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Abstract 
Material properties of a structure can be estimated using destructive and non-destructive methods. 

Experimental vibration data of the structure can be used to conduct a non-destructive procedure to 

identify material properties. In this research, experimental modal parameters obtained from modal 

testing are utilized to estimate the Young’s modulus and the density of different components of a car 
seat frame. To do so, the finite element model of the structure is constructed and the modal parameters 

are evaluated by performing modal analysis. The obtained modal parameters are then used in an 

inverse identification procedure and compared with the experimental counterparts to estimate the 
material properties of the structure in an optimization framework. The objective function is defined by 

comparing the numerical and experimental natural frequencies where the material properties are 

considered as the design parameters of the optimization process. To find the optimum design 
parameters, the response surface optimization technique is employed to alleviate the computational 

costs of direct optimization. To this end, the design of experiment method using the Box-Behnken 

design is conducted to create the design points. The kriging method is then utilized to construct the 

response surfaces. Finally, the nonlinear programming quadratic Lagrangian method is employed to 
evaluate the best estimations for the material properties using the response surface optimization 

method.  
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Introduction 

 

This research deals with using the experimental modal parameters, obtained from modal 

testing, to perform a non-destructive material identification procedure. Tam et al. [1] reviewed 

the non-destructive vibration-based approaches to estimate the Young’s modulus of 

composite plates. These methods usually use inverse approaches to identify material 

properties [2, 3] where the accuracy of the inverse approaches depends on the accuracy of the 

experimental data and the accuracy of the numerical modeling and analysis [4]. 

In this research, the identification process of material properties is considered in an 

optimization framework. Since the extraction of the natural frequencies is far easier than that 

of the mode shapes, utilizing only natural frequencies in the construction of the objective 

function in the vibration-based material identification is prevailed [5]. However, since the 

natural frequencies show less sensitivity to the changes in the Poisson’s ratio, the 

determination of this material parameter using only the natural frequencies may not be very 

effective. Among the literatures dealing with vibration-based material identification, 

Syngellakis and Setiawan [6] studied the inverse problem of finding the mechanical properties 

of orthotropic plates using experimental natural frequencies, surrogate-based finite element 

(FE) modeling through an iterative optimization process. Tam et al. [7] developed a meta-
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heuristic optimization approach to enhance the accuracy of material identification in 

composite panels using vibration data, using the natural frequency error function in the first 

stage, and frequency response function (FRF) error function in the second stage. Viala et al. 

[8] also used an inverse approach through FE model updating based on using experimental 

natural frequencies to find three rigidities and damping ratios of a violin soundboard.  

In the current research, the material identification of a car seat frame that consists of 

different steel grades is performed using the experimental modal parameters. To this end, 

modal testing is conducted on the frame and the modal parameters including natural 

frequencies and mode shapes are extracted. Furthermore, the FE model of the frame is 

constructed with uncertain material properties including the Young’s modulus and the density 

of different parts of the frame. By performing the FE modal analysis, one can find the modal 

parameters of the structure. By comparing the natural frequencies of the FE model with the 

experimental counterparts, an objective function is defined to be utilized in an optimization 

procedure where the material properties are the design parameters of the optimization 

problems, the mode shapes, however, are only used for experimental and numerical mode-

matching. 

Since FE simulation usually takes time to be accomplished, to calculate the objective 

function for different values of the design parameters, the response surface method can be 

used where a number of design points are used to approximate the outputs of the FE 

simulation. To perform the material identification using response surface optimization, the 

modal analysis is conducted for a set of the design points obtained from the Box-Behnken 

method [9], and the modal parameters are evaluated for each design point. Then, a surrogate 

model is constructed based on the Kriging-based response surface methodology [10]. After 

creating the surrogate model, and choosing the optimization methodology, the required 

simulations for calculating the objective functions are conducted using the surrogate model. 

To optimize the surrogate model and evaluate the best estimation for the Young’s modulus 

and density of different components of the frame, the nonlinear programming by quadratic 

Lagrangian (NLPQL) [13], which is a gradient-based algorithm, is utilized. 

 

Finite Element Modeling and Modal Analysis of the Car Seat Frame 
 

To construct the finite element model of the car seat frame, first, a geometric model is 

required. As shown in Figure (1), based on the dimensions received from the manufacturer of 

the car seat, the geometric model has been constructed in SolidWorks [11]. To implement the 

FE model of the frame, ANSYS Workbench [12] environment is utilized. To perform the 

response surface optimization, the ANSYS Exploration module is used. The meshed FE 

model of the frame is shown in Figure (2). Based on the shape and geometry of the frame’s 

components, different 1D, 2D and 3D elements are used to discretize the structure.   

The modal parameters including the natural frequencies and mode shapes are extracted by 

solving an eigenvalue problem given in Eq. (1).  

 
(1) 

, ,  and  are the stiffness matrix, the mass matrix, the natural frequency and the 

mode shape vector of the FE model of the frame, respectively. The first five natural 

frequencies and the corresponding mode shapes of the FE model of the car seat frame are 

evaluated by conducting the modal analysis. Since there are some uncertainties regarding the 

material properties of the different parts of the frame, as tabulated in Table 1, an identification 

process is performed by the response surface optimization method. To better interpret the 
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descriptions provided in Table (1), the exploded view of the car seat model is also shown in 

Figure (3).  

1. Material Identification Using the Response Surface Optimization Method                 

The material identification is conducted as an inverse optimization approach in which the 

objective function is defined as the summation of the normalized differences between the 

natural frequencies of the surrogate model and the corresponding experimental ones as shown 

in Eq. (2). 

 
(2)      

The superscripts S and X refer to the surrogate and the experimental models, respectively. N 

is also the number of vibration modes utilized in the optimization process. The best values for 

the design parameters (i.e. the material properties) are obtained by minimizing the objective 

function. To solve this minimization problem, NLPQL approach is used. Note that, to 

construct the surrogate model, the Box-Behnken design and the Kriging-based response 

surface optimization method [14] are utilized. Moreover, the roving hammer modal testing, as 

shown in Figure (4), is conducted on the frame to extract the frequency response functions 

(FRFs), as illustrated in Figure (5). The FRF data are then used to extract the modal 

parameters using the complex mode indicator function method [15]. 

 

 

 

Figure 1. The geometric model of the car seat frame with dimensions 
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 Figure 2. The discretized FE model of the car seat frame 

 

Table 1. The designed parameters of the FE model of the car seat frame 

Parameter Description 

E1 (GPa) 
Young’s modulus of the base and back frame (Steel 

ST44-2) 

E2 (GPa) 
Young’s modulus of the recliners and their 

connecting mechanism (Steel ST-37) 

E3 (GPa) 
Young’s modulus of the base and back suspension 

springs  (Steel CK 67) 

E4 (GPa) 

Young’s modulus of the headrest bushings, the 

recliner actuation mechanism, and the backrest 

reinforcement rod (Steel ST12) 

ρ1 

(kg/m3) 
Density of the base and back frame (Steel ST44-2) 

ρ2 

(kg/m3) 

Density of the recliners and their connecting 

mechanism (Steel ST-37) 

ρ3 

(kg/m3) 

Density of the base and back suspension springs  

(Steel CK 67) 

ρ4 

(kg/m3) 

Density of headrest bushings, the recliner actuation 

mechanism, and the backrest reinforcement rod 

(Steel ST12) 

 

 

 

 

 

 
Figure 3. The exploded view of the car seat model: 1. Back Frame, 2. Base Frame, 3. Recliners 4. Recliner Mechanism's Rods, 5. Base 

Suspension Springs, 6. Back Suspension Springs, 7. Headrest Rods 8. Base Cushion, 9. Back Cushion, 10. Headrest Cushion 
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Figure 4. Performing the modal testing on the car seat frame 
 

 

Figure 5. The frequency response function of the car sear frame obtained from modal testing  

 

Results and Discussion 

The Box-Behnken design method creates 65 design sets as shown in Figure (6). Note that, 
based on the methodology of this approach, three values are considered for each design 
parameter including the lower, the upper, and the average values on the parameter search 
space. For each design point, the objective function is also evaluated as depicted in Figure (6). 
The Kriging method is then utilized for the response surface construction. The accuracy of the 
Kriging method for approximating the response is evaluated by the goodness of fit provided 
in Figure (7) where the predicted natural frequencies from the Kriging method match well 
with the observed natural frequencies from the FE model. After 276 iterations, the best values 
obtained for the material properties by the NLPQL approach are given in Table (2). The initial 
values of these parameters are also mentioned in this table. Using these two sets, one can 
compare the natural frequencies obtained from the initial and updated FE model with the 
experimental ones to evaluate the frequency errors. As tabulated in Table (3), except for the 
fifth mode, the frequency error of other modes significantly decreased in the updated FE 
model and the accuracy of this model, and the estimated values for the material properties in 
the updated FE model, is reasonable.  
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Figure 6. The material properties and the objective function value of the design points chosen by the 

Box-Behnken method 

 

 

 

Figure 7. The goodness of fit of the Kriging method 
 

 

Table 2. The initial and updated values for the material properties of the FE model of the frame 

Material Properties Initial Value Updated 

Value 

E1 (GPa) 205.0 219.9 

E2 (GPa) 205.0 219.9 
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E3 (GPa) 205.0 217.0 

E4 (GPa) 205.0 219.8 

ρ1 (kg/m3) 7850 7700 

ρ2 (kg/m3) 7850 7873 

ρ3 (kg/m3) 7850 7849 

ρ4 (kg/m3) 7850 7784 

 

Table 3. Comparing the natural frequencies obtained from the initial and updated FE models of the 

frame with the experimental ones 

Mode 

No. 

Natural Frequency (Hz) 

Absolute 

Relative Error 

(%) 

Experimental 

FE Model 

Initial  Updated  Initial  Updated  

1 42.5 40.482 42.156 4.75 0.81 

2 50.0 48.569 50.113 2.86 0.22 

3 86.5 81.972 84.361 5.23 2.47 

4 89.0 84.056 87.194 5.56 2.03 

5 99.0 98.893 102.55 0.11 3.58 

 

Conclusions 

In this research, material properties of different components of the finite element model of a 
car seat frame were estimated using the experimental modal parameters in an optimization 
framework. To reduce the computational costs, surrogate modeling using the Box-Behnken 
method for selection of the design points and the Kriging method for the response surface 
construction were utilized to imitate the behavior of the FE model of the frame as closely as 
possible. The objective function was defined by comparing the natural frequencies of the 
surrogate model with the experimental ones. The mode shapes were also utilized to ensure 
mode-matching between the finite element and experimental models. Using the response 
surface optimization based on the NLPQL method and utilizing the first five experimental 
modes of the frame, the material properties were identified.  
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