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Abstract

A new methodology for modeling tibio-femoral artiau contact of a knee joint based on
contact models of the classical contact mechasiestablished. The given analytical models
of articular contact are extended to the case e between low strain arbitrary linear elastic
tissues, i.e., cartilages and meniscus. The appuses the geometries of contact surfaces and
the generalization of the Hertzian contact thedrman-conforming bodies with frictionless
contact interaction between elastic articular #ssuThe normal and tangential contact
displacements are determined analytically basdateaxact solutions for the spherical contact
between the articular tissues of the knee. Thelinear stiffness (secant and tangential
stiffness) of the knee joint’s elastic half-spazderived using the analytical relationships. The
method is demonstrated by exploring a case stumtithee results are compared with the current
literature to verify the fidelity of the proposedadytical approach. The analytical models
facilitate accurate contact mechanics of the kraet.j Researchers may now use these
analytical models to develop knee surrogate madetsultibody dynamics.

Keywords: Knee joint slip, knee joint displacement, stidip-szones, non-linear stiffness,
geometric nonlinearities.

1. Introduction
Multibody dynamics (MBD) simulations of biologic@bints require modeling the

internal forces inside the articular tissues [fh]l.numerous MBD studies [2, 3, 4], the tibio-
femoral articular contact is approximated as adrigontact formulation, and single point
contact takes place between the contacting bodi®ut any deformation. The deformable
contacts must consider deformation behavior alorly the articular surface geometry, and
this is an added advantage is two-fold: 1) The wheéble model provides better numerical
stability during MBD; 2) It allows conforming suda geometries [5].

In the MBD of knee joints, efficient analytical meld of deformable contact must be
used to estimate contact parameters [6,7]. Sevewsiculoskeletal models employ elastic
foundation models to describe the deformable cortabavior of knee joints [5]. Lee et al.
adopted the spline joints model to study the dywcarof the biological joints. The spline curves
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and surfaces are primary elements in modelingghessjoints [8]. In other studies, Kok-Meng
Lee et al. modeled two sequential circles rollingroa flat plane to mimic the functionality of
the knee joint. The kinematics of this sliding @uttis based on the trajectory of the multiple
circles or lines, which resembles the knee funétiion[9]. In these studies, the spline surfaces
are deformed kinematically, and the surface idielihot participate in the dynamic simulation,
and it fails to represent contact interaction urajglied loads.

Finite-Element (FE) models have been extensivelydu® simulate the articular
contacts of the knee joint over the last decade I1] The finite-element method can give
full-field descriptions and handle complex geoneatiiconfigurations of articular contacts [12-
13]. However, the FE preprocessing is excessiuglg-consuming in simulating the gait cycle.
Novel-surrogate models have been exploited in tepears to simulate elastic contacts with a
wide range of contact geometry[14, 15, 16]. Thishnd is more computationally efficient and
cost-effective than finite element contact models.

A new methodology for modeling tibio-femoral artiaucontact of a knee joint based
on contact models of the classical contact mechkasideveloped [17, 18, 19]. This approach
uses the articular contact surface geometry andrgépation of the Hertzian contact theory of
non-conforming bodies with frictionless contacteiratction between elastic articular tissues.
The normal and tangential stiffnesses of the ko are determined analytically based on the
exact solution for applied forces. According to ][26he anatomy-based MBD model
necessitates precise data of the articular corsiadaces in solving the contact problem.
Articular surfaces derived from experimental suefdata are geometrically generalized in this
approach. We are presenting the effective geonagfeatures of the articular surfaces for use
in the joint contact mechanics of the knee joimrifying the analytical solutions with the
numerical and experimental case studies.

2. Material and methods
The material models are introduced in this paxluding the mathematical strategy
towards attaining analytical solutions.

2.1 Material propertiesof the Biological joints

The knee joint comprises deformable tissues sucltamslages, meniscus, and
ligaments. Zielinska et al. have modeled the @ayélwith isotropic elastic material models
[21, 22]. Halonen et al. defined cartilage as alfiteinforced poro-viscoelastic material [23].
Wang et al. described the meniscus as a lineaalstieltransversely isotropic material [24].
The linear elastic material models are used ingtudy to overcome the intricacies in arriving
at mathematical models. Furthermore, this work doet address the study of material
behavior.

Hard tissues are the bony members of the kneg joritiding the Femur, Tibia, and
Patella bones. Because the Femur and Tibia hdlkedaformation compared to soft tissues,
they are thought to be rigid bodies. [26, 27]. Béisgues are considered rigid components in
this study.

The knee joint is primarily the deformable contanade by cartilaginous tissue of the
Femur and Menisci of the tibia. The Bnd9 ¢ are the elastic modulus and Poisson’s ratio of
the cartilage. TheNzandd v are the elastic modulus and Poisson’s ratio ofntlaisci. The
Boussinesq equation is being used to calculateftfhetive elastic moduluB,¢; at a given joint
[28],
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2.2 Mechanics of Biological joints

There are two broad categories in contact mechdmaissed on the type of load acting
on the joint: 1) normal load case; 2) combinatibnamal and tangential load case. This study
does not investigate the tendons and ligaments dtetactive in tension but inactive in
compressive loads. The synovial fluid film has gliggble influence because its thickness is
guantified in micrometers. The applied normal foixeshared among the lateral and medial
condyles, and the moment about the femoral axigctounted for. As the condyles are
axisymmetric about their radius, hence the lever @distances arRy, and R, . Thus the normal
load taken by individual condyle can be calculdigdollowing equations.

Fy = F{'+ Fy§ ()
Fy X Ry

FM = — = 3

N R, + R, ®)
Fy X R,

FL= =2 & 4

N Ry + R, ()

HereFN and F§ - are the normal loads shared by the medial atetalacondyles,
respectivelyRy, and R, - are the radius of curvatures of the medial atdr&l condyles,
respectively. The load acting on a given condylealkulated by equations (3) and (4). The
mathematical correlations have been establishatyusie geometrical construction of the
lateral condyle throughout this analytical proceddrhe article’s final section includes a case
study on both the medial and lateral condyles.

Medial condyle

Composite layer
of cartilage and
meniscus

(elastic half-space|

Lateral condyle

Tibia

Fig. 1 The CAD model of the knee Fig. 2. Hertzian contact by Spherical condyle
joint

The proportionality between incremental stiffnessd athe contact area is the
fundamental property that permits dimensionalityuaion to deformable contacts. Because
this property exists among both normal and tangentintacts, it can be used to reduce the
dimensionality of tangential contacts. The use af eastic half-space method offers
sophisticated solutions for smooth-edged and cdrefexd contacts [29]. The dimensionality
reduction approach is utilized to change the 3-dsi@al knee contact into a 2-dimensional
contact; because the spherical knee condyle mieetaxisymmetric requirement and can be
reduced to a 2-dimensional problem.
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2.3 Effect of Normal load on elastic Knee joints by Hertz Contact Problem

Deformable contact problems are addressed usindgzigiercontact theory. This
approach is used to investigate the joint's conthetracteristics. The condyle resembles the
shape of a sphere with a radius of curvature ‘Riicl is shown in Fig. 2. Let z and r be the
normal and tangential directions with referencthtocontact plane, respectively. The condyle
acts as an indenter and develops the indentatafiieprig. 4 is the geometrical construction

of cartilage attached to condyle pressing the neenisder the action of normal and tangential
loads.

space

Tibia bone .
Meniscus

A 4

X
Fig. 3 The system of normaFy) Fig. 4 Geometrical constructions of contact under
and tangentialR,) loads on a knee combined loads
joint

Consider the effect of normal loaBy( alone and assume the tangential Idag (s
absent in Fig. 4. This is the 1-D analysis of afeinder normal loading. Let the elastic half-
space be indicated by a single elastic spring, #veording to Pythagorean Theorem,

(R —d)* +a*® = R? (5)
R—d = +R2—a? (6)
R —d a?
® | TR 2

Applying the Binomial series expansion to simptte Right-hand side of equation (7),
then we get

1 d 1 L 0] 8
-~ 1o (o © ®)
. aZ

Slnceﬁ K1,

d 1 [a? 9

R ~ 2 2 ( )
aZ

d ~ — (10)

a ~ V2Rd (11)
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Let us consider that the cartilaginous condyleaésged into the knee elastic half-space,
shown in Fig. 4. The area of penetration has radiusccording to estimation rules, the
dimensions of the heavily deformed area are orséime order of magnitude as the contact
diameter 2a; hence the depth~2a.

Approximating the elastic half-space as a cylindediameter 2a and depth 2a, the
stiffness of the deformed body is

E*A E*ma?

-1 T 2a (12)

Now, the force applied on an elastic body in teofnstiffness can be written as follows,

E* ma?

F =kxd = a xd (13)
E*m \/2Rd|

F = + xd (14

nE”
F="" 4% [VzR| (15)
2 P\
¢ =[x () o

Equation (16) is used to estimate the depth of tpatien of the condyle into the elastic
half-space under the normal loading.

2.4 The combined effect of normal and tangential load on a knee joint

The tangential loading is prominently seen durimg dait cycle and where the knee is
under a complex system of loads. The normal loatimg on the knee joint, which presses
the condyle into the elastic cartilaginous tissne menisci. Subsequently, a small amount of
tangential force is applied to the condyle, whielsults in a transverse displacement. The
frictional forces govern this with the coefficiesftfriction (1) and transverse shear forces. The
inner zone of this spherical contact is known a&sstick zone. If tangential force is slightly
increased, that results in shrinkage of the stimkezand an increase in the slip zone. The
tangential stresses tend to be maximum at the lstickdary, minimum at the mid-point of the
contact, and zero at the contact boundary (a). nmmal stresses are maximum at the mid-
point of the joint and zero towards the boundatye $tick and slip zones are shown in Fig. 5.

Spherical
condyle

Sticking zone
-Cto+c

Slip zone
cloa

>
R o e
=G +c
& - >
-3 +a

Fig. 5 The concept of the stick and non-stick zones

This section analyzes the combined effect of nommnal tangential forces Tangential
load results in the relative transverse displacérbetween the mating surfaces along the x-
direction. Consider Fig. 4, in which the geomefrimanstruction of the knee joint under the
combined loading conditions is shown. The normadpkiicement and the transverse
displacement of the joint because of the normal lgaand tangential loaB, are derived in
subsequent paragraphs.
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We consider the spherical condyle surface of raRiughich has penetrated the linear
elastic foundation by depth d, as shown in Figddre the knee joint space with the cartilage
of the Femur is pressed into the menisci of theekjmnt by the normal forc&y and
subsequently, the joint is loaded by a horizorstabential forceé,. The coefficient of friction
M exists between the two elastic contact bodiestduadhesive action under the tangential
loadF,. Based on geometrical formulation, the displacdanoérelastic spring media along z-
direction at any radial distance ‘x’ from the midptoof contact is given by [30],

xZ
u,(x)=d - 2K 17)
The elastic force at a distance x across the cbraduus can be written as follows,

l
Fy(x) = stif fness X displacement = (E* ZAx).uZ(x)

xZ
= (d - ﬁ) E* Ax (18)

The tangential stiffnestk, of the stick zone in the given biological jointgsovided

by,
Ak, = G* Ax x€[0,c] (19)
Where,G* is known as an effective shear modulus of matimdjés, and it is given by [20],
L _2-9. 2-9y 20

G* 4G, 4Gy 20
* G¢c & 9 = Shear moduli and Poisson's ratio of the cartilage tissue,
* Gy & 9y = Shear moduli and Poisson’s ratio of the menisci tissue,

If uy is the transverse displacement of the body albagdidirection, theii, (x) is the
tangential force acting across the slip zone, wiidbetween 0 to ¢ and is given by,
Fx(x) = Ak, u, = (G* 4x) u, for,0<x<c 21

We have x = £ ¢, which is the boundary of the stioke, where the tangential force is
equal to the frictional force, that is

Fx(c) = nFy(c) (22)

Where c is the contact boundary of the stick ztme the equation (22) is valid at x =
¢, and beyond that area, the slip zone exists. Nowstitute Equation (18) and (21) in (22),
then

X2
G* Ax uxzu(d—ﬁ) E* Ax (23)

= E*d ¢ = tant 0<x< 24
u, = MG* 2R = constan for x<c (24)

Hence equation (24) gives the amount of transvehsar displacement along the x-
direction in the stick zone of the contact. If thetire area of contact between the radial
boundaries —a to a is considered along the x-@reahen the normal force acting on the given
biological joint can be given as [21],

a o2
FN = f [d - ﬁ] E*dx (25)
-a
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‘[ x2
FN=E* f ﬁ—ﬁ]dx (26)
—-a
E” s_2 3
FN:ZR [Za —§a] (27)
3RFy/3
e = [ 2E ] (28)

The equation (28) can be used to estimate the ciorgdius ‘a’ of the knee condyle
during the normal loading. The maximum depth ofgtstion because of the applied normal
force is given by,

L1 3FN]2/3
~ 2R's L12F
— 0.6551 [F"’] s 1 (29)
" E* R1/3

The total tangential force is estimated as the sfithe transverse shear force and the
tangential frictional force induced in the giverolbgical joint, which can be calculated as
follows [21-22],

2
X
F—Zf[G* uxdx]+2uf[d—ﬁde 30)
c
Fx=2f[G uG— d——]dx]+2uf[d——]de (31)
0
F—ZfE* LA +2fa2 il P 32
x = el 2R 2R| | T 2R T R|P (32)
0
E, = 2uE* caZ_c Lo @ 33
x = M5 19R 2R T6R T 2R T 3R (33)
2uE*a3 c3 c\3
Fo="0r [1_5 = uFN<1—(E)> (34)
I .
c = a zuagE* H ()

Equation (35) estimates the radius of the stlclezmra combined load’{ and Fy) &
knee joint. The tangential load and normal loadgoate to calculating the contact radius (c).
The radius (c) of the stick area always controés glip or tangential displacemantin the
given joint. The slip is said to be maximum whea #tick zone is absent. Thus when ¢ = 0,
from equation (24)

Y max =H G_d (36)
Hence the equation (36) gives the value of maxinsli;ithat is possible in a given

biological joint when there is no stick zone, ahis idependent on the depth of penetration d.
Also, when c=0, the relationship betweenQand Fy can be found by equation (34),
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0 3
F. = nFy (1 -(5) ) @37)
Fe=wFy . (38)
The total transverse displacement in x-directionl@¢de given by the sum of shear
displacement in the stick zone and the frictionspldcement in the slip area between the radii

c to a [10].

ulotol = ug g = [d - ﬁ] g “[d‘ R ] .

The shear displacemeut is constant if0 < x < c| and the frictional displacement
us?is valid in|c < x < al. We can use the Heaviside functid(x) to write theul°t!,

E* 2 2
yfotal = [d _ + H(x) u[d X (40)

G* 2R 2R

0, when 0<x<c

WhereH (x) = { 1, when c<x<a

2.5 Stiffness of the soft tissuesin kneejoint

The ratio of applied force to the correspondingldisement of an elastic body results
in material stiffness ‘k’. The experimental datee arollected from previous studies on
biological joints. Firstly, consider the normalderand displacement relation, which is derived
from 1-D analysis, which is given in equation (1tBen the normal secant stiffness (Average
stiffness) can be given by equation (41) and isvshim Fig. 7.

F
—=2221E R'2 d'/ (41)

The tangential stiffness (Instantaneous stiffnssgiven by the derivative of force w.r.t
displacement given by equation (42)
5 = 3333R /2 d'/2 (42)
Equations (41) and (42) give the non-linear stéieelation when we consider the 1-

D analysis of a given joint using a single springdal.

The normal force that is calculated by conside8rg analysis by variation in radius
of contact across the x-direction, which is giveedguation (29), is used to calculate the normal
secant stiffness (Average stiffness) and is shawfig. 8.

F
—=1885E° d'/2 R'2 (43)
The tangential stiffness (Instantaneous stiffnessgiven by the derivative of force w.r.t
displacement given by equation (44)
oF 1, .1
g = 2827R 2 q'/2 (44)

The equations (41) and (44) indicate the non-lineture of joint stiffness under
normal loading. This is a feasible method of calting the stiffness of a given biological joint.

3. Case Studies on Biological Joints
This section includes the results of case studisrohined using two case studies by
different methods. Firstly, knee joint contact meuics are analyzed using the analytical
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models derived in previous sections of this artiSlecondly, the knee joint contact mechanics
is analyzed using the numerical method (FE anglysis

3.1 Materials

A man who weighs 70 Kg is standing on one foot. filie and femur axis are assumed
to be colinear and vertical. The radius of cunvatof the medial condyle and lateral condyle
is 21mm and 24mm, respectively. The data is catbdtom experimental biomechanics.
Given Young’'s modulus, shear modulus, and Poissatis of articular cartilage are 12MPa,
4.02MPa, and 0.49, respectively. The Young’'s maslidhear modulus, and Poisson’s ratio of
Menisci are 59MPa, 19.79MPa, and 0.49. The coefiicof friction between the articular
surfaces is 0.3. The transverse load of 10Kg is@oin Femur through the posterior plane [31,
32]. Referring to the numerical case study, the EH&efined as an isotropic elastic material
with Young’s modulus of 13.12 MPa, a Poisson’sorati 0.3, and a density of 108g/m3
[5-7].

In this case, the values of Fy = 686.9N,F, =98.1N, Ey; = 59MPa,E;, =
12MPa, Gy = 19.79MPa, G|, = 4.02 MPa,Ryy = 21mm, R, = 24mm and p = 0.3 are
known and collected from biomechanics studies @], From equation (1), the effective
elastic modulus is found to €13.12Mpa.

3.2 Methods

3.21 Analytical Method

The first method is a one-dimensional analysishefknee joint. The second method
evaluates the knee joint under 2-dimensional lapdsdescribed in earlier sections. The radius
of the condyle’s curvature is utilized to quantifie load carried by each condyle separately.
Firstly, the depth of penetration(d) is calculabgdusing equation (29). The radius of contact
(a) is calculated by using equation (28). The madiithe stick boundary (c) is found given by
equation (35). The maximum tangential displacerfntis estimated through equations (40).

3.2.2 Numerical method (Finite element analysis)

The spherical lateral condyle is pressing overcthimdrical surface of elastic cartilage
and meniscus tissues. The purpose of developirgy THiio-Femoral (TF) model was to
estimate the stiffness behavior of the knee joltite 3D CAD models of the sphere and
cylindrical EHS are developed by the 3D experie@éd® tool (Dassault systems, SE). The
condyle of the femur bone is modeled as a rigicesphand the soft tissues of Elastic-Half
Space (EHS) are described as a deformable compdifenHexahedral C3D8R: 8-node linear
brick, reduced integration, hourglass control mesigenerated on the cylindrical EHS
geometries in ABAQUS tool (ABAQUS Inc., Providenéd) through medial axis algorithm.
The reduced integration element is chosen to ptewvelumetric locking in the numerical
model. The rigid discrete R3D4: 4-node 3-D bilinegrd quadrilateral mesh is used to mesh
the rigid sphere. The global sizing tool is seatpaverage 1 mm mesh element size for the
EHS [36, 37, 38].
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Fig. 11 Three Dimensional FE Model Fig. 12 Contact regions: Sticking and Slipping
zones

Contact definitions. The contact model was created in ABAQUS, as showig. 11.
A surface-to-surface standard contact model with fthite sliding formulation is used to
provide a computationally efficient characterizati®he contact interaction has the tangential
behavior with penalty friction formulation with aefficient of friction 0.15 is developed. The
outer surface of the rigid sphere is defined assten surface, and the deformable EHS surface
is defined as a slave surface.

Boundary and loading conditions. The bottom surface of a deformable EHS body is
fixed by constraining all the degrees of freedoime Tinear perturbation step is used to apply
the two loads steps. During the first step, a 1jimisplacement in the y-direction is applied
on a rigid sphere; then, in the second step, a aladawnward force of -354.8N is applied to
the reference point provided on the rigid sphemethis study, numerical solutions are only
restricted to normal loading cases [38, 39].

Mesh convergence. After defining material modeling, boundary conaits, and
loading conditions, sensitivity analyses on megfsig were performed. The element size of
the EHS component was varied to yield six differevésh resolutions by keeping the very
refined mesh as the reference for comparison (T2bl&he peak directional displacements
predicted by cases a-e were compared with thoskcped by the reference case, and the cases
within £5% of the reference case were consideretasrate. Case ¢ was optimal, as it requires
less computing power while maintaining a predictiaccuracy of 96% concerning the
reference case model. The sensitivity study reduite5608 numbers of C3D8R elements
(Imm size) for the EHS.

Table 2. Sensitivity analyses on mesh density for diffetarge substructures.

Case(s) Reference Casea Caseb Casec Cased Casee
Element Sizein (mm) 0.2 0.5 0.7t 1 1.2F 2
Number of Elements 16567 12761 7632 5608 370¢ 234z

% Changein Peak

Directional Displacements 173 2.86 3.45 8.05 14.35
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4. Results and Discussion
Discussion on Analytical solutions. The solutions are evaluated from the case studies
through using analytical models established forahd 2D analysis, as shown by Table.1.

Table. 1 Analytical solutions of case study
According to 2-D analysis

Medial Condyle Lateral Condyle

Radius of curvature R
M

21mm R 24mm

Normal force FN 331.8N  Fy  354.8N
Tangential force FM 47.4N FL  50.68N
Displacement d 2.047Tmm d 2.048mm
Radius of contact a 9.27mm a 9.91mm
The radius of the stick 7 47mm c ~ 99mm
boundary
Maxi t tial

. Ximum tangentia Ux 0.29mm  uy 0.31mm
displacement
According to 1-D analysis
Displacement d 1.834mm d 1.834mm

Fig. 6 is used to relate the normal displacemeyit &nd corresponding contact radius
along the x-direction. At the mid-point of the cacit where x=0, the normal displacemapt
is maximum. But, towards the contact boundary, eheapproaches to zero.

The normal displacementf) and associated contact radius along the x-agistaown
in Fig. 6. The normal displacemenj is maximum at the contact's midpoint (at x=0).
Consequently, as the contact boundary approadies, approaches zero.

15.00

Normal displacement, Uz in mm

J
2 g g g g g g g 8 8 8 8 -1 8 8 8 8 8 2
@ ~ ry @ v - N - < - ° ~ @ @

- ° - ~

- Contact Radius, X inmm >

Fig. 6 Variation ofu, with Contact Radius x



564 Khot and Guittal

This stiffness can be estimated by calculatingstiope
which is shown in Fig. 7.
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Fig. 7 Normal Force vs. displacement in 1-DFig. 8 Normal Force vs. displacement
analysis in 2-D analysis
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Fig. 9 gives the curve of total tangential disptaeat versus the contact radius in the
medial condyle. The tangential shear displaceméhtmwthe stick zone ig; = 0.142mm and
is constant up to c=7.47mm because the stickirigrat not permitting any relative slip. The
slip in the non-stick zone between[c, aJufg' and at this zone, the maximum transverse
displacement in the joint surface is seen.

Fig. 10 gives the curve of total tangential displaent versus the contact radius in
lateral condyle. The tangential shear displaceméhtn the sticking zone isg = 0.1042mm
and constant up to ¢ = 7.9905mm. In this analytggiroach, various aspects of biological
joints, such as the material properties, contachgry, and deformation mechanism, are
explored.

0.3

0.25

0.2

0.15

0.1

0.05

Tangential displacement, Ux

c¢=7.47mm, a=9.27mm

1 2 3 4 5 6 7474 8 9.270
Contact radius, x

Tangential displacement, Ux
o o o o
5 © 5 ° L ° W
& & & 8 B o &

o

€=7.9905mm, a=9.91mm

0

1

2 3 4 5 6
Contact radius, x

799 8 991

Fig. 9 Tangential

contact radius in the medial condyle

displacement vers Fig. 10 Tangential displacement vers
contact radius in the lateral condyle

Discussion on numerical (FE) solutions. The deformed contour plots are shown in

Fig. 11. The contours of the contact zone are shovg. 12. The red zone indicates the stick
zone of the contact, where there is no tangenédrdhation/slip seen. The small ring of the
green area indicates the portion of the slip zaesent in the given contact surface. In this
analysis, the tangential slip is 0.216mm alongdinection of tangential loading (x-direction).
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A similar explanation of the analytical method che adopted to describe the contact
interactions in numerical analysis. The force verdisplacement plots is post-processed, as
shown in Fig. 13. The numerical solutions are fotmle in close agreement with experimental
and analytical solutions. The comparison of nordisplacements in the numerical, analytical,
and clinical methods is given in Table 3. The anedy solution is found to agree with
numerical and experimental solutions.

Compar ative discussion on results of the analytical, numerical, and experimental
methods. The primary goal of this work was to estimate tiifness behavior of the biological
joints. In this section, the relative behavior ofde and corresponding displacement is given
on a single plot. The one-dimensional spring apghca used to characterize the effect of
geometrical nonlinearity on joint stiffness. Thdidgdined curve in the plot given by Fig. 13
can be used to assess the non-linear stiffne$ioase of one-dimensional analysis. The 2 D
analytical formulations derived in this study ased to estimate the stiffness plots, which are
shown by the dash lined curve with diamond markers.

Table. 3 Comparision of solutions of the case study

Directional displacement in

Experimental/cli

Lateral condyle , _
nl:l:tr:jd”((;:aé) A'\r;laelzltg:(?l nical Method
[27-28]
Radius of R oamm
curvature L
Max. Normal L
Fy 354.8N  1.837mm  2.048mm 1.54mm
force
Elastic modulus E 13';22N/m

The finite element method is used to assess thejkirg stiffness, which considers the
geometrical nonlinearities. The stiffness behawidhe knee joint contact models is said to be
similar in all cases. As stiffness is a fundameptabperty of any biomechanical system, and
that can be used in co-simulation studies. Thug,li@img joint’s behavior depends on the
geometrical parameters of the contact and the rabterhavior of constitutive tissues.

The finite element method, which takes into accg@umetrical nonlinearities, is being
used to quantify knee joint stiffness. In all sa#rg the stiffness characteristic of the knee
joint contact models is reported the same. Asmgf§ is a fundamental property of any
biomechanical system, and in a nutshell, the fonetity of every physiological joint is
influenced by the contact’'s geometrical parametaciuding the constituent tissue’s material
behavior.
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Fig. 13 Comparision of joint stiffness behavior of anatgtiand numerical methods

Biological joints play a significant role in the mements and activities of living
animals. Two different scenarios are extensiveliestigated in this work. The first scenario
involves normal forces acting on contact surfaéesswhich a mathematical formulation is
established. The Boussinesq equations are impledapipropriately to evaluate the effective
elastic modulus of the two mating bodies in a giyeimt. The normal displacement or
deformation caused by normal loading in the jargvaluated explicitly. The second step is to
model the deformation of the knee joint as a fumttof combined loading. The contact
area radius (a) and the stick boundary radiusré&cakso established. Finally, a case study has
been included to provide a more precise implemiamtatf the current studies.

Though validation of this analytical methodologybisyond the scope of this paper,
correlations between experimental data and nuniesiglations revealed that the current
approach generates credible predictions. Expermhariiservations were compared to the
contact displacements estimated by the knee comtadel [40, 41]. The non-linear contact
response was predicted using linear material paeamerhe analytical model can accurately
estimate normal displacement, tangential displaoeno®ntact forces, and the widths of the
contact areas (Slip and stick zones) for a rampad bf 708 N. These findings are crucial in
assessing the capabilities and limitations of tireent contact models and can be improved as
new understanding is gained.

5. Conclusions

The long-term goal is to incorporate deformabletachmodels of knee joints into
multibody dynamic musculoskeletal models createth virograms such as OpenSim or
ADAMS. In summary, this paper has presented ailddtanethodology for incorporating a
deformable contact knee model for static analylm® current implementation works for the
tibiofemoral joint of natural knees and can accordate small and large strain contact models
with linear material properties. The methodology paedict normal displacement, tangential
displacement, contact forces, and sizes of theacbrareas (Slip and stick zones) and is
computationally fast to perform static simulatiaighe tibiofemoral joint.

The analytical model can be used as a surrogaterjadel in dynamic analysis of the
body with multiple joints. The future scope of tetudy directs to the development of
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mathematical models by utilizing the contact meatgformulations to study the dynamic
behavior of animal joints. This analytical approaein be further explored for other biological
joints. The unique use of the current work is madeo-simulation models for kinematic
analysis of knee joints, where the joint stiffnesderived from this analytical formulation. The
analytical model can be used to solve an inversblem. In the future, the non-linear
characteristics of the biological joints are todeenpared with the numerical techniques. The
stiffness formulations shall be used as surrogate ¢haracteristics in dynamic joint analysis
using multibody dynamics and co-simulation. We hiotend several potential computational
and functional enhancements areas using analgidations. The addition of patellofemoral
contact using the patella would enhance the cumedel’s utility. The limitations of this
method are that the full-field descriptions canbetdetermined using these models and are
given as a lumped parameter system.
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