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Abstract 

In this research, vibration frequency analysis of a microbeam under a temperature pulse 

is investigated. In view of the modified couple stress theory and generalized Lord-Shulman 

(LS) hyperbolic heat conduction model with a single relaxation time, the thermoelastic 

coupled equations for clamped microbeams have been determined. The analytical 

terminologies for temperature, deflection, axial displacement, dilatation, flexure moment, 

couple stress, and axial stress in the microbeam have been acquired utilizing Laplace 

transform technique. Furthermore, examinations have been displayed in graphs to figure 

the effect of particular boundaries, for example, the couple stress and pulse of temperature 

on every one of the thoughts about factors. The couple stress parameter significantly affects 

all the field distributions. The higher temperature pulses show many disagreements between 

the results of the present couple stress model and the classical LS one. Alternate estimations 

of thermal relaxation time have been utilized to the curves anticipated by two unique theories 

of thermoelasticity that gotten as exceptional instances of the current LS model. Numerical 

inferences explain that evaluation of deflection anticipated by brand new theory is lower 

than that of classical LS one. 

Keywords: Thermoelasticity; couple stress theory, microbeam; temperature pulse, clamped edges. 

Nomenclature 

𝑇0  environment temperature 

(𝑥, 𝑦, 𝑧)  Cartesian coordinates system 

𝑢𝑖  displacement components 

𝜎𝑥𝑥   axial mechanical stress component 

𝜁 = 𝐸𝛼2𝑇0/𝜌𝑐𝜈  relaxation strength  

𝑒𝑖𝑗  linear strain tensor 

𝑡0  mechanical relaxation time 

𝜃 = 𝑇 − 𝑇0  temperature change 

𝜌  material density 

𝜂 = 𝑘/𝜌𝑐𝜈   thermal diffusivity  

𝑘  thermal conductivity 

𝜔𝑖  components of the rotation vector 

𝜖𝑘𝑖𝑗   alternate tensor 

𝜒𝑘𝑙  symmetric curvature 

𝐶𝜈  specific heat at uniform strain 

𝐸  Young’s modulus 
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𝜈  Poisson’s ratio 

𝛼  thermal expansion coefficient 

𝛿𝑖𝑗   Kronecker delta function 

𝛾 = 𝛼𝐸/(1 − 2𝜈)  coupling parameter 

𝜇 = 𝐸/2(1 + 𝜈)  shear modulus 

𝐿  length of the microbeam 

ℓ0  couple stress (material length scale) coefficient. 

𝑏  width of the microbeam 

ℎ  the thickness of the microbeam 

𝑢, 𝑤  Axial displacement and transverse deflection 

𝐴 = 𝑏ℎ  beam cross-section area 

𝐼 = 𝑏ℎ3/12  inertia moment of a cross-section 

𝐸𝐼  flexural rigidity of microbeam 

𝑀𝑇  thermal moment 

1.   Introduction 

Micro-size mechanical resonators have high affectability and quick reactions and are broadly utilized as sensors and 

antennae. Miniaturized scale and nano-mechanical resonant circuits have pulled in great thought actually because of 

their various basic innovative applications. 

Precise investigation of numerous impacts on the attributes of resonators, for example, resounding frequencies 

and quality effects, is essential for inventing high-implementation mechanisms. Several investigators have 

concentrated on the vibration and temperature exchange technique of beams [1-6]. Progressed devices that have arisen 

on the establishment of advanced science, the resonators, microscale switches, phones, mirrors, and siphons are 

instances of this methodology [7, 8]. 
The traditional elasticity theory is not prepared for getting the size impact of micro shape and is reasonable to 

contemplate material lead on the macro-scale. The clarification behind such deviation is seen to be the significant 

impact of microstructure [9, 10]. Therefore, the non-classical models, for example, the gradient of strain or couple 

stress are used to consider lead of structures in such scales.  

In recent years, several theories of a size-dependent structure such as couple stress theory (CST) [11], modified 

couple stress theory (MCST) [12-14], strain gradient elasticity theory (SGET) [15, 16], higher and lower-order 

nonlocal strain gradient theories (NSGT) [17-19] nonlocal elasticity theory (NET) [20-24] are introduced. These 

theories consist of evidence about the interfacial forces and internal lengths that are presented as small-scale influences 

on the nonlocal theory of elasticity [25-27]. In Rajneesh [28], the response of a thermoelastic beam is discussed by 

utilizing the theory of modified couple stress (MCS) exposed to the thermal resource. Park and Gao [29] studied a 

thin beam based on Euler–Bernoulli's theory using the MCS theory. In view of the generalized thermoelasticity and 
MCS theories, many articles have been established [30-33]. Shishesaz et al. [34] presented the thermoelastic behavior 

of (functionally graded) FG nanodisks based on strain gradient theory. Hadi et al. [35] investigated the free vibration 

of three-directional FG Euler–Bernoulli nanobeam with small-scale effects. Hadi et al. [36] used the couple-stress 

theory to capture size effects in Euler-Bernoulli FG nanobeams. Hosseini et al. [37] presented the mechanical behavior 

of different nanostructures by using non-classical elasticity theories. Khoram et al. [38] presented the bending of 

bidirectional FG nanobeams under mechanical loads and magnetic force.  

The dynamic propagation of heat disturbances in solids in engineering and physics is of fantastic practical 

importance. For the classical theory of heat conduction including the Fourier equation, there are many pathological 

anomalies, particularly for cases with very short transients or very low temperatures near absolute zero. In comparison, 

modified non-Fourier thermal conduction theories based on the general concept of heatstroke relaxation have been 

proposed in the classical theory to explain the finite rates of heatwave propagation and propagation of thermally 

induced stress waves in contrast to the classical thermoelastic theories where the distortions are in temperature. It is 
meant to spread at unlimited speeds. Therefore, some non-Fourier temperature control methods have been proposed 

and have been the focus of active research for recent decades. This so-called classical paradox is free of generalized 

thermoelasticity theory. 

Lord and Shulman (LS) [39], introduced a generalized thermoelasticity model by modifying the governing 

equations of classical coupled theory with the inclusion of a time of relaxation. Therefore, the law of heat conduction 

is restored by the concept of heat conduction proposed by Cattaneo-Vernotte. The problem of the infinite distribution 

https://www.sciencedirect.com/topics/engineering/free-vibration
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of thermal signals is solved by this theory. The LS model exhibited the generalized thermoelasticity theory with single 

relaxation time, in which a changed law. 

In this effort, the modified couple stress (MCS) theory, generalized theory of thermoelasticity (LS) as well as the 

linear Euler–Bernoulli beam (EBB) theory are combined and an associated mathematical model is constructed. The 

introduced model is employed to study the thermoelastic interaction of microbeam resonators exposed to a temperature 

pulse. Unlike many problems that use the harmonic solution, the model was solved using the Laplace transform 

procedure. A numerical method is utilized to get the inverse Laplace transform of deflection and temperature behavior 

of microbeam in the physical domain. The impacts of the different parameters such as temperature pulse, relaxation 

time, and material length-scale on responses of physical fields of microbeam are analyzed. The expressions for the 
physical variables have been graphically processed for a microbeam of Nickel. 

2.   Governing equations 

The Fourier’s law that connects heat flux vector 𝒒 to temperature gradient ∇𝜃 is given here 

𝒒(𝒙, 𝑡) = −𝑘∇𝜃(𝒙, 𝑡),  (1) 

in which 𝑘 implies the thermal conductivity coefficient, 𝜃 = 𝑇 − 𝑇0, and 𝑇0  represents the environmental temperature. 

The energy equation is given by 

𝜌𝑐𝜈
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕

𝜕𝑡
(div 𝒖) = −∇ ∙ 𝒒 + 𝑄,  (2) 

where 𝑄 implies the heat source, 𝑐𝜈 denotes the specific heat, 𝜌 represents the density, 𝒖 represents displacement 

vector and div 𝒖 = 𝑒 = 𝑒𝑘𝑘 denotes volumetric strain and 𝑒𝑖𝑗 represents strain tensor. Fourier law has been replaced 

by the Cattaneo-Vernotte model of thermal conductivity that includes, both heat flow and its time derivatives and a 

relaxation time 𝜏0 and given by 

(1 + 𝜏0
𝜕

𝜕𝑡
) 𝒒 = −𝐾∇𝜃.  (3) 

In sequence with the energy conservative law (2) with Eq. (3), we obtain the modified heat conduction equation with 
phase lags as 

(1 + 𝜏0
𝜕

𝜕𝑡
) (𝜌𝑐𝜈

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
− 𝑄) = 𝑘∇2𝜃.  (4) 

The constitutive relations 

𝑒𝑖𝑗 =
1+𝜈

𝐸
𝜎𝑖𝑗 + (𝛼𝜃 −

𝜈

𝐸
𝜎𝑘𝑘) 𝛿𝑖𝑗. (5) 

The constitutive equation of couple stress tensor 𝑚𝑖𝑗  will be in the form [12, 40]: 

𝑚𝑖𝑗 = 2𝜇ℓ0
2𝜒𝑖𝑗. 

(6) 

The symmetric curvature tensor 𝜒𝑘𝑙 in terms of rotation gradient can be created as: 

𝜒𝑘𝑙 =
1

2
(

𝜕𝜔𝑘

𝜕𝑥𝑙
+

𝜕𝜔𝑙

𝜕𝑥𝑘
). (7) 

The rotation vector 𝜔𝑖 is associated with the infinitesimal displacement vector as follows: 

𝜔𝑖 =
1

2
𝜖𝑖𝑗𝑘𝑢𝑘,𝑗 . (8) 

The small strain-displacement relations are 

𝑒𝑘𝑙 =
1

2
(

𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘
). 

(9) 

3.   Mathematical model  

The rectangular system of coordinates (𝑥, 𝑦, 𝑧) is introduced to investigate a thermoelastic microbeam. We consider 

that at the left end of the microbeam, the origin of the coordinates is fixed. The microbeam of length 𝐿(0 ≤ 𝑥 ≤ 𝐿), 
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width 𝑏(−𝑏/2 ≤ 𝑦 ≤ +𝑏/2), and constant thickness ℎ(−ℎ/2 ≤ 𝑧 ≤ +ℎ/2) as shown in Figure 1. The displacements 

in 𝑥, 𝑦, and 𝑧 directions due to Bernoulli-Euler beam theory are provided by [3]: 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
,   𝑣 = 0,   𝑤 = 𝑤(𝑥, 𝑡), (10) 

where 𝑢 and 𝑤 represent the longitudinal and transverse displacements. The replacement of Eq. (10) into Eq. (8), 

provides the components of the rotation vector as 

𝜔𝑦 = −
𝜕𝑤

𝜕𝑥
,   𝜔𝑥 = 𝜔𝑧 = 0. 

(11) 

 

 

Fig. 1: The schematic diagram for the microbeam. 

 

Presenting Eq. (11) into Eq. (7), the nonvanishing curvature 𝜒𝑖𝑗  and deviatoric parts of the couple stress components 

are given by: 

𝜒𝑥𝑦 = −
1

2

𝜕2𝑤

𝜕𝑥2 , 
(12) 

𝑚𝑥𝑦 = −𝜇ℓ0
2 𝜕2𝑤

𝜕𝑥2 . 
(13) 

Equations (1) considered the plane stress conditions and has nonzero elements along 𝑥-axis. With aid of Eq. (10), 

the nonzero strain and the axial stress are expressed as 

𝑒𝑥𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2 ,   𝑒𝑦𝑦 = 𝑒𝑧𝑧 = 𝜈𝑧
𝜕2𝑤

𝜕𝑥2 + 𝛼(1 + 𝜈)𝜃, 
(14) 

𝜎𝑥𝑥 = −𝐸 (𝑧
𝜕2𝑤

𝜕𝑥2 + 𝛼𝜃). 
(15) 

In addition, the cubical dilatation will be 

𝑒 = 𝑒𝑘𝑘 = −(1 − 2𝜈)𝑧
𝜕2𝑤

𝜕𝑥2 + 2𝛼(1 + 𝜈)𝜃, 
(16) 

The bending moment resultant 𝑀 of the microbeam can be considered by the practice of the formula [28]: 

𝑀 = 𝑏 ∫ (𝑚𝑥𝑦 + 𝑧𝜎𝑥)d𝑧
ℎ

2

−
ℎ

2

. 
(17) 

By using Eqs. (6), (13), and (14) into Eq. (15), the flexure moment of the cross-section may be expressed as 

𝑀(𝑥, 𝑡) = −𝐸𝐼 (
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑀𝑇) − 𝜇ℓ0
2𝐴

𝜕2𝑤

𝜕𝑥2 , 
(18) 

where the thermal moment 𝑀𝑇 is given by 

𝑀𝑇 =
12

ℎ3 ∫ 𝜃(𝑥, 𝑧, 𝑡)𝑧 d𝑧
ℎ/2

−ℎ/2
. 

(19) 

Based on total strain energy, the dynamic equation of microbeam can be expressed as 

𝜕2𝑀

𝜕𝑥2 = 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 . 
(20) 

The use of Eq. (18) into Eq. (20) yields the dynamic equation of beam in the form 

(𝐸𝐼 + 𝜇ℓ0
2𝐴)

𝜕2𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝛼𝐸𝐼
𝜕2𝑀𝑇

𝜕𝑥2 = 0. 
(21) 
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Introducing Eq. (16) into Eq. (4) and omitting the force 𝑄, the heat conduction equation may be composed as: 

𝜂 (
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2
) = (1 + 𝜏0

𝜕

𝜕𝑡
) [(1 + 𝜉)

𝜕𝜃

𝜕𝑡
−

𝜁

𝛼
(𝑧

𝜕3𝑤

𝜕𝑡𝜕𝑥2
)], 

(22) 

where 

𝜉 =
2(1+𝜈)𝜁

(1−2𝜈)
,   𝜁 =  

𝛼2𝐸𝑇0

𝜌𝑐𝜈
. 

(23) 

For the present microbeam, expecting that temperature is a sinusoidal variety along with the thickness, i.e., 

𝜃(𝑥, 𝑧, 𝑡) = 𝛩(𝑥, 𝑡) sin (
𝜋𝑧

ℎ
). 

(24) 

The use of Eq. (24) into Eqs. (17) and (21) after some numerical activities provide 

𝑀(𝑥, 𝑡) = −(𝐸𝐼 + 𝜇ℓ0
2𝐴)

𝜕2𝑤

𝜕𝑥2 − 𝐸𝐼
24𝛼

𝜋2ℎ
𝛩, 

(25) 

(𝐸𝐼 + 𝜇ℓ0
2𝐴)

𝜕2𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝐸𝐼
24𝛼

𝜋2ℎ

𝜕2𝛩

𝜕𝑥2 = 0. 
(26) 

Integrating Eq. (22) concerning 𝑧 after multiplying by 𝑧 through microbeam thickness from −ℎ/2 to ℎ/2 and taking 

into consideration Eq. (24), gives 

𝜂 (
𝜕2𝛩

𝜕𝑥2 −
𝜋2

ℎ2 𝛩) = (1 + 𝜏0
𝜕

𝜕𝑡
) [(1 + 𝜉)

𝜕𝛩

𝜕𝑡
−

𝜁𝜋2ℎ

24𝛼

𝜕

𝜕𝑡
(

𝜕2𝑤

𝜕𝑥2
)]. 

(27) 

For effortlessness we will utilize the accompanying non-dimensional amounts: 

(𝑥′ , 𝑢′) =
1

𝐿
(𝑥, 𝑢),   (𝑧′, 𝑤′) =

1

ℎ
(𝑧, 𝑤),   𝛩′ = 𝛼𝛩,   (𝑡′, 𝑡0

′ ) =
𝑐

𝐿
(𝑡, 𝑡0), 

𝑚𝑥𝑦
′ =

ℎ

𝐸
𝑚𝑥𝑦,   𝜎𝑥

′ =
𝜎𝑥

𝐸
,   𝑀′ =

𝑀

𝑏𝐸ℎ2,   𝑐 = √
𝐸

𝜌
. 

(28) 

Applying non-dimensional variables appeared in Eq. (28), the fundamental equations may be altered as follows 

(dropping the primes for convenience) 

𝑎1
𝜕4𝑤

𝜕𝑥4 +
𝜕2𝑤

𝜕𝑡2 + 𝑎2
𝜕2𝛩

𝜕𝑥2 = 0, 
(29) 

𝜕2𝛩

𝜕𝑥2 − 𝑎3𝛩 = (1 + 𝜏0
𝜕

𝜕𝑡
) [𝑎4

𝜕𝛩

𝜕𝑡
− 𝑎5

𝜕

𝜕𝑡
(

𝜕2𝑤

𝜕𝑥2
)], 

(30) 

𝜎𝑥 = −𝑧
ℎ2

𝐿2

𝜕2𝑤

𝜕𝑥2 − 𝛩 sin(𝜋 𝑧), 
(31) 

𝑚𝑥𝑦 = −
ℎ2𝜇ℓ0

2

𝐿2𝐸

𝜕2𝑤

𝜕𝑥2 , 
(32) 

𝑀(𝑥, 𝑡) = −𝑎1
𝜕2𝑤

𝜕𝑥2 − 𝑎2Θ, 
(33) 

𝑢 = −𝑧
ℎ2

𝐿2

𝜕𝑤

𝜕𝑥
, 

(34) 

𝑒 = −(1 − 2𝜈)𝑧
ℎ2

𝐿2

𝜕2𝑤

𝜕𝑥2 + 2𝛼(1 + 𝜈)𝛩 sin(𝜋 𝑧), 
(35) 

where 

𝑎1 = (
ℓ0

2𝜇

𝐿2𝐸
+

ℎ2

12𝐿2
),   𝑎2 =

2

𝜋2,   𝑎3 =
𝜋2𝐿2

ℎ2 ,   𝑎4 = (1 + 𝜉)
𝑐𝐿

𝜂
,   𝑎5 =

𝜋2ℎ2𝑐𝜁

24𝐿𝜂
.  

(36) 

Now, we will present the initial and boundary conditions of the problem. The initial conditions of the considered 

issue are thought to be homogeneous as 

𝑤(𝑥, 𝑡)|𝑡=0 =
𝜕𝑤(𝑥,𝑡)

𝜕𝑡
|

𝑡=0
= 0,   Θ(𝑥, 𝑡)|𝑡=0 =

𝜕Θ(𝑥,𝑡)

𝜕𝑡
|

𝑡=0
= 0. 

(37) 

To take care of the problem, the accompanying boundary conditions are considered. Firstly, let the instance of the 

two edges of the microbeam be clamped, for example 
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𝑤(𝑥, 𝑡)|𝑥=0,𝐿 = 0,   
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
|

𝑥=0,𝐿
= 0. 

(38) 

Second, we assume that the plane 𝑥 = 0 of microbeam is subjected to temperature pulse as 

𝛩(0, 𝑡) = 𝛩0 {
sin(𝜔𝑡),       0 ≤ 𝑡 ≤

𝜋

𝜔
,

0,                              𝑡 >
𝜋

𝜔
,
  

(39) 

where 𝛩0 is the amplitude and 𝜔 is the temperature pulse. Also, the temperature at end boundary 𝑥 = 𝐿 ought to fulfill 

the accompanying connection 

𝜕Θ

𝜕𝑥
= 0,   𝑥 = 𝐿. 

(40) 

4.   Laplace transform domain and its inversion 

Taking the Laplace transform characterized by the connection 

𝑓(𝑥, 𝑠) = ∫ e−𝑠𝑡∞

0
𝑓(𝑥, 𝑡)d𝑡, 

(41) 

to the two sides of Eqs. (29)-(35) and utilizing homogeneous initial conditions in Eq. (37), we obtain field equations 

in Laplace change space as 

𝑎1
d4�̅�

d𝑥4 + 𝑠2�̅� + 𝑎2
d2�̄�

d𝑥2 = 0, 
(42) 

(
d2

d𝑥2 − 𝑎6) �̄� = −𝑎7
d2�̅�

d𝑥2 , 
(43) 

�̄�𝑥 = −𝑧
ℎ2

𝐿2

d2�̅�

d𝑥2 − �̄� sin(𝜋 𝑧), 
(44) 

�̅�𝑥𝑦 = −
ℎ2𝜇ℓ0

2

𝐿2𝐸

d2�̅�

d𝑥2 , 
(45) 

�̅� = −𝑎1
d2�̅�

d𝑥2 − 𝑎2�̄�, 
(46) 

�̅� = −𝑧
ℎ2

𝐿2

d�̅�

d𝑥
, 

(47) 

�̅� = −(1 − 2𝜈)𝑧
ℎ2

𝐿2

d2�̅�

d𝑥2 + 2𝛼(1 + 𝜈)�̄� sin(𝜋 𝑧). 
(48) 

It is noted that the over bar image means its Laplace transform, 𝑠 indicates Laplace parameter and 

𝑎6 = 𝑎3 + 𝑠(1 + 𝜏0𝑠)𝑎4 ,   𝑎7 = 𝑠(1 + 𝜏0𝑠)𝑎5. 
(49) 

Elimination �̄� or �̄� from Eqs. (42) and (43) provides the following differential equation for �̄� or �̄�: 

(
d6

d𝑥6 − 𝑏2
d4

d𝑥4 + 𝑏1
d2

d𝑥2 − 𝑏0) {�̄�, �̄�} = 0, 
(50) 

where the coefficients 𝑏𝑖 are given by 

𝑏2 = 𝑎6 +
𝑎2𝑎7

𝑎1
,   𝑏1 =

𝑠2

𝑎1
,   𝑏0 =

𝑎6𝑠2

𝑎1
. 

(51) 

Introducing 𝑚𝑖 (𝑖 = 1,2,3), Eq. (48) can be given by 

(𝐷2 − 𝑚1
2)(𝐷2 − 𝑚2

2)(𝐷2 − 𝑚3
2){�̄�, Θ̄} = 0, 

(52) 

where 𝐷 = d/d𝑥 and 𝑚1
2, 𝑚2

2 and 𝑚3
2 are characteristic roots of  

𝑚6 − 𝑏2𝑚4 + 𝑏1𝑚2 + 𝑏0 = 0. 
(53) 

The roots of Eq. (51) satisfy the well-known relations: 

𝑚1
2 + 𝑚2

2 + 𝑚2
2 = 𝑏2,   𝑚1

2𝑚2
2 + 𝑚2

2𝑚3
2 + 𝑚3

2𝑚1
2 = 𝑏1,   𝑚1

2𝑚2
2𝑚2

2 = 𝑏0. 
(54) 

The solution of Eqs. (50) in Laplace domain may be expressed as 
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�̅� = ∑ [𝐴𝑖 cosh(𝑚𝑖𝑥) + 𝐵𝑖 sinh(𝑚𝑖𝑥)]3
𝑖=1 , 

(55) 

�̅� = ∑ 𝛽𝑖[𝐴𝑖 cosh(𝑚𝑖𝑥) + 𝐵𝑖 sinh(𝑚𝑖𝑥)]3
𝑖=1 , 

(56) 

where 𝐴𝑖 and 𝐵𝑖 are constant coefficients differing on 𝑠 and 

𝛽𝑖 =
𝑎7𝑚𝑖

2

𝑎6−𝑚𝑖
2. 

(57) 

The flexural moment 𝑀 appeared in Eq. (46) in the Laplace domain with the help of Eqs. (55) and (56) is given 
by 

�̅� = − ∑ 𝛾𝑖[𝐴𝑖 cosh(𝑚𝑖𝑥) + 𝐵𝑖 sinh(𝑚𝑖𝑥)]3
𝑖=1 , 

(58) 

where  

𝛾𝑖 = 𝑎1𝑚𝑖
2 + 𝑎2𝛽𝑖 . (59) 

Additionally, the axial displacement in the Laplace domain of utilizing Eq. (47) takes the form 

�̅� = −𝑧
ℎ2

𝐿2
∑ 𝑚𝑖[𝐴𝑖 sinh(𝑚𝑖𝑥) + 𝐵𝑖 cosh(𝑚𝑖𝑥)]3

𝑖=1 . 
(60) 

Besides, the dilatation is given by 

�̅� = ∑ �̅�𝑖[𝐴𝑖 cosh(𝑚𝑖𝑥) + 𝐵𝑖 sinh(𝑚𝑖𝑥)]3
𝑖=1 , 

(61) 

where 

�̅�𝑖 = −(1 − 2𝜈)𝑧
ℎ2

𝐿2 𝑚𝑖
2 + 2𝛼(1 + 𝜈) sin(𝜋 𝑧) 𝛽𝑖 . (62) 

Additionally, the axial stress and couple stress according to Eqs. (44) and (45) become 

�̅�𝑥 = − ∑ 𝛾𝑖[𝐴𝑖 cosh(𝑚𝑖𝑥) + 𝐵𝑖 sinh(𝑚𝑖𝑥)]3
𝑖=1 , 

(63) 

�̅�𝑥𝑦 = − ∑ 𝛾𝑖[𝐴𝑖 cosh(𝑚𝑖𝑥) + 𝐵𝑖 sinh(𝑚𝑖𝑥)]3
𝑖=1 , 

(64) 

where 

𝛾𝑖 = 𝑚𝑖
2𝑧

ℎ2

𝐿2 + 𝛽𝑖 sin(𝜋 𝑧),   𝛾𝑖 =
ℎ2𝜇ℓ0

2

𝐿2𝐸
𝑚𝑖

2. 
(65) 

In the Laplace transform domain, boundary conditions (37)-(40) are given by 

�̄�(𝑥, 𝑠)|𝑥=0,1 = 0,   
d�̅�(𝑥,𝑠)

d𝑥
|

𝑥=0,1
= 0, 

(66) 

�̄�(𝑥, 𝑠)|𝑥=0 =
𝜔𝛩0

𝑠2+𝜔2 = �̄�(𝑠), 
(67) 

𝜕�̄�

𝜕𝑥
= 0,   𝑥 = 1. 

(68) 

The solution of the exceeding arrangement of direct conditions provides the obscure parameters 𝐴𝑖 and 𝐵𝑖. This 

finishes the solution to the problem in the Laplace domain.  

To achieve numerical results in the physical domain, we employ the Riemann-sum approximation technique. In 

this strategy, any function 𝑓(𝑥, 𝑧, 𝑠) in space of Laplace transform is upset to physical domain 𝑓(𝑥, 𝑧, 𝑡) by applying 
the notable equation [41] 

𝑓(𝑥, 𝑧, 𝑡) =
e𝜚𝑡

𝑡
[

1

2
Re{𝑓(𝑥, 𝑧, 𝜚)} + Re {∑ (𝑓 (𝑥, 𝑧, 𝜚 +

i𝑛𝜋

𝑡
) (−1)𝑛)𝑁

𝑛=0 }], 
(69) 

where Re is the real part of a function, i = √−1 and 𝜚 ≈ 4.7/𝑡 [42]. 

5.   Numerical results 

The numerical examination of the systematic outcomes got in the past parts concerning deflection, thermodynamic 

temperature change, axial displacement, flexural moment, and stress in the beam will be discussed here. The effect of 
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temperature pulse, the lack and existence of couple stress, and thermal relaxation time on field variables are 

investigated. It is expected that the properties of the beam are assumed as: 

𝐸 = 56 GPa,   𝑘 = 429 (W/mK),   𝜌 = 10500 (kg/m3),   𝐶𝜈 = 234 (J/K kg),     

𝛼 = 2.0 × 10-5 (1/K),   𝑇0 = 293 K,   𝜈 = 0.36. (70) 

The aspect ratio of microbeam is fixed as 𝐿/ℎ = 10, the thickness is assumed as ℎ = 0.1 μm and the dimensionless 

time is fixed as 𝑡 = 0.3. Also, the dimensionless couple stress parameter is fixed as ℓ = ℓ0/𝐿. Other parameters are 

assumed (except otherwise stated) as ℓ = 0.2, 𝜔 = 0.2, 𝜏0 = 0.01, and 𝑧 = ℎ/3. The values of temperature change 

𝜃, distributions of deflection 𝑤, distributions of axial displacement 𝑢, dilatation 𝑒, thermal moment 𝑀, couple stress 

𝑚𝑥𝑦 , and axial stress 𝜎𝑥 are defined according to Eq. (69). Numerical outcomes have been carried out. The numerical 

outcomes have been exhibited in detail in Figs. 2-8. 

5.1.   Couple stress effect 

The impact of couple stress on numerical calculations of field quantities is illustrated in Figs. 2-8 in the presence (ℓ ≠

0) and absence of couple stress coefficient (ℓ = 0). The present couple stress model expects higher values of all field 

quantities as compared with that of simple FS theory. 

 

 

Fig. 2: Effect of modified couple stress coefficient 𝓵 on the temperature 𝜽 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 2 demonstrates the temperature change 𝜃 of the microbeam through the 𝑥-axis for ℓ = 0, 0.05, 0.1, and 0.2 

when the parameters 𝜔 and 𝜏0 are fixed. It can be concluded that the value of ℓ has a sensitive effect on the temperature 

values. Also, the temperature decreases monotonically in microbeams in direction of wave propagation. The 

wavelength of the temperature wave increases as ℓ increases. The smallest wavelength occurs when ℓ = 0. 

 

 

Fig. 3: Effect of modified couple stress coefficient 𝓵 on the deflection 𝒘 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 3 displays the variations of deflection 𝑤 of the microbeam for the distinct four values of material length 

scale ℓ. As shown in this figure, compared to the simple LS theory (ℓ = 0) that considers the impact of a material 

length parameter along with the impact of deflection on MCS LS theory, leads to a decrease in lateral deflection of 

microbeam. Therefore, given the parameter of the material length scale, the minimum, and maximum deflection 

decrease. It is noticed that the deflection dropped from zero to its minimum value at 𝑥 = 0.058, then it raises to its 

maximum value at 𝑥 = 0.236, then it decreases gradually as 𝑥 increased and vanishes again when 𝑥 = 0. The 

amplitude of the deflection wave increases as ℓ decreases. 
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Fig. 4: Effect of modified couple stress coefficient 𝓵 on the axial displacement 𝒖 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial 

direction. 

 

Figure 4 presents the distribution of axial displacement 𝑢 of microbeam for distinct values of parameter ℓ. It tends 

to be seen that parameter ℓ greatly affects the distribution of displacement 𝑢. The amplitude of the displacement wave 

is fading away with the increase in 𝑥-axis. The wavelength of the displacement wave may be constant for different 

coefficients ℓ while the maximum amplitude occurs when ℓ = 0. 

 

 

Fig. 5: Effect of modified couple stress coefficient 𝓵 on the dilatation 𝒆 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 5 presents the distribution of dilatation 𝑒 of microbeam for distinct values of parameter ℓ. Once again, the 

parameter ℓ greatly affects the distribution of dilatation 𝑒. The amplitude of the dilatation wave is fading away with 

the increase in 𝑥-axis. The wavelength of the displacement wave is rapidly increasing as ℓ increases while the 

amplitude is slowly decreasing as ℓ decreases. 

 

 

Fig. 6: Effect of modified couple stress coefficient 𝓵 on the moment 𝑴 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 



92 Kutbi and Zenkour 

Figure 6 illustrates the variety of bending moment 𝑀 through axial distance 𝑥 in the presence and absence of 

couple stress in the microbeam. It is noticed that the couple stress coefficient ℓ is significantly affected the bending 

moment distribution.  

 

 

Fig. 7: Effect of modified couple stress coefficient 𝓵 on the couple stress 𝒎𝒙𝒚 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 7 presents the distribution of couple stress 𝑚𝑥𝑦 of microbeam for distinct values of parameter ℓ > 0. It 

tends to be seen that parameter ℓ greatly affects the distribution of 𝑚𝑥𝑦. The amplitude of the couple stress wave is 

fading away with the increase in 𝑥-axis. It is clear that the wavelength is increasing with the increase in ℓ. The 

maximum amplitude value occurs when ℓ = 0.2. 

 

 

Fig. 8: Effect of modified couple stress coefficient 𝓵 on the axial stress 𝝈𝒙 of simple LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 8 presents the distribution of axial stress 𝜎𝑥 of microbeam for distinct values of parameter ℓ. It tends to be 

seen that parameter ℓ greatly affects the distribution of 𝜎𝑥. The amplitude of the stress wave is fading away with the 

increase in 𝑥-axis. For the stress wave, the wavelength is increasing with the increase in ℓ while the amplitude is 

increasing with the decrease in ℓ. The maximum amplitude value occurs when ℓ = 0. 

5.2.   The impact of temperature pulse 

The effects of the temperature pulse 𝜔 on all fields are displayed in Figs. 9-15. It is assumed that the thermal relaxation 

time 𝜏0 = 0.01 and the modified couple stress coefficient ℓ = 0.2. Figure 9 demonstrates the temperature change 𝜃 

of the microbeam through the 𝑥-axis for different values of 𝜔 when the parameters ℓ and 𝜏0 are fixed. It can be 

concluded that the value of the temperature pulse 𝜔 has a sensitive effect on the temperature values. Also, the 

temperature decreases monotonically in microbeams in direction of wave propagation. The amplitude of the 

temperature wave increases as 𝜔 increases. 
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Fig. 9: Effect of temperature pulse 𝝎 on the temperature 𝜽 of coupled stress LS theory (𝓵 = 𝟎. 𝟐, 𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

 

Fig. 10: Effect of temperature pulse 𝝎 on the deflection 𝒘 due to coupled stress LS theory (𝓵 = 𝟎. 𝟐, 𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 10 displays the variations of deflection 𝑤 of the microbeam for distinct values of temperature pulse 𝜔. It 

is noticed that the deflection waves have the same wavelength while the amplitude of the deflection wave increases 

as 𝜔 increases.  

 

 

Fig. 11: Effect of temperature pulse 𝝎 on the axial displacement 𝒖 due to coupled stress LS theory (𝓵 = 𝟎. 𝟐, 𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial 

direction. 

 

Figure 11 presents the distribution of axial displacement 𝑢 of microbeam for the distinct values of temperature 

pulse 𝜔. The parameter 𝜔 greatly affects the distribution of displacement 𝑢. The amplitude of the displacement wave 

is fading away with the increase in 𝑥-axis. The wavelength of the displacement wave is constant while the maximum 

amplitude occurs when 𝜔 = 0.2. 
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Fig. 12: Effect of temperature pulse 𝝎 on the dilatation 𝒆 due to classical LS theory (𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 12 presents the distribution of dilatation 𝑒 of microbeam for distinct values of temperature pulse 𝜔. The 

parameter 𝜔 greatly affects the distribution of dilatation 𝑒. The amplitude of the dilatation wave is fading away with 

the increase in 𝑥-axis. The wavelength of the displacement wave is constant while the amplitude is decreasing as 𝜔 

decreases. 

 

 

Fig. 13: Effect of temperature pulse 𝝎 on the moment 𝑴 due to coupled stress LS theory (𝓵 = 𝟎. 𝟐, 𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial direction. 

 

Figure 13 illustrates the variety of bending moment 𝑀 through axial distance 𝑥 for distinct values of temperature 

pulse 𝜔. It is noticed that the temperature pulse parameter 𝜔 is significantly affected the bending moment distribution. 

The moment 𝑀 is no longer increasing as 𝑥 increases and has its maximum value when 𝜔 = 0.2. 

 

 

Fig. 14: Effect of temperature pulse 𝝎 on the couple stress 𝒎𝒙𝒚 of coupled stress LS theory (𝓵 = 𝟎. 𝟐, 𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial 

direction. 

 

Figure 14 presents the distribution of couple stress 𝑚𝑥𝑦 of microbeam for the distinct values of temperature pulse 

𝜔. It tends to be seen that parameter 𝜔 greatly affects the distribution of 𝑚𝑥𝑦. The amplitude of the couple stress wave 
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is fading away with the increase in 𝑥-axis. The wavelength of the stress wave is constant while the amplitude is 

increasing with the increase in 𝜔.  

 

 

Fig. 15: Effect of temperature pulse 𝝎 on the axial stress 𝝈𝒙 due to coupled stress LS theory (𝓵 = 𝟎. 𝟐, 𝝉𝟎 = 𝟎. 𝟎𝟏) versus axial 

direction. 

 

Figure 15 presents the distribution of axial stress 𝜎𝑥 of microbeam for the distinct values of temperature pulse 𝜔. 

The parameter 𝜔 greatly affects the distribution of 𝜎𝑥. The amplitude of the stress wave is fading away with the 

increase in 𝑥-axis. The wavelength of the stress wave is constant while the amplitude is increasing with the increase 

in 𝜔. 

5.3.   The impact of the thermal relaxation time 

In the present case, we consider an alternate estimation of thermal relaxation time 𝜏0 when temperature pulse 𝜔 and 

the modified couple stress parameter ℓ remain constants (𝜔 = 0.2, ℓ = 0.2). The graphs in Figs. 16-22 speak to the 

curves anticipated by two unique theories of thermoelasticity got as exceptional instances of the current LS model. 

The calculations are done for different estimations of the parameter 𝜏0 to get the coupled stress theory (ℓ = 0.2) based 

upon the classical coupled thermoelasticity (CTE) (𝜏0 = 0) theory and the simple Lord-Shulman (LS) theory (𝜏0 >
0). It is known that the parameter 𝜏0 greatly affects the distributions of field factors. 

 

 

Fig. 16: Comparison between the coupled stress CTE and LS theories on the temperature 𝜽 versus axial direction (𝓵 = 𝟎. 𝟐, 𝝎 = 𝟎. 𝟐). 

 

Figure 16 demonstrates the temperature change 𝜃 of the microbeam through the 𝑥-axis for different values of the 

relaxation time 𝜏0 when the parameters 𝜔 and ℓ are fixed. It is well known that the value of 𝜏0 has a sensitive effect 

on the temperature values. Also, the temperature decreases monotonically in microbeams in direction of wave 

propagation. The wavelength of the temperature wave is constant while the amplitude increases as 𝜏0 increases. 
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Fig. 17: Comparison between the coupled stress CTE and LS theories on the deflection 𝒘 versus axial direction (𝓵 = 𝟎. 𝟐, 𝝎 = 𝟎. 𝟐). 

 

Figure 17 displays the variations of deflection 𝑤 of the microbeam for different values of the relaxation time 𝜏0. 

Also, the deflection waves have the same wavelength while the amplitude of the deflection wave increases as 𝜏0 
decreases. The maximum amplitudes occur for the CTE model. 

 

 

Fig. 18: Comparison between the coupled stress CTE and LS theories on the axial displacement 𝒖 versus axial direction (𝓵 = 𝟎. 𝟐, 

𝝎 = 𝟎. 𝟐). 

 

Figure 18 presents the distribution of axial displacement 𝑢 of microbeam for different values of the relaxation time 

𝜏0. The parameter 𝜏0 has a little effect on the distribution of displacement 𝑢. The amplitude of the displacement wave 

is fading away with the increase in 𝑥-axis. 

 

 

Fig. 19: Comparison between the coupled stress CTE and LS theories on dilatation 𝒆 versus axial direction (𝓵 = 𝟎. 𝟐, 𝝎 = 𝟎. 𝟐). 

 

Figure 19 presents the distribution of dilatation 𝑒 of microbeam for different values of the relaxation time 𝜏0. The 

parameter 𝜏0 affects the distribution of dilatation 𝑒. The amplitude of the dilatation wave is fading away with the 
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increase in 𝑥-axis. The wavelength of the displacement wave is constant while the amplitude is decreasing as 𝜔 

increases. 

 

 

Fig. 20: Comparison between the coupled stress CTE and LS theories on the moment 𝑴 versus axial direction (𝓵 = 𝟎. 𝟐, 𝝎 = 𝟎. 𝟐). 

 

Figure 20 illustrates the variety of bending moment 𝑀 through axial distance 𝑥 for different values of the relaxation 

time 𝜏0. It is noticed that 𝜏0 is slowly affected the bending moment distribution. The moment 𝑀 is no longer increasing 

as 𝑥 increases and has its maximum value when 𝜏0 = 0.02. 

 

 

Fig. 21: Comparison between the coupled stress CTE and LS theories on the couple stress 𝒎𝒙𝒚 versus axial direction (𝓵 = 𝟎. 𝟐, 𝝎 =

𝟎. 𝟐). 

 

Figure 21 presents the distribution of couple stress 𝑚𝑥𝑦 of microbeam for different values of the relaxation time 

𝜏0. It tends to be seen that parameter 𝜏0 slowly affects the distribution of 𝑚𝑥𝑦. The amplitude of the couple stress 

wave is fading away with the increase in 𝑥-axis. The wavelength of the stress wave is constant while the amplitude 

may be increasing with the increase in 𝜏0.  

 

 

Fig. 22: Comparison between the coupled stress CTE and LS theories on the axial stress 𝝈𝒙 versus axial direction (𝓵 = 𝟎. 𝟐, 𝝎 = 𝟎. 𝟐). 
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Figure 22 presents the distribution of axial stress 𝜎𝑥 of microbeam for different values of the relaxation time 𝜏0. 

The parameter 𝜏0 greatly affects the distribution of 𝜎𝑥. The amplitude of the stress wave is fading away with the 

increase in 𝑥-axis. The wavelength of the stress wave is constant while the amplitude is increasing with the increase 

in 𝜏0. 

6.   Conclusions 

In the current study, we consider the newly developed theory of thermoelasticity based on a single delay term to be 
introduced into the thermal conduction equation. The system of the governing equations of the introduced model has 

been derived based on Hamilton’s principle for Euler–Bernoulli microbeam, modified couple stress theory, and 

generalized thermoelasticity theory. We are attempting to study a small-sized microbeam subject to varying 

temperature pulse heating. Solutions of the physical fields of the microbeam are obtained by applying the Laplace 

technique. Numerical technique has also been used to obtain solutions to different variables of microbeam in the 

physical space. 

Both the analytical and numerical studies of ruling equations show a significant influence on the temperature pulse 

and the material length scale parameters. Also, the numerical results reveal that, in the presence of couple stress, the 

profiles of the studied fields of CTE theory are smaller compared to simple LS theory, and the opposite behavior is 

detected in lack of couple stress. 

This investigation is necessary for microscale issues because in these cases material parameters reply upon 

temperature. Additionally, outcomes got can be significant for mechanical specialists in planning small-sized 
resonators for MEMS applications. Finally, the current model may be used as a piece of microelectromechanical 

applications, for instance, move switches, mass stream sensors, repeat channels, and resonators as well as 

accelerometers. 
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