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Abstract 

A new methodology for modeling tibio-femoral articular contact of a knee joint based on 
contact models of the classical contact mechanics is established. The given analytical models 
of articular contact are extended to the case of contact between low strain arbitrary linear elastic 
tissues, i.e., cartilages and meniscus. The approach uses the geometries of contact surfaces and 
the generalization of the Hertzian contact theory of non-conforming bodies with frictionless 
contact interaction between elastic articular tissues. The normal and tangential contact 
displacements are determined analytically based on the exact solutions for the spherical contact 
between the articular tissues of the knee. The non-linear stiffness (secant and tangential 
stiffness) of the knee joint’s elastic half-space is derived using the analytical relationships. The 
method is demonstrated by exploring a case study, and the results are compared with the current 
literature to verify the fidelity of the proposed analytical approach. The analytical models 
facilitate accurate contact mechanics of the knee joint. Researchers may now use these 
analytical models to develop knee surrogate models in multibody dynamics.  

Keywords: Knee joint slip, knee joint displacement, stick-slip zones, non-linear stiffness, 
geometric nonlinearities. 

 

1. Introduction 
Multibody dynamics (MBD) simulations of biological joints require modeling the 

internal forces inside the articular tissues [1]. In numerous MBD studies [2, 3, 4], the tibio-
femoral articular contact is approximated as a rigid contact formulation, and single point 
contact takes place between the contacting bodies without any deformation. The deformable 
contacts must consider deformation behavior along with the articular surface geometry, and 
this is an added advantage is two-fold: 1) The deformable model provides better numerical 
stability during MBD; 2) It allows conforming surface geometries [5]. 

In the MBD of knee joints, efficient analytical models of deformable contact must be 
used to estimate contact parameters [6,7]. Several musculoskeletal models employ elastic 
foundation models to describe the deformable contact behavior of knee joints [5]. Lee et al. 
adopted the spline joints model to study the dynamics of the biological joints. The spline curves 
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and surfaces are primary elements in modeling the spline joints [8]. In other studies, Kok-Meng 
Lee et al. modeled two sequential circles rolling over a flat plane to mimic the functionality of 
the knee joint. The kinematics of this sliding contact is based on the trajectory of the multiple 
circles or lines, which resembles the knee functionality [9]. In these studies, the spline surfaces 
are deformed kinematically, and the surface itself did not participate in the dynamic simulation, 
and it fails to represent contact interaction under applied loads.  

Finite-Element (FE) models have been extensively used to simulate the articular 
contacts of the knee joint over the last decade [10, 11]. The finite-element method can give 
full-field descriptions and handle complex geometrical configurations of articular contacts [12-
13]. However, the FE preprocessing is excessively time-consuming in simulating the gait cycle. 
Novel-surrogate models have been exploited in recent years to simulate elastic contacts with a 
wide range of contact geometry[14, 15, 16]. This method is more computationally efficient and 
cost-effective than finite element contact models. 

A new methodology for modeling tibio-femoral articular contact of a knee joint based 
on contact models of the classical contact mechanics is developed [17, 18, 19]. This approach 
uses the articular contact surface geometry and generalization of the Hertzian contact theory of 
non-conforming bodies with frictionless contact interaction between elastic articular tissues. 
The normal and tangential stiffnesses of the knee joint are determined analytically based on the 
exact solution for applied forces. According to [20], the anatomy-based MBD model 
necessitates precise data of the articular contact surfaces in solving the contact problem. 
Articular surfaces derived from experimental surface data are geometrically generalized in this 
approach. We are presenting the effective geometrical features of the articular surfaces for use 
in the joint contact mechanics of the knee joint, verifying the analytical solutions with the 
numerical and experimental case studies.   

2. Material and methods 
The material models are introduced in this part, including the mathematical strategy 

towards attaining analytical solutions.  
2.1 Material properties of the Biological joints 

The knee joint comprises deformable tissues such as cartilages, meniscus, and 
ligaments. Zielinska et al. have modeled the cartilage with isotropic elastic material models 
[21, 22]. Halonen et al. defined cartilage as a fibril-reinforced poro-viscoelastic material [23]. 
Wang et al. described the meniscus as a linearly elastic transversely isotropic material [24]. 
The linear elastic material models are used in this study to overcome the intricacies in arriving 
at mathematical models. Furthermore, this work does not address the study of material 
behavior. 

Hard tissues are the bony members of the knee joint, including the Femur, Tibia, and 
Patella bones. Because the Femur and Tibia have little deformation compared to soft tissues, 
they are thought to be rigid bodies. [26, 27]. Bony tissues are considered rigid components in 
this study. 

The knee joint is primarily the deformable contact made by cartilaginous tissue of the 
Femur and Menisci of the tibia. The EC and ϑ C are the elastic modulus and Poisson’s ratio of 
the cartilage. The EM and ϑ M are the elastic modulus and Poisson’s ratio of the menisci. The 
Boussinesq equation is being used to calculate the effective elastic modulus E��� at a given joint 
[28], 1���� = 1�∗ = 1 − �
��
 +	1 − ����� 																																																																																										 �1� 
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2.2 Mechanics of Biological joints 
There are two broad categories in contact mechanics based on the type of load acting 

on the joint: 1) normal load case; 2) combination of normal and tangential load case. This study 
does not investigate the tendons and ligaments that are active in tension but inactive in 
compressive loads. The synovial fluid film has a negligible influence because its thickness is 
quantified in micrometers. The applied normal force is shared among the lateral and medial 
condyles, and the moment about the femoral axis is accounted for. As the condyles are 
axisymmetric about their radius, hence the lever arm distances are R�	 	and	R�	 . Thus the normal 
load taken by individual condyle can be calculated by following equations. 

��		 =				 ��� +	���																																																																																																														�2� 
��� 	= 		 �� 	× 	��	 			��	 + ��	 																																																																																																													�3� 
��� 	= 		 �� ×	��	��	 + ��	 																																																																																																															�4� 

Here F#�	and	F#� 	 - are the normal loads shared by the medial and lateral condyles, 
respectively. R�		 	and		R�		  - are the radius of curvatures of the medial and lateral condyles, 
respectively. The load acting on a given condyle is calculated by equations (3) and (4). The 
mathematical correlations have been established using the geometrical construction of the 
lateral condyle throughout this analytical procedure. The article’s final section includes a case 
study on both the medial and lateral condyles. 

  
Fig. 1 The CAD model of the knee 

joint 
Fig. 2. Hertzian contact by Spherical condyle 

The proportionality between incremental stiffness and the contact area is the 
fundamental property that permits dimensionality reduction to deformable contacts. Because 
this property exists among both normal and tangential contacts, it can be used to reduce the 
dimensionality of tangential contacts. The use of an elastic half-space method offers 
sophisticated solutions for smooth-edged and concentrated contacts [29]. The dimensionality 
reduction approach is utilized to change the 3-dimensional knee contact into a 2-dimensional 
contact; because the spherical knee condyle meets the axisymmetric requirement and can be 
reduced to a 2-dimensional problem. 
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2.3 Effect of Normal load on elastic Knee joints by Hertz Contact Problem 
Deformable contact problems are addressed using Hertzian contact theory. This 

approach is used to investigate the joint’s contact characteristics. The condyle resembles the 
shape of a sphere with a radius of curvature ‘R’, which is shown in Fig. 2. Let z and r be the 
normal and tangential directions with reference to the contact plane, respectively. The condyle 
acts as an indenter and develops the indentation profile. Fig. 4 is the geometrical construction 
of cartilage attached to condyle pressing the menisci under the action of normal and tangential 
loads. 

 

 
 

 
Fig. 3 The system of normal (F$) 

and tangential (F%) loads on a knee 
joint 

Fig. 4 Geometrical constructions of contact under 
combined loads 

Consider the effect of normal load (F#) alone and assume the tangential load (F%) is 
absent in Fig. 4. This is the 1-D analysis of a joint under normal loading. Let the elastic half-
space be indicated by a single elastic spring, then according to Pythagorean Theorem, �R	 − d	�� 	+ 	a� 		= 		R�																																																																																																							�5� 

	R	 − d	 		= 	'	R� − a�																																																																																																									�6� 
	R	 − d	R 		= 	)	1	 − a�R�																																																																																													�7� 

Applying the Binomial series expansion to simplify the Right-hand side of equation (7), 
then we get 

1 −	d	R 		≈ 		1 −	12	,a
�

R�-			− 	O�ϵ�																																																																											�8� 
Since 

1232 ≪ 1, d	R 		≈ 		 12				,a
�

R�-																																																																																																		�9� 
d			 ≈ 		 a�2R	 																																																																																																									�10� 

Therefore, the radius of contact, ‘a’ is given as, 

8		 ≈ 	√:;<																																																																																																�11� 
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Let us consider that the cartilaginous condyle is pressed into the knee elastic half-space, 
shown in Fig. 4. The area of penetration has radius a. According to estimation rules, the 
dimensions of the heavily deformed area are on the same order of magnitude as the contact 
diameter 2a; hence the depth is  ≈ 2a.  

Approximating the elastic half-space as a cylinder of diameter 2a and depth 2a, the 
stiffness of the deformed body is 

k	 = 	E∗Al = E∗	πa�2a 																																																																																							�12� 
Now, the force applied on an elastic body in terms of stiffness can be written as follows, 

�	 = 	A × B	 = 	�∗	CD�2D 	× B																																																																												�13� 
�	 = 		�∗	C		E√2�BF	2 	× B																																																																												�14� 
�	 = 		C�∗

2 		BG �H 		E√2�F																																																																													�15� 
<	 	= 		I :J:	;	K LM∗N:	O

P QH 																																																																									�16� 
Equation (16) is used to estimate the depth of penetration of the condyle into the elastic 

half-space under the normal loading. 

2.4 The combined effect of normal and tangential load on a knee joint 
The tangential loading is prominently seen during the gait cycle and where the knee is 

under a complex system of loads. The normal load is acting on the knee joint, which presses 
the condyle into the elastic cartilaginous tissue and menisci. Subsequently, a small amount of 
tangential force is applied to the condyle, which results in a transverse displacement. The 
frictional forces govern this with the coefficient of friction (µ) and transverse shear forces. The 
inner zone of this spherical contact is known as the stick zone. If tangential force is slightly 
increased, that results in shrinkage of the stick zone and an increase in the slip zone. The 
tangential stresses tend to be maximum at the stick boundary, minimum at the mid-point of the 
contact, and zero at the contact boundary (a).  The normal stresses are maximum at the mid-
point of the joint and zero towards the boundary. The stick and slip zones are shown in Fig. 5. 

 
Fig. 5 The concept of the stick and non-stick zones 

This section analyzes the combined effect of normal and tangential forces  Tangential 
load results in the relative transverse displacement between the mating surfaces along the x-
direction. Consider Fig. 4, in which the geometrical construction of the knee joint under the 
combined loading conditions is shown. The normal displacement and the transverse 
displacement of the joint because of the normal load F# and tangential load F% are derived in 
subsequent paragraphs.   
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We consider the spherical condyle surface of radius R, which has penetrated the linear 
elastic foundation by depth d, as shown in Fig. 4. Here the knee joint space with the cartilage 
of the Femur is pressed into the menisci of the knee joint by the normal force F#  and 
subsequently, the joint is loaded by a horizontal tangential force F%. The coefficient of friction 
µ  exists between the two elastic contact bodies due to adhesive action under the tangential 
load	F%. Based on geometrical formulation, the displacement of elastic spring media along z-
direction at any radial distance ‘x’ from the midpoint of contact is given by [30],  

RS�T� = < −	 T::	;	 																																																																																								�17� 
The elastic force at a distance x across the contact radius can be written as follows, 

���U� = VWXYYZ[VV × BXV\]D^[_[ZW = ��∗ 	 ]] `U�. bc�U�
= ,B −	 U�2	�	-	�∗		`U												�18� 

The tangential stiffness Δk% of the stick zone in the given biological joint is provided 
by, efT	 =	g∗	eT																																							U ∈ [	0, ^	]																																												�19� 
Where, G∗	 is known as an effective shear modulus of mating bodies, and it is given by [20], 1l∗	 = 2 − �m	4lm +	2 − ��	4l� 																																																																														�20� 
• Gn		&		ϑn	 = Shear	moduli	and	Poissonzs	ratio	of	the	cartilage	tissue, 
• G�	&	ϑ�	 = Shear	moduli	and	Poissonzs	ratio	of	the	menisci	tissue, 

If u% is the transverse displacement of the body along the x-direction, then F%�x� is the 
tangential force acting across the slip zone, which is between 0 to c and is given by, ���U� = `A� 		b� = �l∗	`U�			b� 																								Y��, � < T ≤ �																					�21� 

We have x = ± c, which is the boundary of the stick zone, where the tangential force is 
equal to the frictional force, that is ���^� = μ	���^�																																																																																														�22� 

Where c is the contact boundary of the stick zone, then the equation (22) is valid at x = 
c, and beyond that area, the slip zone exists. Now, substitute Equation (18) and (21) in (22), 
then   

l∗	`U			b� = μ,B −	 U�2	�	-	�∗			`U																																																																			�23�	 
	RT 	= 	μ M∗

g∗	 I< −	 �::;O 	= �����8��											���				� < T ≤ �																								�24�	 
Hence equation (24) gives the amount of transverse shear displacement along the x-

direction in the stick zone of the contact. If the entire area of contact between the radial 
boundaries –a to a is considered along the x-direction, then the normal force acting on the given 
biological joint can be given as [21],  

�� = � IB −	 U�2�O
�

��
�∗BU																																																																																		�25�	
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�� = �∗ � ID�2�	 −	 U�2�O
�

��
BU																																																																										�26�	

�� = �∗
2�	 �2DG − 23DG�																																																																																		�27�	

8		 = 					 �Q	;	L�:	M∗ �P QH 																																																																																					�28� 
The equation (28) can be used to estimate the contact radius ‘a’ of the knee condyle 

during the normal loading. The maximum depth of penetration because of the applied normal 
force is given by, 

<		 = 	 P
:;P QH 					�Q	L�:	M∗ �

: QH

= 		�. ���P		 �	L�	M∗ �
: QH 		 P

;P QH 																																																					�29� 
The total tangential force is estimated as the sum of the transverse shear force and the 

tangential frictional force induced in the given biological joint, which can be calculated as 
follows [21-22],  

�� = 2�[l∗			b� 		BU	]
m

�
+ 2μ� IB −	 U�2�	O

�

m
�∗BU																																																							�30�	

�� = 2�Il∗		μ	 �∗
l∗ IB −	 ^�2�	O 	BU	O

m

�
+ 2μ� IB −	 U�2�	O

�

m
�∗BU																																							�31�	

�� = 2μ� I�∗	 	I D�2�	 −	 ^�2�	O 	BU	O
m

�
+ 2μ� I D�2�	 −	 U�2�	O

�

m
�∗BU																																								�32�	

�� = 2μ�∗ I^D�2�	 − ^G2�	 + ^G6�	 − ^D�2�	 + DG3�	O																																																								�33�	
�� = 2μ�∗DG3�	 I1 − ^GDGO 		= 		 μ	�� 	K1 − �D̂�

GN																																																�34�	
�	 = 			8 �P − Q;:μ8Q LTM∗�

P QH 					= 						 8	 	 �P − μ LT	L��
P QH 																																										�35� 

Equation (35) estimates the radius of the stick zone in a combined load (F%	and	F#�	& 
knee joint. The tangential load and normal load contribute to calculating the contact radius (c).  
The radius (c) of the stick area always controls the slip or tangential displacement u% in the 
given joint. The slip is said to be maximum when the stick zone is absent. Thus when c = 0, 
from equation (24) 

RT,�8T = �	M∗
g∗ <																																																																																		�36� 

Hence the equation (36) gives the value of maximum slip that is possible in a given 
biological joint when there is no stick zone, and it is dependent on the depth of penetration d. 
Also, when c=0, the relationship between the F%	and 	F# can be found by equation (34), 
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�� = μ	�� 	,1 − K0DN
G-																																																																							�37� 

LT = μ	L�																																																																																							�38� 
The total transverse displacement in x-direction could be given by the sum of shear 

displacement in the stick zone and the frictional displacement in the slip area between the radii 
c to a [10].  

b������ = 	b�m + b�m,� = μ �∗
l∗	 IB −	 ^�2�O + μ IB −	 U�2	�				O																																													�39� 

The shear displacement u%  is constant in |0 < x ≤ c| and the frictional displacement u% ,1 is valid in |c < x ≤ a|. We can use the Heaviside function H�x� to write the	u%£¤¥1¦. 
b������ = 		μ �∗

l∗	 IB −	 ^�2�O + §�U�	μ IB −	 U�2	�	O																																								�40� 
Where	§�U� = ¨0,					©ℎ[Z					0 < U ≤ ^	1,					©ℎ[Z			^ < U < D   

2.5 Stiffness of the soft tissues in knee joint 

The ratio of applied force to the corresponding displacement of an elastic body results 
in material stiffness ‘k’. The experimental data are collected from previous studies on 
biological joints. Firstly, consider the normal force and displacement relation, which is derived 
from 1-D analysis, which is given in equation (16), then the normal secant stiffness (Average 
stiffness) can be given by equation (41) and is shown in Fig. 7. �	

B	 = 2.221	�∗	�« �H 		B« �H 																																																													�41� 
The tangential stiffness (Instantaneous stiffness) is given by the derivative of force w.r.t 

displacement given by equation (42) ∂F 	∂d	 = 3.333	R« �H 		d« �H 																																																																						�42� 
Equations (41) and (42) give the non-linear stiffness relation when we consider the 1-

D analysis of a given joint using a single spring model.  
The normal force that is calculated by considering 2-D analysis by variation in radius 

of contact across the x-direction, which is given in equation (29), is used to calculate the normal 
secant stiffness (Average stiffness) and is shown in Fig. 8. �	

B = 1.885	�∗		B« �H 		�« �H 																																																																			�43� 
The tangential stiffness (Instantaneous stiffness) is given by the derivative of force w.r.t 

displacement given by equation (44) ∂F 	∂d	 = 2.827	R« �H 		d« �H 																																																																							�44� 
The equations (41) and (44) indicate the non-linear nature of joint stiffness under 

normal loading. This is a feasible method of calculating the stiffness of a given biological joint. 
  

3. Case Studies on Biological Joints 
This section includes the results of case studies determined using two case studies by 

different methods. Firstly, knee joint contact mechanics are analyzed using the analytical 
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models derived in previous sections of this article. Secondly, the knee joint contact mechanics 
is analyzed using the numerical method (FE analysis).  

3.1 Materials  
A man who weighs 70 Kg is standing on one foot. The tibia and femur axis are assumed 

to be colinear and vertical. The radius of curvature of the medial condyle and lateral condyle 
is 21mm and 24mm, respectively. The data is collected from experimental biomechanics. 
Given Young’s modulus, shear modulus, and Poisson’s ratio of articular cartilage are 12MPa, 
4.02MPa, and 0.49, respectively. The Young’s modulus, shear modulus, and Poisson’s ratio of 
Menisci are 59MPa, 19.79MPa, and 0.49. The coefficient of friction between the articular 
surfaces is 0.3. The transverse load of 10Kg is acting on Femur through the posterior plane [31, 
32]. Referring to the numerical case study, the EHS is defined as an isotropic elastic material 
with Young’s modulus of 13.12 MPa, a Poisson’s ratio of 0.3, and a density of 1000 kg/mG 
[5-7]. 

In this case, the values of  F# = 686.9N, F% = 98.1N, 	E�	 = 59MPa, E� =12MPa, G�	 = 19.79MPa, G� = 4.02	MPa, R�	 = 21mm, R� = 24mm	and	μ = 0.3  are 
known and collected from biomechanics studies [31, 32]. From equation (1), the effective 
elastic modulus is found to E*=13.12Mpa.   

3.2 Methods 

3.2.1 Analytical Method 
The first method is a one-dimensional analysis of the knee joint. The second method 

evaluates the knee joint under 2-dimensional loading as described in earlier sections. The radius 
of the condyle’s curvature is utilized to quantify the load carried by each condyle separately. 
Firstly, the depth of penetration(d) is calculated by using equation (29). The radius of contact 
(a) is calculated by using equation (28). The radius of the stick boundary (c) is found given by 
equation (35). The maximum tangential displacement (ux ) is estimated through equations (40).  

3.2.2 Numerical method (Finite element analysis) 
The spherical lateral condyle is pressing over the cylindrical surface of elastic cartilage 

and meniscus tissues. The purpose of developing this Tibio-Femoral (TF) model was to 
estimate the stiffness behavior of the knee joint. The 3D CAD models of the sphere and 
cylindrical EHS are developed by the 3D experience CAD tool (Dassault systems, SE).  The 
condyle of the femur bone is modeled as a rigid sphere, and the soft tissues of Elastic-Half 
Space (EHS) are described as a deformable component. The Hexahedral C3D8R: 8-node linear 
brick, reduced integration, hourglass control mesh is generated on the cylindrical EHS 
geometries in ABAQUS tool (ABAQUS Inc., Providence, RI) through medial axis algorithm. 
The reduced integration element is chosen to prevent volumetric locking in the numerical 
model. The rigid discrete R3D4: 4-node 3-D bilinear rigid quadrilateral mesh is used to mesh 
the rigid sphere. The global sizing tool is set to an average 1 mm mesh element size for the 
EHS [36, 37, 38].  
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Fig. 11 Three Dimensional FE Model  Fig. 12 Contact regions: Sticking and Slipping 

zones 

Contact definitions. The contact model was created in ABAQUS, as shown in Fig. 11. 
A surface-to-surface standard contact model with the finite sliding formulation is used to 
provide a computationally efficient characterization. The contact interaction has the tangential 
behavior with penalty friction formulation with a coefficient of friction 0.15 is developed. The 
outer surface of the rigid sphere is defined as a master surface, and the deformable EHS surface 
is defined as a slave surface. 

Boundary and loading conditions. The bottom surface of a deformable EHS body is 
fixed by constraining all the degrees of freedom. The linear perturbation step is used to apply 
the two loads steps. During the first step, a 1µm of displacement in the y-direction is applied 
on a rigid sphere; then, in the second step, a normal downward force of -354.8N is applied to 
the reference point provided on the rigid sphere. In this study, numerical solutions are only 
restricted to normal loading cases [38, 39]. 

Mesh convergence. After defining material modeling, boundary conditions, and 
loading conditions, sensitivity analyses on mesh density were performed. The element size of 
the EHS component was varied to yield six different mesh resolutions by keeping the very 
refined mesh as the reference for comparison (Table 2). The peak directional displacements 
predicted by cases a-e were compared with those predicted by the reference case, and the cases 
within ±5% of the reference case were considered as accurate. Case c was optimal, as it requires 
less computing power while maintaining a prediction accuracy of 96% concerning the 
reference case model. The sensitivity study resulted in 5608 numbers of C3D8R elements 
(1mm size) for the EHS. 

Table 2. Sensitivity analyses on mesh density for different knee substructures. 

Case(s) Reference Case a Case b Case c Case d Case e 

Element Size in (mm) 0.3 0.5 0.75 1 1.25 2 
Number of Elements 16567 12761 7632 5608 3708 2342 

% Change in Peak 
Directional Displacements 

-- 1.73 2.86 3.45 8.05 14.35 
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4. Results and Discussion 
Discussion on Analytical solutions. The solutions are evaluated from the case studies 

through using analytical models established for 1D and 2D analysis, as shown by Table.1. 

 
Table. 1 Analytical solutions of case study 

According to 2-D analysis 

 Medial Condyle Lateral Condyle 

Radius of curvature RM 21mm RL 24mm  

Normal force F#�  331.8N F#�   354.8N 

Tangential force F%�  47.4N F%�  50.68N 

Displacement d 2.047mm d 2.048mm 

Radius of contact a 9.27mm a 9.91mm 

The radius of the stick 
boundary 

c 7.47mm c 7.99mm 

Maximum tangential 
displacement 

ux 0.29mm u%	   0.31mm 

According to 1-D analysis 

Displacement d   1.834mm d 1.834mm 

Fig. 6 is used to relate the normal displacement (°±� and corresponding contact radius 
along the x-direction. At the mid-point of the contact where x=0, the normal displacement °± 
is maximum. But, towards the contact boundary, the  °±  approaches to zero.  

The normal displacement (°±) and associated contact radius along the x-axis are shown 
in Fig. 6. The normal displacement °±	 is maximum at the contact’s midpoint (at x=0). 
Consequently, as the contact boundary approaches, the °± approaches zero. 

 
Fig. 6 Variation of u$ with Contact Radius x 
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This stiffness can be estimated by calculating the slope of the trend line F versus d, 
which is shown in Fig. 7. 

  
Fig. 7 Normal Force vs. displacement in 1-D 

analysis 
Fig. 8 Normal Force vs. displacement 

in 2-D analysis 

Fig. 9 gives the curve of total tangential displacement versus the contact radius in the 
medial condyle. The tangential shear displacement within the stick zone is u%  = 0.142mm and 
is constant up to c=7.47mm because the sticking action is not permitting any relative slip. The 
slip in the non-stick zone between[c, a] is u% ,1  and at this zone, the maximum transverse 
displacement in the joint surface is seen.  

Fig. 10 gives the curve of total tangential displacement versus the contact radius in 
lateral condyle. The tangential shear displacement within the sticking zone is u%  = 0.1042mm 
and constant up to c = 7.9905mm. In this analytical approach, various aspects of biological 
joints, such as the material properties, contact geometry, and deformation mechanism, are 
explored. 

 

  
Fig. 9 Tangential displacement versus 
contact radius in the medial condyle 

Fig. 10 Tangential displacement versus 
contact radius in the lateral condyle 

Discussion on numerical (FE) solutions. The deformed contour plots are shown in 
Fig. 11. The contours of the contact zone are shown in Fig. 12. The red zone indicates the stick 
zone of the contact, where there is no tangential deformation/slip seen. The small ring of the 
green area indicates the portion of the slip zone present in the given contact surface. In this 
analysis, the tangential slip is 0.216mm along the direction of tangential loading (x-direction). 
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A similar explanation of the analytical method can be adopted to describe the contact 
interactions in numerical analysis. The force versus displacement plots is post-processed, as 
shown in Fig. 13. The numerical solutions are found to be in close agreement with experimental 
and analytical solutions. The comparison of normal displacements in the numerical, analytical, 
and clinical methods is given in Table 3. The analytical solution is found to agree with 
numerical and experimental solutions. 

Comparative discussion on results of the analytical, numerical, and experimental 
methods. The primary goal of this work was to estimate the stiffness behavior of the biological 
joints. In this section, the relative behavior of force and corresponding displacement is given 
on a single plot. The one-dimensional spring approach is used to characterize the effect of 
geometrical nonlinearity on joint stiffness. The solid lined curve in the plot given by Fig. 13 
can be used to assess the non-linear stiffness in the case of one-dimensional analysis. The 2 D 
analytical formulations derived in this study are used to estimate the stiffness plots, which are 
shown by the dash lined curve with diamond markers. 

Table. 3 Comparision of solutions of the case study 

Lateral condyle 

Directional displacement in  

Numerical 
method(FE) 

Analytical 
Method 

Experimental/cli
nical Method 

[27-28] 

Radius of 
curvature 

R
L 

24mm 

1.837mm 2.048mm 1.54mm 
Max. Normal 

force 
F#�  354.8N 

Elastic modulus E 
13.12N/m

m2 

The finite element method is used to assess the knee joint stiffness, which considers the 
geometrical nonlinearities. The stiffness behavior of the knee joint contact models is said to be 
similar in all cases. As stiffness is a fundamental property of any biomechanical system, and 
that can be used in co-simulation studies. Thus, any living joint’s behavior depends on the 
geometrical parameters of the contact and the material behavior of constitutive tissues.  

The finite element method, which takes into account geometrical nonlinearities, is being 
used to quantify knee joint stiffness. In all scenarios, the stiffness characteristic of the knee 
joint contact models is reported the same. As stiffness is a fundamental property of any 
biomechanical system, and in a nutshell, the functionality of every physiological joint is 
influenced by the contact’s geometrical parameters, including the constituent tissue’s material 
behavior. 



566                                                                                                                                                    Khot and Guttal 

 

 
Fig. 13 Comparision of  joint stiffness behavior of analytical and numerical methods 

Biological joints play a significant role in the movements and activities of living 
animals. Two different scenarios are extensively investigated in this work. The first scenario 
involves normal forces acting on contact surfaces, for which a mathematical formulation is 
established. The Boussinesq equations are implemented appropriately to evaluate the effective 
elastic modulus of the two mating bodies in a given joint. The normal displacement or 
deformation caused by normal loading in the joint is evaluated explicitly. The second step is to 
model the deformation of the knee joint as a function of combined loading. The contact 
area radius (a) and the stick boundary radius (c) are also established. Finally, a case study has 
been included to provide a more precise implementation of the current studies. 

Though validation of this analytical methodology is beyond the scope of this paper, 
correlations between experimental data and numerical solutions revealed that the current 
approach generates credible predictions. Experimental observations were compared to the 
contact displacements estimated by the knee contact model [40, 41]. The non-linear contact 
response was predicted using linear material parameters. The analytical model can accurately 
estimate normal displacement, tangential displacement, contact forces, and the widths of the 
contact areas (Slip and stick zones) for a ramped load of 708 N. These findings are crucial in 
assessing the capabilities and limitations of the current contact models and can be improved as 
new understanding is gained. 

5. Conclusions 
The long-term goal is to incorporate deformable contact models of knee joints into 

multibody dynamic musculoskeletal models created with programs such as OpenSim or 
ADAMS.  In summary, this paper has presented a detailed methodology for incorporating a 
deformable contact knee model for static analysis. The current implementation works for the 
tibiofemoral joint of natural knees and can accommodate small and large strain contact models 
with linear material properties. The methodology can predict normal displacement, tangential 
displacement, contact forces, and sizes of the contact areas (Slip and stick zones) and is 
computationally fast to perform static simulations of the tibiofemoral joint.  

The analytical model can be used as a surrogate joint model in dynamic analysis of the 
body with multiple joints. The future scope of the study directs to the development of 
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mathematical models by utilizing the contact mechanics formulations to study the dynamic 
behavior of animal joints. This analytical approach can be further explored for other biological 
joints. The unique use of the current work is made in co-simulation models for kinematic 
analysis of knee joints, where the joint stiffness is derived from this analytical formulation. The 
analytical model can be used to solve an inverse problem. In the future, the non-linear 
characteristics of the biological joints are to be compared with the numerical techniques. The 
stiffness formulations shall be used as surrogate joint characteristics in dynamic joint analysis 
using multibody dynamics and co-simulation. We have found several potential computational 
and functional enhancements areas using analytical solutions. The addition of patellofemoral 
contact using the patella would enhance the current model’s utility. The limitations of this 
method are that the full-field descriptions cannot be determined using these models and are 
given as a lumped parameter system. 
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