm T T           + = + = = = =  for non-insulated boundary and 

2 2

lu u = at
2 0x = , =0, 1 ,2, 3, 4 and  l =5, 6, and the sign “  ” indicates liquid medium. Where, Maxwell’s 

stresses Abd- Alla et al [24] are as follows: 0 0 ,ij i j j i k k ijH H h H h H h   = + − 

3 1

0 0 3 2

1 2 3

0

0 .ij

h h

H h h

h h h

 

− 
 

 = −
 
  

 

Here,
3 0 1,1 2,2( )h H u u=− + , 

1 2 0,h h= = and 
22 22 0 + =  2 *

22 0 0 1,1 2,2 23 3,2( ) 0 , 0 0.H u u m  + + = =  =           

That is at
2 0x = , normal force stresses, normal components of displacement vectors, and temperature gradients are 

continuous, while tangential stresses, tangential couple stresses vanishes. We choose the displacement components, 

micro-rotation vectors and temperature as:   

  

 

1 1 1 1 2 1

*

2 1 0 1

*

3 1 0 1

, , ,

, ,

, ,

l l
l l

l
l

i i il l l l l

i il l l l

i i

u A d e u A d e u I A d e

u W A d e T T I A d e

ik G A d e T T X A d e







 
 

   

   

      



= = =


= − = 


= − = 

                                                                                                    (23) 

 

Here, 1 1 2 2( ), 0k x p x p c t 

   = + − = correspond to incident wave, 1,2,3,4 = corresponds to reflected waves in 

the solid medium   and   1 1 2 2( ),l l

l l lk x p x p c t = + − where 5and6l = corresponds to transmitted waves in the inviscid 

liquid medium. Also, the coupled relations for the solid medium are obtained from Eqs. (17-20)  i.e. 
2 2 * 2 2 2

1 1 1 11 2 12 1 2 0

* ( )2 ( )2

0 11 2 1 9 1

* 2 2 2 2 2

2 11 2 2 1 12 1 2 0

0

{ ( ( ( ( 1))) ( )}{ ( 1)}

(1 )( )( ),

{ ( ( ( 1))) ( )}{ ( 1)}

(1

W p k D c B p k B p p ic k k c

ik ic k B p p B k p

W B p k D c p k B p p ic k k c

ik ic k

     

      

  

   

     

      

  

 

 

 



= − + + + − +

− +

= − + + + − +

− * ( )2 ( )2

11 2 1 9 2

2 2 2

1 2 8 1 2 3 7

2 2

9 2 1 0

)( )( ),

/ , ( ( )) / ,

( ( )) / ( 1).

B p p B k c k p

W F F G ik B p F p k D B Jk c

X k B p W p ic k k c

  

  

       

   

   

    

+

= − = − + −

= + + −

, 
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Here 
( )2 ( )2 ( )2 ( )2

1 1 13 2 2 14 1 15 2, ,D p B p D B p B p     = + = + and * ( )2 * ( )2

3 12 1 13 2 ,D B p B p  = + and similarly, the coupled 

equations for the inviscid liquid medium take the forms: 

 
2 2 2 2 2 2

2 1 1 1 2 1 2 2 1 2I { ( ( ( 1))) ( )}/{ ( ( ( 1))) ( )}l l l l l l l l l l l

l lp k D c p k p p p k D c p k p p    = − + − − + −

* 2 2

10 2 1 0( ( )) / ( 1)l l l l

l l l l lI k B p I p ic k k c= + + − , where 
(l)2 (l)2

1 1 2 2and .l lD p D p= =  

 

Using Eq. (23) into dimensionless boundary conditions, we obtain the system: ij j ia Z b= . Where; 

2 2

1 2 0 0 1 1 6 0 0 1 2 0 1

2 (0) 2 (0) (0) (0) (0)

0 2 0 0 1 1 6 0 0 1 2 0 0 0 1

({ {( ( / )) ( ( / )) } ( ) } ) /

{ {( ( / )) ( ( / ) } ( ) }

j j j j j

j j j ja k A H B p A H B W p i c k X d

k A H B p A H B W p i c k H d

  

  

 = + + + + +

 + + + + +
, 

2 2 *

1 0 0 5 1 0 0 5 2 0 1

2 (0) 2 (0) (0) (0) (0)

0 2 0 0 1 1 6 0 0 1 2 0 0 0 1

({ {(1 ( / )) (1 ( / )) } ( ) } ) /

{ {( ( / )) ( ( / )) } ( ) }

l l j l l

l l l la k H p H I p i c k I d

k A H B p A H B W p i c k X d

    

  

= − + + + + +

 + + + + +
, 

* (0) (0) (0) * (0) (0)

2 3 1 13 2 11 1 0 3 1 13 2 11 1 25 26(( {W } )) /{ {W } , 0, 0,j j j j j

j ja k A p B p B G d k A p B p B G d a a = + + + + = =  

(0) 0 (0) 0

3 14 1 1 0 14 1 1 35 36({ {W } ) /{ {W } , 0, 0,j j j j

j la k B p G d k B p G d a a= − − = =  

2 2 0 0 0 (0) (0) 1/2 (0) (0)

4 2 1 0 2 1 45 46 5 1 1 1 5 5 5 1 1( ) / , 0, 0, { / W }( / ) , / ,j j j l l j j

j j l ja k p G d k p G d a a a I d d B a W d W d  = = = = − =

(0) (0) (0) * (0) (0) (0) 3 3 1/2

6 2 1 0 2 1 6 2 1 0 2 1 5 5 1/ , / ( / ) , 1,2,3,4, 5,6,j j j l l l

j j l la k p X d k p X d a k p I d k p X d B j l  = = − = =  

0/ , 1, 1, 2,3, 4,5, 6.i i iZ A A b i= = − =
* *

6 6 1 3 3 1 2 2 1A / , A / ,A / ,B B B B B B  = = = * *

2 6( ), ( 2 )TB B   = + = + . ija as 

the coefficients of the system are found by by using Snell’s law: 
(0) (1) (2) (3) (4) (5) (6)

0 1 1 1 2 1 3 1 4 1 5 1 6 1

0 0 1 1 2 2 3 3 4 4 5 5 6 6

.

.

k p k p k p k p k p k p k p k

k c k c k c k c k c k c k c 

= = = = = = =

= = = = = = =
 

 

Notice that 0k = 1k and 0c =
1c . Components of propagation and unit displacement vector are as follows:  

(0) (0) (0) (0) (1) (1) (1) (1)

1 2 1 2 1 1 2 1 1 1 2 1

(2) (2) (2) (2) (3) (3) (3) (3)

1 2 2 1 1 2 2 2 1 3 2 3 1 3 2 3

(4)

1

, , , , , , , ,

, , , , , , , ,

p Sin p Cos d Sin d Cos p Sin p Cos d Sin d Cos

p Sin p Cos d Cos d Sin p Sin p Cos d Cos d Sin

p Si

       

       

= = = = = = − = = −

= = − = = = = − = =

= (4) (2) (4) (5) (5) (5) (5)

4 2 4 1 4 2 2 1 5 2 5 1 5 2 5

(6) (6) (6) (6)

1 6 2 6 1 6 2 6 1

, , , , , , , ,

, , , , (due to laws of reflection)

n p Cos d Cos d Sin p Sin p Cos d Sin d Cos

p Sin p Cos d Sin d Cos

       

     

= − = = = = = =

= = = = =

         

  

4. Computational results and discussion 

The effects of magnetism and thermal parameters on the reflection and transmission coefficients of plane waves 

in a micropolar fibre-reinforced material under Green and Lindsay theory of thermo-elasticity are studied by utilizing 

the numerical micropolar fiber-reinforced physical constants [27, 29, 30] and other parameters as:   

 
10 1 2 10 1 2

10 1 2 9 1 2

10 1 2 3

* 9 * 9 2

0 4 5

0 0 0

2.46 10 kg m s ; 5.66 10 kg m s ;

5.65 10 kg m s ; 1.28 10 kg m s ;

220.9 10 kg m s ; 2660 m ; 2;

1000; 3.71 10 ; 3.9 10 ;J 0.000196 ;

2.93 ; 0.15 ; 0.40 ; 0.787

T L

v

kg

H B B m

T K s s C

 

 

  

 

− − − −

− − − −

− − −

=  = 

=  = − 

=  = =

= =  =  =

= = = = 3 1 1

3 3 1 1 1 10 1 2

5 1 5

10 J deg ;

1000kg m ; 0.0963 10 J m s deg ; 11.65 10 kg m s

kg

K 

− −

− − − − − −



= =  = 

 

 

Using Snell’s law, the angles of reflections are deduced and the velocities computed with the help of the wave 

numbers. Figs. (2-4) represent the graphical representation of the amplitude ratios. This is such that we considered 

variations between the reflection and transmission coefficients (RC/TC or iZ ) for an incident P-wave with angle 

“ ” for different magneto-thermo-elastic parameters
0 ,H 0 and

0 . Ascertaining the effects of these parameters on 

modulation, reflection and transmission coefficients of waves under the G-L theory of thermo-elasticity for non-
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insulated boundary are then discussed below. 

 

 

 
 

Fig 2:  Variations of amplitude ratios 
iZ  of reflected and transmitted waves versus 

 angle of incidence for distinct values of magnetic field parameter
0H . 

 

Fig. 2 shows the variation of amplitude ratios (RC/TC) or
iZ , 1,2,3,4,5i = , 6 of qLD, qTD, qTM qT, qLT and 

qTT waves respectively versus incident angle with varying magnetic field parameter
0H  and constant thermal 

relaxation times. The amplitude ratios
iZ , 1,2,3,4,5,6i = are decreased for increased magnetic effects and increasing 

angles. This means that higher amplitude ratios are attained when the magnetic parameters are removed thus 

showing that the modulation of the waves are been influenced. Also for 00 ,  i.e. as the angle increases, mixed 

behaviors in terms of modulation, decrease and increase in amplitudes are encountered between varying magnetic 

parameters in the media especially on qLD and qLT waves. Hence higher magnetic effects could lead to vanishing 

of the waves before grazing angles of incidence. 
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Fig 3:  Variations of amplitude ratios 
iZ  of reflected and transmitted waves versus 

incidence angle for distinct values of thermal relaxation parameter
0 . 

 

Furthermore, Fig. 3 represents the variation of amplitude ratios (RC/TC) or
iZ , 1,2,3,4,5i = ,6 of qLD, qTD, 

qTM qT, qLT and qTT waves respectively against incident angle with variations in  thermal relaxation parameter
0  

and constant magnetic field parameter
0H . Hence, it’s obvious that the amplitude ratios

iZ , 2,3,4,6i = are increased 

for increasing thermal relaxation parameter 0 and increasing angles. This means that higher amplitude ratios are 

attained in the presence of thermal relaxation parameter 0  and thus showing increase in modulation of the waves. 

Also, for a reduced thermal relaxation parameter
0 , the wave’s modulations and amplitudes of

iZ , 2,3,4,6i =  

vanishes faster near grazing angle of incidence. Nevertheless, 
iZ 1,5i = of the reflected quasi-longitudinal and 

quasi-longitudinal transmitted waves in both the solid and liquid materials respectively, depicts somewhat mixed 

behaviors of increase and decrease, as the angle increases for constant magnetic effects and
0 . Moreover, 

for 0 00 38.5 , 
iZ 1i = , increases for reduced thermal relaxation parameter 0  and subsequently increases in 
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amplitudes for 038.5 ,  while
iZ 1i = and its modulations are clearly displayed in mixed effects of increment and 

decrement as the angle increases. 

 

 

 
 

Fig 4: Variations of amplitude ratios 
iZ  of reflected and transmitted waves versus 

 incidence angle for distinct values of thermal relaxation parameter
0  

 

Furthermore, Fig. 4 represents the variation of amplitude ratios (RC/TC) or
iZ , 1,2,3,4,5i = ,6 of qLD, qTD, 

qTM, qT, qLT and qTT waves respectively against incident angle with varying thermal relaxation parameter
0  and 

constant magnetic field parameter
0H . Note that the modulation and amplitude ratio of

iZ , 1i = , has a consistent 

decrease for increased thermal relaxation parameter
0 between 0 00 35  and with mixed behaviours 

for 0 035 63 ,  as it subsequently returns in a consistent decrease for 063 .   iZ , 2,3,4i = yielded a somewhat 

consistent increment for higher values of thermal relaxation parameter
0 and with vanishing characterization as the 
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angle of incidence increases. We observed that the modulation and amplitude ratio of
iZ , 5i = , also has a consistent 

decrease for increased thermal relaxation parameter 0 between the normal angle of incidence and 035  , and with 

mixed behaviors occurring for 035  i.e., modulations and hence the amplitude ratio increases and decreases along 

these angles of incidence. In a similar manner, for 00  , 
iZ , 6i = showed mixed behaviors and with considerable 

increments for increased
0  and constant magnetic effects with the propensity to vanish as the angle increases before 

the grazing angle of incidence. 

 

5. Conclusion 

     This investigation was centered on the propagation, reflection and transmission of magneto-thermo-elastic plane 

waves in micropolar fibre-reinforced solid and liquid interface using Green and Lindsay theory of thermo-elasticity 

and with no insulation at the interface of the resulting media. coupled waves; quasi-longitudinal displacement (qLD) 

wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational (qTM) wave and quasi-thermal 

waves were observed traveling in the solid medium while two waves; quasi- Longitudinal transmitted qLT and 

quasi-thermal transmitted (qTT) waves are found to propagate in the liquid medium, owing to non-insulation of the 

interface. The physical characterization of the study hinges on thermal effects using G-L theory under the influence 

of magnetic fields. Thus, the combined effects of these physical characterizations have remarkable degrees of 

influences on the modulation of the waves in the media as well as its corresponding amplitudes as observed from the 

numerical simulated graphs. While magnetic field decreases the reflection and transmission coefficients of waves in 

the modeled problem; in both the solid and the liquid medium in generally, the reverse is the case for thermal 

relaxation times effects, notwithstanding their mixed behaviors encountered in both effects within some given range 

of values of incident angles as the waves propagates. We can deduce that reflection and transmission cannot occur 

for some incident angles in the media. Cases found in literatures are similar to this study if we neglect thermal or 

magnetic parameters, thus yielding micropolar fiber reinforced investigation. 

      Therefore, it is worth noting to state that this research work should be of great importance to researchers in new 

materials or designers in material sciences, new researchers in the field and experimental based examination 

involving modulation, reflection and transmission of magneto-thermo-elastic plane waves in micropolar fibre- 

reinforced solid and liquid interactions and also in mechanization fields similar to seismology or earthquake 

analysis. 
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