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Abstract

Well conditions during drilling operation can be predicted using numerical simulation. During under-
balanced drilling (UBD) operation, controlling the bottom-hole pressure (BHP) in a suitable range and
also appropriate hole-cleaning is essential. In this paper, numerical simulation of gas-liquid-solid three-
phase flow in the annulus is used to study the effects of annulus geometry and also liquid properties on
the BHP and hole-cleaning during UBD operation. To validate the numerical simulation, the results are
compared with the experimental data from a laboratory study. Also, the gain results from developed
code are compared with the actual field data from a real well, several mechanistic models from WellFlo
software, and gas- liquid two- fluid numerical simulation. Due to the significance of controlling the BHP
and hole-cleaning during UBD operation, the effects of annulus geometry and liquid phase properties
on BHP and the solid volume fraction distribution are investigated. According to the results, changing
the hydraulic diameter and cross-sectional area of the annulus can affect BHP and hole- cleaning in
UBD operation. In other words, increasing the hydraulic diameter at a constant cross- sectional area
improves hole-cleaning and decrease BHP. Also, decreasing the cross-sectional area at a constant
hydraulic diameter improves hole-cleaning and increase BHP. The results show that the liquid viscosity
affects hole-cleaning through two contrary mechanisms. In fact, by increasing the liquid viscosity,
carrying capacity of the liquid phase is increased and cutting transfer velocity is decreased.

Keywords: Under-Balanced Drilling, Bottom-Hole Pressure, Hole-Cleaning, Geometrical Parameters,
Liquid Properties

Introduction and Problem Statement

Drilling operation techniques are defined based on the comparison of bottom-hole pressure
(BHP) and reservoir pressure. If BHP is maintained lower than the reservoir pressure, then the
drilling technique is called under-balanced drilling (UBD), and if BHP is greater than the
reservoir pressure then the drilling technique is over-balanced drilling (OBD). During UBD
operation, gas-liquid two-phase flow is injected from the wellhead to the drill string. At the
bottom hole, drill cuttings add to this two-phase flow. Therefore, in the annulus, gas-liquid-
solid three-phase fluid is flowing from the bottom to the wellhead. Predicting and controlling
the BHP in a suitable range and also proper cutting transport in the annulus are the main
challenges during UBD operation.

Much of the research in UBD is focused on predicting the effects of different parameters on
the pressure distribution and cutting volume fraction distribution. For this purpose, Guo et al.
[1] developed a mechanistic model to simulate gas-liquid two-phase flow in UBD operation
regardless of the solid particle and the velocity difference between gas and liquid phases. They
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calculated the optimal airflow rate in order to increase the rate of penetration. Fan et al. [2]
developed a computer program for predicting the behavior of multi-phase fluid flow during
UBD operation. This program is able to consider the flow of oil, gas, water, and drilling fluid
simultaneously, but the effects of solid-phase were not considered. Lage [3] and Lage and Time
[4] simulated the upward gas-liquid two-phase flow in concentric annuli based on a new
mechanistic model. They have validated the results using the data of a real well. Guo and
Ghalambor [5], by considering the effect of solid phase and using a mechanistic approach,
determined the acceptable range of injected liquid and gas phases to ensure that BHP being in
the range between formation pressure and blow out pressure and also drill cuttings are
appropriately transported. Perez-Tellez [6] and Perez-Tellez et al. [7] assumed that in the
annulus, the gas-liquid two-phase are flows and neglected from solid particles. They proposed
a mechanistic model to predict standpipe pressure and BHP in various flow patterns. They
developed a numerical method based on the drift flux model for simulating the transient two-
phase flow in the vertical annuls in the UBD operation. Fadairo et al. [8] has studied the effects
of the solid volume fraction on the pressure drop in a vertical tube mechanistically. Yan et al.
[9] had an overview of the empirical correlations, sensitivity analyses, and mechanical models
for cuttings transport with aerated liquid and foam. The conclusion of this article stated that
despite significant improvements that have been achieved in the past several decades, but more
researches will be conducted to more understand the cuttings transport mechanism. Khezrian et
al. [10] simulated the gas-liquid two-phase flow in UBD operation by using a one-dimensional
form of the steady-state two-fluid model in the Eulerian frame of reference. They did not
consider the effect of the solid phase. Gas-liquid two-phase flow in the annulus of a well with
actual dimensions during UBD operations with the effect of temperature variation due to heat
transfer of drilling fluids with the formation was studied by Hajidavalloo et al. [11]. In this
research, the effects of cuttings are not considered and hole cleaning problems not investigated.
Lietal. [12] established a prediction model based on the dynamic bottom hole pressure balance
to predict the horizontal well’s maximum allowable measured depth during UBD operation. In
this study, the pore pressure is taken as the critical point at which horizontal wells must stop
extending to maintain the under-balanced state of the bottom hole. The hole-cleaning problems
were not considered in this study.

The literature review shows that most of the previous researches in the UBD operation
focused on the study of the effects of operational parameters such as injected gas and liquid
flow rate on BHP. Meanwhile, the geometry of the annulus and fluid properties influences hole-
cleaning and BHP and plays a very important role in the designs of successful UBD operations.
To the author's best knowledge, no papers have focused on the effects of annulus geometry and
liquid properties on BHP and cutting transport during the UBD operation.

In this paper, the numerical simulation of the gas-liquid-solid three-phase flow during under-
balanced drilling operation is used to investigate the effects of annulus geometry and liquid
viscosity and density on the BHP and cutting transport. Therefore, in the following sections,
the governing equations of the multi-fluid model, corresponding relations, the numerical
method, and solution algorithm are presented, respectively. The simulation is validated by a
laboratory study and also by field data from a real well. The effects of geometry parameters
such as hydraulic diameter, cross-sectional area on BHP, and cutting transport are discussed.
Finally, the effects of viscosity and density of the liquid phase on BHP and cutting transport are
investigated.

Governing equations

In this paper, one-dimensional form of the steady-state, multi-fluid model in the Eulerian frame
of reference is used to simulate gas-liquid-solid three-phase flow in the annulus. The mass
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transfer between phases was neglected, and the temperature gradient along the well follows the
geothermal gradient. Here, it is assumed that the gas phase is to be compressible, and the liquid
is incompressible. Considering these assumptions, the governing equations consist of
continuities, and momentum equations for each phase are as follows (Evje and Flatten [13],
Hatta et al. [14])
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In the above-mentioned equations, « denotes the volume fractions, p is density, u is the

velocity, and A is cross-sectional area. The G, L, and S subscripts refer to the gas, liquid, and
the solid phases, respectively. Also, F, is the gravitational force and F, is virtual mass force.
F. denotes the interface shear force and F, is the wall shear force. AP is the pressure correction
term. Modeling of the above-mentioned forces and also pressure correction term can be found
in Hatta et al. [14].

In addition to the conservative equations of mass and momentum, two other equations are
needed to close the system. These equations are saturation constraint equation and the gas
equation of state. The saturation constraint equation states that

ZK:aK =oa;+o +og =1 )

And the equation of state for the gas phase is as follows
Ms.P
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To calculate the compressibility factor in Equation 8, Equation 9 which is utilized by
Dranchuk and Abu-Kassem [15] is used
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In Equation 9, T, , o, are reduced temperature and reduced density, respectively.

Numerical simulation method

Continuity and momentum equations besides saturation constraint equation of the volume
fractions of the phases and gas equation of state form a coupled system of ordinary differential
equations with eight equations. By using the first-order approximation for the spatial
derivatives, the governing equations will be changed to a coupled nonlinear algebraic system
of equations. A matrix based on the governing equation defined as follows (Bratland [16].)
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The independent variables are all the fractions (three variables), the velocities (three

variables), the gas density (one variable), and the pressure (one variable), eight variables in
total. So the variables we seek to determine are:

Y=[y1 Yo Y5 Yo Y5 Y5 V7 ys]T :[ae o o Ug U U g P]T (11)

The solution method that has been used is Newton's method that details of which to solve a
stratified two-phase flow described by Bratland [16]. Newton-iteration on Equations (10) and
(11) is straightforward

Y, =Y, IR (Y,) (12)

The calculation starts from the top of the annulus by inserting everything we know at the
outlet into y-vector. The choke pressure is directly inserted as P, . The gas density can be
obtained using the gas equation of state and choke pressure and also the temperature at the

wellhead according to Equations (8) and (9). We need to guess values for «, and o, at the
wellhead node and then setting «, =1.0-o, —«,. Next, determine starting values for the

velocities at the wellhead in such a way that they satisfy the phase mass flow rates. Therefore,
all values in Y at the outlet of the annulus are thereby known. We index the y-vector at the

outlet Y., so the second cell from wellhead becomes Y,. All of the parameters of three-phase
flow in the second cell from wellhead Y, are guessed. These values of Y, and Y,, are used to
determine the F-vector in Equation 10. The Jacobi-matrix J=06F/oY is calculated by

investigating how that affects F with slightly varying of each argument Bratland (2010).
According to Equation 12, Newton-iteration processes to calculate the modified values of Y,

vector are repeated until the convergence criteria is satisfied. The convergence is achieved when
JZ:EZ <10”. The process is repeated throughout the annulus to achieve BHP. In order to

modify poor initial guesses of the first point and to go to be more accurate, the initial guess at
the wellhead node is corrected by extrapolation of the first five points at the top of the annulus.
Repeat the process solution from the wellhead until satisfied the convergence criteria which

represented as follows ( ol —afyi:1|+ alth —a;i:1|) <10°
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Results and discussion

To validate the performance of the multi-fluid model, a laboratory study by Lage and Time [4]
is simulated. In this study, the well was 1275-meter-deep, and four temperature sensors and
four pressure sensors are installed along with the annular space at depths of 240, 494, 998, and
1273 meters. The inner diameter of the annular space in the total length of the well is 88.9 mm,
and the outer diameter is 159.4 mm. The results were obtained for water injection with 0.15
m3/min flow rate, nitrogen with 28.13 m3/min, and choke pressure 0.41 MPa. Figure (1) shows
the annulus pressure variation comparisons for the laboratory study by the Lage and Time and
Multi-fluid models. This figure confirms the validity of the current study.
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Figure 1. Pressure distribution in the annulus of laboratory study by Lage and Time

Gas-liquid-solid three-phase flow in the annulus of Muspac-53 well (Perez-Tellez [6]), which
was drilled in Mexico, also confirms the validity of the current study. This well was drilled
from 2597 m (8520 ft) to 2686 m (8812 ft) by means of the UBD technique. The BHP was
measured and reported. During the UBD operation, the simultaneous injection of nitrogen at
15.014 m3/min (530 scf/min) and a mud with 0.94 specific gravity at 0.5075 m3/min (133 gpm)
was implemented. At the wellhead, the choke pressure was set at 0.310 MPa (45.12 psi), and
the temperature is 301.15 k. The temperature gradient along the annulus is 2.83 K/100m.
Drilling velocity is 6 m/hour. The average cutting size supposed to be 6 mm, and the solid
density is 2800 kg/m3. Annular well geometry is shown in Table 1.

Table 1. Annular well geometry

Depth (m) Drill string outer diameter (mm) Annuls outer diameter (mm)
0-2555 88.9 152.5
2555-2597 120.7 152.5
2597-2605 120.7 149.2

Table 2 shows the BHP, which were obtained using the multi-fluid model, field data and the
result of WellFlo software (Kezrian et al. [10]) , which uses different mechanistic models such
as Biggs & Brill, Hasan & Kabir, and OLGAS and also gas-liquid two-fluid model. As shown
in Table 2, the gas-liquid-solid three-phase flow model yields relatively more accurate BHP
than Biggs & Brill and OLGAS models of WellFlo software, but it has a little more error in
comparison with the Hassan and Kabir model. The WellFlo-Hassan & Kabir model is a
mechanistic model that does not provide any information about the distribution of the solid
volume fraction along with the annular space.

Table 2. Comparison of BHP of Muspac-53

Model BHP (MPa) % Error
Field data 23.57 -
Two-Fluid Model 19.67 16.55
WellFlo-OLGAS 16.95 28.09
WellFlo-Biggs&Brill 17.76 24.65
WellFlo-Hasan & Kabir 21.14 10.31

Multi-Fluid Model (Current Study) 20.24 14.13
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Effects of geometry parameters

During UBD operation, liquid and gas phases are injected from wellhead to the drill string.
After passing through the drill string and bit, these fluids carry drill cutting from the bottom-
hole and flows upward through the annular space between the outer wall of the drill string and
formation wall. The geometry of annular space can affect BHP and hole-cleaning. Hydraulic
diameter and cross-sectional area, are two important geometric parameters in annular geometry.
For annular geometry, the cross-sectional area is defined as A=7r(D2 —D,i), and the hydraulic

out

diameter is D, =D,, - D, . S0, as follows, the effects of theses geometrical parameters on BHP

and cutting transport are investigated.

The effects of hydraulic diameter and cross-sectional area on the BHP are presented in Figure
(2) for the Muspac-53 case study. Assumed that, annular space of this well does not have any
abrupt changes, and annular space has a uniform cross-sectional area. BHP has been gained
from developed code for three different cross-sectional areas at various hydraulic diameters, as
seen in figure (2).
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Figure 2. Effects of hydraulic diameter and cross-sectional area on BHP

As Figure (2) shows, for a constant cross-sectional area, by increasing hydraulic diameter,
BHP decreased. The variation of BHP versus hydraulic diameter is not linear. Also, the
comparison of different charts in figure (2) indicates that by increasing the cross-sectional area,
BHP is decreased for a constant hydraulic diameter.

Figure (3) represents the solid volume fraction distribution during the annulus for different
hydraulic diameters with a constant cross-sectional area. As this figure shows, in a constant
cross-sectional area by increasing hydraulic diameter, the solid volume fraction is decreased
during the entire length of the well.
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Figure 3. Distribution of solid volume fraction for various hydraulic diameter

Also, figure (4) represents the solid volume fraction distribution during the annulus for the
different cross-sectional areas with constant hydraulic diameters. This figure shows that in
constant hydraulic diameter, the solid volume fraction is increased by increasing the cross-
sectional area.
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Figure 4. Distribution of solid volume fraction for various cross-sectional area

Effects of liquid properties

During UBD operation, it is the liquid phase that provides the medium which transports the
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solid phase (smith et al. [17] ). On the other hand, the carrying capacity of a liquid is fully
dependent on viscosity. Also, in UBD operation, generally oil-based fluid is used as drilling
liquid. Viscosity and density of oil-based liquids are interrelated together. Due to the effects of
liquid density on BHP and liquid viscosity on hole-cleaning and dependency of these properties,
drilling fluid selection in UBD operation is very important. In this numerical simulation, the
viscosity of the liquid phase is calculated as follows (Beggs and Robinson, [18])

f =0.8115(10% —1) (13)

Where viscosity is in Centipoise (cp), and for X, we have

X = 103.32404).0203(°AP|) (T—1.1630) (1 4)
oil —

In the above equations, the temperature is in Fahrenheit (F). The API is an indicator related
to specific gravity, and its value, usually varies from 47 for light oil to 10 for heavy oil. API
and specific gravity are related together as follows;

oapl =145 1315 (15)

Vil

Figure (5) shows the effects of liquid density variation on Muspac-53 BHP. As this figure
shows, increases in the BHP due to increases in the liquid density are not linearly, and the
increases are stronger for higher density. Changing the density of the liquid with two different
mechanisms affects BHP. Increasing fluid density increases the hydrostatic term of pressure,
directly. Also, according to the Equations (13)-(15), with changes in liquid density, the liquid’s
viscosity changes, and this change in viscosity changes the frictional term of the pressure.
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Figure 5. Effects of liquid density on Muspac 53 BHP

The effects of density and so on the effects of viscosity changing on cutting transport are
represented in Figure (6). In this figure, the vertical axis represents the ratio of the solid volume
fraction at the nearest node after geometry change in the downstream to its value at the nearest
node before the geometry change in the upstream for Muspc-53 well in depth of 2555 meters.
As this figure shows, increases in liquid density and viscosity, do not always lead to improved
hole-cleaning. As seen, the solid volume fraction ratio increases as the density, and so on the
viscosity increases until it exhibits a maximum value. After the maximum value, the solid
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volume fraction ratio decreases as the viscosity is increased. Increasing the viscosity reduces
the velocity of the mixture and increases the cuttings transport capacity. Hence, the curve of
solid volume fraction ratio versus density and so on the liquid phase’s viscosity is divided into
two regions depending on whichever has a dominant effect. On the left-hand side, decreasing
the velocity is the dominant factor, and on the right-hand side, increasing the carrying capacity
is the dominant factor.
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Figure 6. Effects of liquid density on cutting transport in Muspac 53

Conclusions

A numerical procedure based on a one-dimensional multi-fluid model was proposed to simulate
gas-liquid-solid three-phase flow in the annulus of real wells during UBD operation. Developed
numerical simulation was validated by using two case studies. The effect of hydraulic diameter
and cross-sectional area and the effects of liquid density and so on liquid viscosity on BHP and
hole-cleaning were investigated numerically. The following conclusions may be drawn:

1-  Inaconstant cross-sectional area, BHP decreased nonlinearly by increasing hydraulic
diameter and hole-cleaning improved.

2- Inaconstant hydraulic diameter, by decreasing the cross-sectional area, BHP increased,
and hole-cleaning improved.

3-  During UBD operation, by increases of the liquid density and so on increases the liquid
viscosity, BHP is increased nonlinearly.

4-  The viscosity of the liquid phase affects hole-cleaning through two contrary
mechanisms. In fact, as the drilling fluid's viscosity increases, the average velocity of the
drilling fluid decreases and causes more cuttings to remain in the annular space. On the other
hand, as the drilling fluid's viscosity increases, the carrying capacity of the cuttings by the liquid
phase increases, and hole-cleaning improved.
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