Plane waves in micropolar fibre-reinforced solid and liquid interface for non-insulated boundary under magneto-thermo-elasticity

Augustine Igwebuike Anya	extsuperscript{1}*, Aftab Khan	extsuperscript{2}

	extsuperscript{1}GST-Mathematics Division, Veritas University Abuja, Bwari-Abuja, Nigeria
	extsuperscript{2}Department of Mathematics, COMSATS University Islamabad, Park Road Chak Shahzad, 44000 Islamabad, Pakistan

Abstract

This work is centered on propagation, reflection and transmission of waves in a micropolar fibre reinforced thermo-elastic solid and inviscid liquid interface in the presence of magnetic fields. Green and Lindsay thermo-elastic theory is utilized for non-insulated boundary of the solid media. P-wave incident at joint surface of the micropolar fibre reinforced thermo-elastic solid-liquid media in the presence of magnetic field produces four coupled reflected waves; quasi-longitudinal displacement (qLD), quasi-transverse displacement (qTD), quasi-transverse microrotational (qTM) and quasi-thermal (qT) wave, and two waves transmitted through the inviscid liquid medium; quasi-Longitudinal transmitted (qLT) and quasi-thermal transmitted (qTT) waves. Harmonic solution method is employed in conjunction with Snell’s laws cum Maxwell’s equation governing electromagnetic fields in the formulations and determination of solution to the micropolar fibre-reinforced solid/liquid modeled problem. Reflection and Transmission coefficients which correspond to reflected waves are presented analytically and graphically via numerical computations for a particular chosen material using Mathematica Software. Magnetic and thermal relaxation times field parameters have varied degree of effects to the propagation, reflection and transmission of waves in the media as observed. The study would be helpful in understanding the behavior of propagation, reflection and transmission of waves in micropolar fibre-reinforced magneto- thermo-elastic-acoustic machination fields in solid/liquid interface and future works on the behavior of seismic waves, resulting in fluid interaction especially in geotechnical, physics, amongst others.

Keywords: Micropolar fibre-reinforced, liquid, amplitude ratios, thermal effects, P-wave, magnetic fields;

1. Introduction

Compressional wave in nature which could as well be described as P-wave (primary waves), travel faster than any other type of waves and especially it is twice the speed of secondary waves (SV-waves) via any type of material. Propagation of waves through materials for instance; composite materials e.g., fibre-reinforced composites

* Corresponding author.
E-mail address: anyaa@veritas.edu.ng, anyaaugustineigwebuike@gmail.com.
and its deformation and analysis of stress is an interesting area of research in continuum mechanics let alone when there are fluid interactions. The strength and weightlessness occasioned by fibre reinforced materials made it possible for due recommendation to the fields of engineering, Science and Technology, composite materials in aeronautics, astronautics, earthquake sciences and so on, since in principle there exist stresses in solid and fluids to which analysis need to be ascertained and especially when they interfaced. Moreover, some materials possess pores which constitutes characteristics that influences the chemical reactivity of solids and in turn its mechanical reactivity. This made it possible for researchers to sought ways to improve on certain materials by proposing new models such as the composite material models, to get rid of the anomaly encountered. And subsequently upon this, first grade micro-continuum which is a material property also due to deformation in terms of translational and rotational forms, is a major potential concept that characterizes the behavior of materials with complex structures in wave propagation, reflection and transmission. It consists of micropolar, microstretch, and micromorphic theories Eringen [4]. Thus, it’s of the view that most large bodies such as moon, planets and the earth possess angular velocities as proposed by Schoenberg and Censor [5] however, different from micro-continuum properties.

Nevertheless, magnetic fields are vectors which give description of magnetic influences of both magnetized and current electricity conducting material. These are encountered in daily activities as in the case of permanent magnets. On a different note, thermal wave starts by assuming linear proportionality of heat flux and temperature gradient which was deduced from Fourier’s law of heat conduction. Hence, to examine and explain the mechanical composition of materials with all these physical phenomena, continuum models are capitalized on. Consequently, Lord and Shulman [6] postulated a generalized thermo-elasticity theory by inclusion of thermal relaxation times and heat flux terms in Fourier’s law of heat conduction. Lindsay and Green [7], furthered the work by incorporating two time relaxation constants to the model while Green and Naghdi [8-10] gave three forms of relations that provides wider treatment to heat flux models.

In spite of this, several authors McCarthy and Eringen [11], Kumar, Gogna and Debnath [12], Biswas, Sengupta, and Debnath [13], Kumar and Singh [14], have contributed to the study of micropolar elasticity theory in the literatures especially with effects of stretch, viscoelasticity, amplitude ratios of reflections of waves as the case may be. Singh [15] opined the reflection and transmission between micro-polar viscoelastic solid and liquid interfaces having stretch. Baljeet [16] accounted for the reflection of elastic plane surface waves with impedance boundary. Sengupta and Nath [17], developed a study on surface waves in fibre-reinforced media. Chattopadhyay, Venkateswarlu, Saha [18], investigated reflection of quasi-SV waves and quasi-P using both free and rigid boundary conditions for a fibre-reinforced medium. Chaudhary, Kaushik and Tomar [19], gave account on reflection and transmission of plane waves for two self-reinforced media. Khan, Anya and Hajra [20] studied the effects of surface waves under the influence of gravity for non-homogeneous fibre-reinforced media possessing voids. Tauchert [21], examined the thermal stresses in micropolar elastic solids. Chattopadhyay and Choudhury [22], studied and deduced results on reflection and transmission of waves under the magnetic effects for a self-reinforced medium. Kumar, Sharma and Garg [23], worked on reflection of plane waves in transversely isotropic micropolar visco-thermo-elastic media. Also, Abd-Alla, Abo-Dahab, Aftab [24], made contributions on the behavior of magneto-thermoelastic surface waves in a rotating fiber reinforced viscoelastic media of higher order. Parveen Lata [25], studied reflection and refraction of plane waves in a layered nonlocal elastic and anisotropic thermoelastic medium. Eigenvalue approach was utilized by Sinha and Bera [26], to solve the problem regarding generalized infinite rotating medium of thermo-elasticity with one relaxation parameter by introducing heat source. Sunita, Suresh and Kapil [27], recently examined reflection at free surface of fibre-reinforced thermoelastic rotating medium with two- temperature and phase-lag. Roy and Acharya [28], examined the Propagation and reflection of plane waves in a rotating magneto-elastic fibre-reinforced semi space with surface stress. Singh and Sindhu [29], examined the Propagation of waves at interface between a liquid half-space and an orthotropic micropolar solid half-space. Also, Gupta [30], investigated on waves in micropolar transversely isotropic halfspace and inviscid liquid interface. Anya and Khan [20, 31-33] investigated on plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids and also on magneto-thermo-elastic waves under GL theory: a case of reflection and propagation. The authors Asemi et al [34-37], carried out investigations on nanomaterials and nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators and also in their research involved incorporated nonlocal effects. Baghani et al [38], Farajpour et al [39-46] developed models to study the dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, buckling analysis of variable thickness of materials, large amplitude vibration of magneto-electro-elastic nanoplates, and higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates with thermal effects, piezoelectric nanofilm-based electromechanical sensors, as the case maybe. Other authors like Ghayer et al [47], dealt with propagation of wave and its formulation in a fluid filled submerged visco-elastic finite cylindrical shells. Goodarzi et al [48] made investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation. Also in a
similar vein, some others authors Mohammadi et al [34-68], modeled a problem in thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer material, nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core, and Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Moosavi et al [66] and Safarabadi et al [54] respectively studied Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory and Effect of surface energy on the vibration analysis of rotating nanobeam while Danesh et al [64] gave account of axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method.

Be that as it may, the current examination is aimed to account for the propagation, reflection and transmission of magneto-thermo elastic plane waves at joint surfaces of micropolar fibre-reinforced solid and inviscid liquid interfaces under G-L theory when the boundary is not insulated. The formulations were made along the x_1, x_2-plane and the equations of motions analytically derived. By using appropriate boundary conditions at the interface the amplitude ratios were achieved. Four reflected waves exists for incident P-wave at the interface of the solid material; quasi-longitudinal displacement (qLD), quasi-transverse displacement (qTD) or quasi-transverse microrotational (qTM), and quasi-thermal waves while two waves exists in the liquid medium owing to no insulation of the solid medium; quasi-longitudinal transmitted (qLT) and quasi-thermal transmitted (qTT) waves. In addition, Mathematica Software aided in our numerical computations of results. These results i.e., the amplitude ratios are equally shown graphically by considering variations in the physical parameters to ascertain their effects to the modelled system. Some particular results could also be deduced in the absence of thermal effects, and magnetic fields, yielding the results of micropolar fibre-reinforced medium and liquid interface.

2. Formulation of the problem

The constitutive relations for a micro-polar heat conducting fibre-reinforced linearly elastic anisotropic medium with reinforcement direction \vec{a} is given by:

$$\sigma_{ij} = B_{jmn}E_{mn} + P_{jmn}\mathcal{Q}_{mn} - \beta_{ij} \left(1 + \nu_{o} \frac{\partial}{\partial t} \right)(T - T_{o})$$

(1)

$$m_{ij} = B_{jmn}\mathcal{E}_{mn} + \rho_{jmn}\mathcal{Q}_{mn}$$

(2)

The deformations and wryness tensors are taken as:

$$E_{ij} = u_{j,i} + \epsilon_{jmn}\phi_{m}^{*}, \quad \mathcal{Q}_{mn} = \phi_{m,n}^{*},$$

(3)

and the balance laws in the presence of external applied magnetic field F_{j} under G-L theory are given below:

$$\sigma_{ij,i} + F_{j} = \rho \ddot{u}_{j}$$

(4)

$$m_{ij,i} + \epsilon_{jmn}\sigma_{mn} = \rho J \ddot{\phi}_{j}$$

(5)

$$\frac{\partial}{\partial x_{j}} \left(\kappa_{o} \frac{\partial T}{\partial x_{j}} \right) = \rho c_{v} \left(\frac{\partial}{\partial t} + \tau_{o} \frac{\partial^{2}}{\partial t^{2}} \right) T + T_{o} \beta_{0} \left(\frac{\partial}{\partial t} \right) E_{j}$$

(6)

The thermal constants ν_{o} and τ_{o}, as stated in the above equations are termed thermal relaxation times equations and they satisfy the inequalities $\nu_{o} \geq \tau_{o} \geq 0$. if $\tau_{o} > 0$, consequently $\nu_{o} > 0$, the Eq. (6) predicts a finite speed of propagation of thermal signals and if $\nu_{o} = \tau_{o} = 0$, the Eqs. (1) and (6) reduce to the coupled theory. The presumption that $\tau_{o} = 0$ and $\nu_{o} = 0$ is also tenable; in this case the equation of motion continues to be affected by the temperature rate, while Eq. (6) predicts an infinite speed for the propagation of heat. In Eq. (1), we have made use of the condition $|T - T_{0}| \ll T_{0}$ to replace $T - T_{0}$ by T in the last term of Eq. (1). K_{o} represents conductivity tensor, c_{v} is the specific heat at constant deformation, β_{0} denotes the thermal moduli, $\phi_{j}^{*}, u_{j}, \sigma_{ij}, m_{ij}$ are the microrotation vector,
displacement vector, stress tensor, and couple stress tensor respectively; \(\rho \) is the bulk mass density, \(J \) is the microinertia; \(B_{jmn} \), \(B_{jmm} \) are characteristics constants of the material and also non symmetric properties of \(B_{jmn} \), \(B_{jmm} \) and \(Q_{jmm} \) holds. For simplicity we chose \(a = (a_1, a_2, a_3) \) such that \(a_i = \delta_{ij} \) entails fibre direction such that \(\delta_j \) connotes Kronecker-Delta function, \(\varepsilon_{jmn} \) is the Levi-Civita tensor. Index after comma represents partial derivative with respect to coordinate and superscript dot specifies partial derivative with respect to time. Consider the deformation in \(x_1, x_2, \ldots \) Plane and \(\phi^J = (0,0,\phi^J_3) \). \(F_j = \mu_j \varepsilon_{jmn} J_j H_k \). Linearized Maxwell equations in tensor form governing the electromagnetic field for a perfectly conducting medium as:

\[
e_{jkl} H_{ij} = \varepsilon_0 \varepsilon_{jkl} J_j E_k, \quad \varepsilon_{jkl} E_{ij} = -\mu_j H_{ij}, \quad H_{ij} = 0, \quad E_{ij} = 0, \quad E_j = \mu_j \varepsilon_{jkl} u_k H_k, \quad \text{are considered.} \quad H_i = H_0 \delta_{ij} + h_i \quad \text{is induced magnetic field and} \ \varepsilon_0 \quad \text{is electric permeability and the material lies in} \ x_1, x_2 - \text{plane.} \quad \text{Thus the magnetic force} \ F_i \quad \text{is given as} \quad F_j = -\mu_0 H_0^2 \left(e_j - \varepsilon_0 \mu_0 u_j \right) \quad \text{and} \quad h_i \left(x_1, x_2, x_3 \right) = -u_j \delta_{ij}, \quad \text{and} \ e = u_{1,1} + u_{2,2} \). In these equations, \(F_i \) represents magnetic force, \(J \) is current density, \(H_i \) is magnetic vector field and \(\mu_j \) is magnetic permeability. In view of the fact that the tensors are not symmetric in micropolar, Eqs.(4)-(6) in component form take the forms:

\[
B_{j} u_{j,11} + (B_{2} + B_{3}) u_{2,12} + B_{2} u_{2,22} + B_{3} \phi^J_{3,3,2} - \beta_1 (1 + \nu_0) \frac{\partial}{\partial t} T_{3} = (e_0 \mu_0^2 H_0^2 u_i + \rho \ddot{u}_i)
\]

\[
B_{j} u_{j,11} + B_{2} u_{2,12} + B_{2} u_{2,22} - B_{3} \phi^J_{3,3,1} - \beta_1 (1 + \nu_0) \frac{\partial}{\partial t} T_{2} = (e_0 \mu_0^2 H_0^2 u_i + \rho \ddot{u}_i).
\]

\[
B_{j} \phi^J_{3,11} + B_{4} \phi^J_{3,3,2} - 2B_{4} \phi^J_{3,3,1} + B_{4} (u_{2,1} - u_{1,2}) = \rho J \ddot{\phi}^J_3,
\]

\[
K_j T_{ji} = \rho \ c_v \left(\dddot{T} + \tau_o \dddot{T} \right) + T_o \beta_j \dot{u}_{i,j}.
\]

where;

\[
B_1 = (\lambda + \beta + 2\alpha - 2\mu - 4\mu_0 + \mu_0^2 H_0^2), \quad B_2 = (\lambda + \alpha + \mu_0^2 H_0^2), \quad B_3 = 2(\mu_0 - \mu_1), \quad B_4 = 2\mu_1, \quad B_5 = (\lambda + 2\mu_0 + \mu_0^2 H_0^2), \quad B_j = B_5 - B_4,
\]

\[
\frac{\mu_0 - \mu_j}{\alpha} \quad \text{are fiber reinforced parameters. We employ the following dimensionless constants for convenience:} \quad \left(x'_1, x'_2, u'_1, u'_2 \right) = c_{00} \eta_0 (x_1, x_2, u_1, u_2), \quad (t', \tau'_0, \nu'_0) = c_{00} \eta_0 (t, \tau_0, \nu_0), \quad \sigma'_{ij} = \sigma_{ij} / \rho c_{00}^2, \quad \phi'_{ij} = B_{ij} \phi_{ij} / \rho c_{00}^2, \quad m'_{ij} = m_{ij} / \rho c_{00}^2, \quad T' = \beta_1 / \rho c_{00}^2,
\]

\[
(x'_1, x'_2, u'_1, u'_2) = c_{01} \eta_{01} (x_1, x_2, u_1, u_2), \quad (t', \tau'_0, \nu'_0) = c_{01} \eta_{01} (t, \tau_0, \nu_0), \quad \eta_{01} = \rho \mu \ C_e / K_1, \quad c_{01}^2 = \lambda / \rho \mu _ , \quad \text{are for the inviscid liquid medium. The dimensionless constants are introduced into Eqs. (7-10) and the upper sign “’” dropped, gives;}
\]

\[
u_{1,11} + B_{1} u_{1,22} + B_{1} u_{2,12} + B_{2} u_{2,22} + B_{3} \phi^J_{3,3,2} - (1 + \nu_0) \frac{\partial}{\partial t} T_{3} = (\eta \ddot{u}_i + \dddot{u}_i),
\]

\[
u_{1,11} + B_{1} u_{1,22} + B_{2} u_{2,12} + B_{2} u_{2,22} - B_{3} \phi^J_{3,3,1} - (1 + \nu_0) \frac{\partial}{\partial t} T_{2} = (\eta \ddot{u}_i + \dddot{u}_i),
\]

\[
u_{1,11} + B_{1} u_{1,22} + B_{2} u_{2,22} - B_{3} \phi^J_{3,3,2} - B_{3} \phi^J_{3,3,1} + B_{4} (u_{2,1} - u_{1,2}) = J \dddot{\phi}^J_3,
\]

\[
T_{ji} = \left(\dddot{T} + \tau_o \dddot{T} \right) + B_j \dot{u}_{i,j}.
\]

Here, \((B_{11}, B_{22}, B_{13}, B_{43}, B_{14}, B_{44}, B_{15}, B_{45}) = (B_1 + B_2, B_2, B_2, B_2, B_2, B_2, B_2) / B_1, \quad B_j = 2(B_j K_4^2) / \rho B_1^3 C_e^2, \quad B_8 = (B_2 K_4^2) / \rho B_1^3 C_e^2, \quad B_9 = (T_o \beta_1^2) / B_1 \rho C_e, \quad \text{and} \quad \eta = (e_0 \mu_0^2 H_0^2) / \rho. \)
3. Normal mode analysis and solution of the problem

In this section, consider joint media of a homogeneous micropolar fibre-reinforced solid in the half-space \(x_2 < 0 \) and liquid medium occupying the half-space \(x_2 > 0 \). This is such that they are in contact at \(x_2 = 0 \). Let the normal mode analysis or harmonic solution approach be applicable such that the incident waves have the displacement chosen as:
\[
(u_1, \phi_3^0, (T - T_o) = \theta) = (R, P, \theta_0) e^{i(k(x, p_j) - \omega t)}, \quad i = j = 1, 2.
\]
(16)

Where \(R, P, \phi_0 \) and \(\theta_0 \) are amplitudes of \(u_1, u_2, \phi_3^0 \) and \(\theta \) respectively. \(\omega \), is the angular velocity or frequency of the wave, \(c = \frac{\omega}{k} \) is the phase velocity of the wave, and \(k \) is the wave number. Making use of Eq. (16) into Eqs. (12-15) respectively, yields the non-dimensional equations below:
\[
(k^2 D_1 - [c^2(\eta + 1)])R + [k^2 B_{11} p_1 p_3]P - i[ikB_{11} p_1]\phi_0^0 + [ik(1 - ick\nu) p_1]\theta_0 = 0,
\]
(17)
\[
(k^2 B_{11} p_1 p_3)R + [k^2 (\gamma + 1)]P + i[ikp_1]\phi_0^0 + [ik(1 - ick\nu) p_3]\theta_0 = 0,
\]
(18)
\[
[ikB_{11} p_1 R - (ikB_{11} p_3)P + (k^2 D_1 + B_1 - Jk^2 c^2) \phi_0^0 = 0,
\]
(19)
\[
-(kB_{11} c k p_1)R - (kB_{11} c k p_3)P + \left\{ (ick + r_k c^2) - k^2 \right\} \theta_0 = 0.
\]
(20)

Here \(D_1 = p_1^2 + B_{11} p_2^2 \), \(D_2 = B_{14} p_1^2 + B_{15} p_2^2 \), \(D_3 = B_{11} p_1^2 + B_{15} p_2^2 \).

For non-trivial solution, Eqs.(3.6)-(3.8), becomes the quartic equation as follows:
\[
d^4 + C_1 d^3 + C_2 d^2 + C_3 d + C_4 = 0.
\]
(21)

Where \(d = k^2 \). This shows that the characteristic Eq. (21) with complex coefficients \(C_1, C_2, C_3, \) and \(C_4 \) (See appendix) yields four complex roots; detailing that four waves propagates, with complex phase velocities: \(c_1, c_2, c_3 \) and \(c_4 \) corresponding to the wave number \(k_1, k_2, k_3, \) and \(k_4 \), in the solid medium respectively. This also entails that the two dimensional model of magneto-thermo-elastic micropolar fibre-reinforced solid half space under G-L theory for a non-insulated boundary have four waves; quasi-P wave, quasi-SV wave, quasi-transverse microrotational wave and thermal wave travelling in the solid medium. Following [29] for the liquid medium, consider \(B_1 = B_2 = B_5 = \lambda_3 \), \(\rho = \rho_2 \), and \(B_1 = B_3 = B_4 = B_4' = B_5 = B_5' = 0 \) into Eqs. (7-10) to obtain the non-dimensional equation for a non-trivial solution as:
\[
E_{11} d_1^2 + E_{12} d_1 + E_{13} = 0
\]
(22)

Where \(d_1 = k^2 \), and \(E_{11}, E_{12}, \) and \(E_{13} \) given in appendix, are complex coefficients of the characteristic equation in the inviscid liquid medium such that Eq. (3.10) possesses two complex phase velocities: \(c_5 \) and \(c_6 \) corresponding to the wave number \(k_5 \) and \(k_6 \). Thus, in the liquid medium quasi-longitudinal and quasi-thermal wave can propagate. Any one of four waves can be chosen as incident wave.

In Fig. 1, when quasi-P wave \((A_p) \) is incident at the boundary \(x_2 = 0 \) of a rotating magneto-thermo-elastic micropolar fibre-reinforced non-insulated anisotropic solid at the boundary and liquid interface under G-L theory, there exist reflected waves as quasi-P \((A_p) \) or qLD, quasi-SV \((A_2) \) or qTD, quasi-TM \((A_3) \) and quasi-thermal \((A_4) \). Also the transmitted waves exists as; transmitted qLD \((A_3) \) and transmitted thermal wave \((A_6) \). See Fig.1
3.1 Boundary conditions

\[\sigma_{22}^\alpha + \sigma_{22}^\alpha = \sigma_{22}^l + \sigma_{22}^l, \quad \sigma_{12}^\alpha = 0, \quad \sigma_{12}^\alpha = 0, \quad m_{23}^\alpha = 0, \quad \alpha = 0, \quad \alpha = 0 \]

for non-insulated boundary and

\[u_2^\alpha = u_2^l \] at \(x_2 = 0 \), \(\alpha = 0, 1, 2, 3, 4 \) and \(l = 5, 6 \), and the sign “\(l \)” indicates liquid medium. Where, Maxwell’s stresses Abdo-Alla et al. [24] are as follows:

\[\mathbf{\sigma}_0 = \mu_0 \mathbf{H}_0 \left[H_j h_j + H_i h_i - H_k h_k \delta_{ij} \right] \Rightarrow \mathbf{\sigma}_0 = \mu_0 \mathbf{H}_0 \begin{bmatrix} -h_j & 0 & h_i \\ 0 & -h_j & h_i \\ h_i & h_i & h_i \end{bmatrix} \]

Here, \(h_j = -H_0 (u_{1,1} + u_{2,2}) \), \(h_i = -H_0 \), and \(\sigma_{22}^\alpha + \sigma_{22}^\alpha = 0 \Rightarrow \sigma_{22}^\alpha + \mu_0 H_0^2 (u_{1,1} + u_{2,2}) = 0 \), \(m_{23}^\alpha = 0 \Rightarrow \phi_{2,2}^\alpha = 0 \).

That is at \(x_2 = 0 \), normal force stresses, normal components of displacement vectors, and temperature gradients are continuous, while tangential stresses, tangential couple stresses vanishes. We choose the displacement components, micro-rotation vectors and temperature as:

\[\begin{align*}
 u_1^\alpha &= A_d \delta_i^\alpha e^{i\mu_i}, \\
 u_2^\alpha &= W^\alpha A_d \delta_i^\alpha e^{i\mu_i}, \\
 \phi_3^\alpha &= i k_\sigma G^\alpha A_d \delta_i^\alpha e^{i\mu_i},
\end{align*}\]

(23)

Here, \(\mu_\sigma = k_\sigma (x_1 p_1^\alpha + x_2 p_2^\alpha - c_\sigma t) \), \(\alpha = 0 \) correspond to incident wave, \(\alpha = 1, 2, 3, 4 \) corresponds to reflected waves in the solid medium and \(\mu_\sigma = k_\sigma (x_1 p_1^\alpha + x_2 p_2^\alpha - c_\sigma t) \), where \(l = 5 \) and 6 corresponds to transmitted waves in the inviscid liquid medium. Also, the coupled relations for the solid medium are obtained from Eqs. (17-20) i.e.

\[W_1^\alpha = \{ p_1^\alpha (k_\sigma^2 (D_1^\alpha - (c_\sigma^2 (\eta + 1))) + B_1^\alpha p_2^\alpha (k_\sigma^2 B_1^2 p_2^\alpha p_2^\alpha)) \} \{ ic_\sigma k_\sigma + k_\sigma^2 (\tau_\sigma^c c_\sigma^2 - 1) \} + k_\sigma (1 - ic_\sigma k_\sigma \nu_i) (B_1^\alpha p_2^\alpha p_2^\alpha + p_1^\alpha) (B_1 k_\sigma^2 \omega p_2^\alpha), \]

\[W_2^\alpha = \{ B_1^\alpha p_2^\alpha (k_\sigma^2 D_2^\alpha - (c_\sigma^2 (\eta + 1))) + p_1^\alpha (k_\sigma^2 B_1^2 p_2^\alpha p_2^\alpha)) \} \{ ic_\sigma k_\sigma + k_\sigma^2 (\tau_\sigma^c c_\sigma^2 - 1) \} + k_\sigma (1 - ic_\sigma k_\sigma \nu_i) (B_1^\alpha p_2^\alpha p_2^\alpha + p_1^\alpha) (B_1 k_\sigma^2 c_\sigma^2 k_\sigma p_2^\alpha), \]

\[W^\alpha = -F_1^\alpha / F_1^\alpha, G^\alpha = (ic_\sigma B_1 (p_1^\alpha F^\alpha - p_2^\alpha)) / k_\sigma^2 D_3^\alpha + B_1 - Jr_\sigma^c c_\sigma^2, \]

\[X^\alpha = (k_\sigma B_1 (p_2^\alpha W^\alpha + p_2^\alpha)) / ic_\sigma k_\sigma + k_\sigma^2 (\tau_\sigma^c c_\sigma^2 - 1). \]
Here $D'_{i} = p_{1}^{(a2)} + B_{1} p_{2}^{(a2)}$, $D_{i} = B_{1} p_{1}^{(a2)} + B_{1} p_{2}^{(a2)}$, and $D_{i}^{*} = B_{1}^{*} p_{1}^{(a2)} + B_{1}^{*} p_{2}^{(a2)}$, and similarly, the coupled equations for the inviscid fluid medium take the forms:

$$I' = (p_{1}^{(a2)} D'_{i} - (c_{i}^{2} (\eta + 1))) - p_{2}^{(a2)} (k_{2} p_{1}^{(a2)}) / (p_{1}^{(a2)} D'_{i} - (c_{i}^{2} (\eta + 1))) - p_{2}^{(a2)} (k_{2} p_{1}^{(a2)})$$

$$I'' = (k_{2} p_{2}^{(a2)} D'_{i} + p_{2}^{(a2)}) / (c_{i} k_{2} + k_{2} (\tau_{c} c_{i}^{2} - 1))$$

Using Eq. (23) into dimensionless boundary conditions, we obtain the system: $a_{ij} Z_{j} = b_{i}$.

$$a_{ij} = \left(k_{ij} \left(A'_{i} + \left(\mu_{0} H_{0}^{2} / B_{i} \right) p_{i}^{(a2)} \right) \right) / \left(k_{ij} \left(A'_{i} + \left(\mu_{0} H_{0}^{2} / B_{i} \right) p_{i}^{(a2)} \right) \right) + \left(i + c_{i} \nu_{k} k_{ij} X' \right) d_{i}^{(a2)}$$

$$a_{ij} = \left(k_{ij} \left(A'_{i} + \left(\mu_{0} H_{0}^{2} / B_{i} \right) p_{i}^{(a2)} \right) \right) / \left(k_{ij} \left(A'_{i} + \left(\mu_{0} H_{0}^{2} / B_{i} \right) p_{i}^{(a2)} \right) \right) + \left(i + c_{i} \nu_{k} k_{ij} X' \right) d_{i}^{(a2)}$$

Using Snell’s law:

$$k_{0} p_{i}^{(a2)} = k_{1} p_{i}^{(a2)} = k_{2} p_{j}^{(a2)} = k_{3} p_{j}^{(a2)} = k_{4} p_{j}^{(a2)} = k_{5} p_{j}^{(a2)} = k_{6} p_{j}^{(a2)} = k.$$}

Notice that $k_{0} = k_{1}$ and $c_{0} = c_{1}$. Components of propagation and unit displacement vector are as follows:

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

$$p_{1}^{(a2)} = \sin \theta_{1}, p_{2}^{(a2)} = \cos \theta_{1}, d_{1}^{(a2)} = \sin \theta_{1}, d_{2}^{(a2)} = \cos \theta_{1},$$

4. Computational results and discussion

The effects of magnetism and thermal parameters on the reflection and transmission coefficients of plane waves in a micropolar fiber-reinforced material under Green and Lindsay theory of thermo-elasticity are studied by utilizing the numerical micropolar fiber-reinforced physical constants of micropolar materials and other parameters as:

$$\mu_{1} = 2.46 \times 10^{9} \text{ kg m}^{-2} \text{ s}^{-2}; \mu_{2} = 5.66 \times 10^{10} \text{ kg m}^{-2} \text{ s}^{-2};$$

$$\lambda = 5.65 \times 10^{9} \text{ kg m}^{-2} \text{ s}^{-2}; \alpha = -1.28 \times 10^{9} \text{ kg m}^{-2} \text{ s}^{-2};$$

$$\beta = 220.9 \times 10^{9} \text{ kg m}^{-2} \text{ s}^{-2}; \rho = 2660 \text{ kg m}^{-3}; \omega = 2;$$

$$H_{0} = 1000; B'_{0} = 3.71 \times 10^{6}; B''_{0} = 3.9 \times 10^{9}; J = 0.00196 \text{ m}^{2};$$

$$T_{0} = 2.93 \text{ K}; \tau_{0} = 0.15 \text{ s}; \nu_{0} = 0.40 \text{ s}; C_{v} = 0.787 \times 10^{3} \text{ J kg}^{-1} \text{ deg}^{-1};$$

$$\rho_{3} = 1000 \text{ kg m}^{-3}; K_{1} = 0.0963 \times 10^{3} \text{ J m}^{-1} \text{ s}^{-1} \text{ deg}^{-1}; \lambda_{3} = 11.65 \times 10^{9} \text{ kg m}^{-2} \text{ s}^{-2}.$$
insulated boundary are then discussed below.

Fig 2: Variations of amplitude ratios Z_i of reflected and transmitted waves versus angle of incidence for distinct values of magnetic field parameter H_0.

Fig. 2 shows the variation of amplitude ratios (RC/TC) or Z_i, $i = 1, 2, 3, 4, 5, 6$ of qLD, qTD, qTM qT, qLT and qTT waves respectively versus incident angle with varying magnetic field parameter H_0 and constant thermal relaxation times. The amplitude ratios Z_i, $i = 1, 2, 3, 4, 5, 6$ are decreased for increased magnetic effects and increasing angles. This means that higher amplitude ratios are attained when the magnetic parameters are removed thus showing that the modulation of the waves are been influenced. Also for $\theta > 0^\circ$, i.e. as the angle increases, mixed behaviors in terms of modulation, decrease and increase in amplitudes are encountered between varying magnetic parameters in the media especially on qLD and qLT waves. Hence higher magnetic effects could lead to vanishing of the waves before grazing angles of incidence.
Fig 3: Variations of amplitude ratios Z_θ of reflected and transmitted waves versus incidence angle for distinct values of thermal relaxation parameter ν_0.

Furthermore, Fig. 3 represents the variation of amplitude ratios (RC/TC) or $Z_\theta, i = 1, 2, 3, 4, 5, 6$ of qLD, qTD, qTM qT, qLT and qTT waves respectively against incident angle with variations in thermal relaxation parameter ν_0 and constant magnetic field parameter H_0. Hence, it’s obvious that the amplitude ratios $Z_\theta, i = 2, 3, 4, 6$ are increased for increasing thermal relaxation parameter ν_0 and increasing angles. This means that higher amplitude ratios are attained in the presence of thermal relaxation parameter ν_0 and thus showing increase in modulation of the waves. Also, for a reduced thermal relaxation parameter ν_0, the wave’s modulations and amplitudes of $Z_\theta, i = 2, 3, 4, 6$ vanishes faster near grazing angle of incidence. Nevertheless, $Z_\theta, i = 1, 5$ of the reflected quasi-longitudinal and quasi-longitudinal transmitted waves in both the solid and liquid materials respectively, depicts somewhat mixed behaviors of increase and decrease, as the angle increases for constant magnetic effects and τ_0. Moreover, for $0^\circ \leq \theta \leq 38.5^\circ$, $Z_\theta, i = 1$, increases for reduced thermal relaxation parameter ν_0 and subsequently increases in
amplitudes for $\theta > 38.5^0$, while $Z_i, i=1$ and its modulations are clearly displayed in mixed effects of increment and decrement as the angle increases.

Furthermore, Fig. 4 represents the variation of amplitude ratios (RC/TC) or $Z_i, i=1,2,3,4,5,6$ of qLD, qTD, qTM, qT, qLT and qTT waves respectively against incident angle with varying thermal relaxation parameter τ_0 and constant magnetic field parameter H_0. Note that the modulation and amplitude ratio of $Z_i, i=1$, has a consistent decrease for increased thermal relaxation parameter τ_0 between $0^0 \leq \theta \leq 35^0$ and with mixed behaviours for $35^0 \leq \theta \leq 63^0$, as it subsequently returns in a consistent decrease for $\theta > 63^0$. $Z_i, i=2,3,4$ yielded a somewhat consistent increment for higher values of thermal relaxation parameter τ_0 and with vanishing characterization as the
angle of incidence increases. We observed that the modulation and amplitude ratio of $Z_i, i = 5$, also has a consistent decrease for increased thermal relaxation parameter τ_0 between the normal angle of incidence and $\theta \leq 35^0$, and with mixed behaviors occurring for $\theta \geq 35^0$, i.e., modulations and hence the amplitude ratio increases and decreases along these angles of incidence. In a similar manner, for $\theta > 0^0$, $Z_i, i = 6$ showed mixed behaviors and with considerable increments for increased τ_0 and constant magnetic effects with the propensity to vanish as the angle increases before the grazing angle of incidence.

5. Conclusion

This investigation was centered on the propagation, reflection and transmission of magneto-thermo-elastic plane waves in micropolar fibre-reinforced solid and liquid interface using Green and Lindsay theory of thermo-elasticity and with no insulation at the interface of the resulting media. Coupled waves; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational (qTM) wave and quasi-thermal waves were observed traveling in the solid medium while two waves; quasi- longitudinal transmitted qLT and quasi-thermal transmitted (qTT) waves are found to propagate in the liquid medium, owing to non-insulation of the interface. The physical characterization of the study hinges on thermal effects using G-L theory under the influence of magnetic fields. Thus, the combined effects of these physical characterizations have remarkable degrees of influences on the modulation of the waves in the media as well as its corresponding amplitudes as observed from the numerical simulated graphs. While magnetic field decreases the reflection and transmission coefficients of waves in the modeled problem; in both the solid and the liquid medium in generally, the reverse is the case for thermal relaxation times effects, notwithstanding their mixed behaviors encountered in both effects within some given range of values of incident angles as the waves propagates. We can deduce that reflection and transmission cannot occur for some incident angles in the media. Cases found in literatures are similar to this study if we neglect thermal or magnetic parameters, thus yielding micropolar fiber reinforced investigation.

Therefore, it is worth noting to state that this research work should be of great importance to researchers in new materials or designers in material sciences, new researchers in the field and experimental based examination involving modulation, reflection and transmission of magneto-thermo-elastic plane waves in micropolar fibre-reinforced solid and liquid interactions and also in mechanization fields similar to seismology or earthquake analysis.

Conflict of interest

The authors declare that there is no conflict of interest.

References

A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.

