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Abstract 

Accurate modelling of the mechanical behaviour of tendon tissues is vital due to their essential 
role in the facilitation of joint mobility in humans and animals. This study focuses on the modelling 

of the supraspinatus tendon which helps to maintain dynamic stability at the glenohumeral joint in 

humans. It is observed that in sporting activities or careers that involve frequent arm abduction, 

injuries to this tendon are a common cause of discomfort. Therefore, this paper evaluates the 
relative modelling capabilities of three hyperelastic models, namely the Yeoh, Ogden and Martins 

material models on the tensile behaviour of three tendon specimens. The fitting accuracies, 

convergence rates during optimisation, and the different forms of sensitivities to data-related 
features and initial parameter estimates are investigated in this study. The study finds that the 

Martins model outperforms the other models in fitting accuracies; the Yeoh model has the most 

stable performance across all initial parameter estimates (with correlations above 99 %) and has the 
fastest convergence rates (above 20 and 8 times as fast as the Ogden and Martins models’ rates, 

respectively); and that the Ogden model does not depend on differences in the topological features 

of the test data. The material parameters of relevant constitutive models may be used for further 

development of computational models. 

Keywords: Hyperelastic model, tendon tensile behaviour, sensitivity analysis, strain 

energy density function. 

1. Introduction 

Tendons are stiff fibrous connective tissues that facilitate the transmission of muscle forces to 

bones across joints [1-3]. They are parallel-fibred tissues whose dominant structural 

component is type I collagen. By composition, type I collagen constitutes about 60 % of the 

dry mass of the tendon, which is approximately 95 % of the total collagen [1, 4]. In terms of 

their mechanical properties, tendons are viscoelastic, and this causes them to be less effective 

in transmitting mechanical loads at very low strain rates, while being more effective at 

moving large loads at very high strain rates [1]. This is why a tendon typically exhibits 

increased elastic stiffness and ultimate tensile strength (UTS) with increased strain rates [2]. 

However, not all physical activity requires innovation of high strain rates. Even in the 

execution of a specific task, in order to deliver a desired quality in performance, a tendon may 

have to be subjected to extremely low and uncomfortable levels of strain rates.   
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The accurate prediction of mechanical behaviour of tendons is vital in the development of 

their different healing strategies. At the same time, their mechanical behaviour cannot be 

accurately predicted without availability of accurate computational models, which themselves 

rely on the accurate mechanical characterisation of the tendons. The above cycle of 

dependency, is true for most engineering systems, and more so, in all types of soft tissues, 

which place stringent accuracy demands in both mechanical characterisation tests and 

computational models. Other workers [5-8] have emphasised on the importance of accurate 

mechanical characterisation in developing accurate computational models for myocardial 

muscles to predict tissue infarction. Tensile testing has been used for the understanding of 

mechanical behaviour of different types of soft tissue such as sclera and heart myocardium 

[9-11]. The development of detailed computational models based on accurate mechanical 

properties have proven to increase the speed in understanding the underlying mechanisms of 

infection of various diseases [11, 12], which further enhance the development of effective 

therapies.  

Tendons are naturally adapted as much thinner strands as compared with the muscles to 

which they are connected, consequently they experience much higher stresses than the 

adjoining muscles for the same muscle force. Therefore, most injuries that result from 

mechanical overloading or overtraining tend to involve the rupture or straining of tendons. In 

orthopaedics, it becomes increasingly important to understand the responses of tendons to 

mechanical loading in order to develop potent therapies for tendon-related injuries. Lee et al. 

[13] report that tendon damage is caused by mechanical loading but very little is known about 

its aetiology. Akintunde and Miller [14] and Cook et al. [15] further state that upon healing, 

tendons do not normally recover their full original functionality since the scar tissue that 

forms after healing has structural composition and mechanical properties that are typically 

different from those of the original uninjured tissue.  

One of the most injury-susceptible groups of tendons is the rotator cuff shown in Figure 

1. This group of tendons assists in maintaining dynamic stability at the gleno-humeral joint 

[16]. As depicted in the figure, this joint is dynamically unstable due to the large head of the 

humerus, which has to be maintained at all times in a shallow glenoid fossa. One of the most 

important tendons in the rotator cuff is the supraspinatus which originates from the 

supraspinatus muscle and inserts on to the head of the humerus. In its function to keep the 

humerus head in the glenoid fossa, the supraspinatus undergoes substantial tension, among 

two other important forms of loading, namely abrasion and lateral compression. Lewis [16] 

reports that injuries to the shoulder soft tissues are a principal cause of discomfort, and that 

this is common in people with careers that involve a lot of arm abduction such as painting, or 

in sports such as cricket, tennis or baseball. Several researchers [17-20] report various 

contradictory findings on the basic science mechanisms governing tendon injury, healing, 

treatment and rehabilitation. However, in order to understand the underlying mechanisms of 

tendon injury, it is necessary to have accurate models for its mechanical behaviour under 

loading.  

The supraspinatus is highly stressed and experiences different types of loading in its 

physiological function. In its everyday operation, the supraspinatus is subjected to every type 

of imaginable loading from abrasion and lateral compression between the acromion process 

and the scapula, to the tension along its longitudinal axis. The effects of abrasion and lateral 

compression are somehow alleviated by the bursa that is located between itself and the 

acromion process. Therefore, this study focuses on modelling the mechanical response of 

tendons during uniaxial tensile loading which results from excessive arm abduction and 

adduction processes.  
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Figure 1. The anatomy of the right shoulder joint only displaying the important bones and the rotator 

cuff muscles and tendons. 

In this paper, the computational performances of three hyperelastic models, namely, the 

Yeoh, Ogden, and Martins material models are evaluated. The selection of only these three 

material models is motivated by the findings of Martins et al. [21] where it was reported that 

they outperformed four other material models in terms of their approximations of tensile 

stress-strain behaviour in silicone-rubber and pig soft tissue. It was further observed that these 

three models generally yielded better fitting accuracies on silicone rubber than on the soft 

tissue test results. This paper explores the performances of these three models and further 

investigate their sensitivities to changes in test data start points, endpoints and initial 

parameter estimates.  

2. Theoretical background 

All the three models studied in this paper are hyperelastic in nature, which typically 

represents the mechanical behaviour of materials based on the derivation of their strain energy 

density function. This theory was originally formulated for hyperelastic materials of 

elastomeric nature, such as silicone-rubber. Therefore, in its application to this modelling 

approach, the subtle similarities between three specimens extracted from the supraspinatus 

tendon are exploited. However, this approach has its limitations which are properly reflected 

by the accuracy of the obtained results reported later. In hyperelasticity, material behaviour is 

modelled using a strain energy density function expressed by  iI   which depends 

symmetrically on the strain invariants  iI , which are themselves functions of the principal 

stretches  i , where the index  1,2,3i   represents the three principal axes in the Cartesian 
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coordinate system. For incompressible materials subjected to uni-axial tension or 

compression, Rivlin [22] expresses the Cauchy stress   as  
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where the principal stretch  is only considered in the axial direction 1i  , the strain 

energy function   is only differentiated with respect to two strain invariants  1 2,I I  due to 

incompressibility considerations, and takes different forms according to the selected 

hyperelastic constitutive model. The strain energy functions and the respective Cauchy 

stresses for the three material models studied in this paper are presented below [21,23,24]. 

For the Yeoh material model, the strain energy function is given by [23] 
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where c denotes material parameters and the indices  1,2,3j   represent the three 

different parameter values. Thus the Cauchy stress is calculated from Eqs. (1) and (2) and 

expressed as [23]  
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For the Ogden material model, the strain energy function is given by [24] 
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Upon applying the mathematical operation in Eq (1), the Cauchy stress for the Ogden 

material model for uni-axial extension can be written as [24] 
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For Martins material model, the strain energy function is given by [21],  
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The Cauchy stress for the Martins material model can therefore be determined as [21] 
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In each of these models, the material parameters c  are nonlinear elastic parameters and 

are implicit functions of the measured stresses. It is only for a neo-Hookean model where 

these parameters can be directly related to the measured stresses. In order to determine the 

Cauchy stresses, we solve for the parameters whose values minimise the squared-error 
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between the measured stresses exp  and model predicted stresses 
mod . Thus for all the three 

material models in Eqs (3,5,7), the optimization problem can be expressed as: 

 
2

mod expmin
c

        (8) 

where mod is the Cauchy stress for a particular material model as given in Eqs (3,5,7). 

The squared error are optimised with respect to material parameters, c . For all the three 

models, the parameters were solved using a nonlinear least squares curve fitting routine in 

MATLAB, employing a default ‘trust-region-reflective’ algorithm. This algorithm is a 

subspace trust region algorithm for large-scale problems, which is based on the interior-

reflective Newton method (Mathworks® Inc., [25]). Each iteration involves the approximate 

solution of a large linear system using the method of preconditioned conjugate gradients. 

However, this algorithm does not accept underdetermined systems, so in those cases, the 

Levenberg-Marquardt algorithm might be recommended. The present algorithm can be used 

in small-to-medium scale problems without computing the Jacobian or providing the Jacobian 

sparsity pattern, which makes the process much faster than the routines that compute the 

Jacobian. 

3. Materials and Methods 

Prior to testing, the specimens were stored in situ (within the shoulder joint) in a frozen state 

(typically below zero degree Celcius). Normal sterilised surgical knives and stainless steel 

tweezers were used to excise the specimens from the host cadaver shoulders after which the 

specimens were temporarily (less than 5 min) wrapped in a saline-moistened gauze [2] before 

clamping them in the testing machine to avoid over-hydration. Before excision, the shoulders 

were allowed to defrost under room temperatures between 34oC and 37 oC. The testing was 

conducted under these room temperatures having relative humidity between 60 % and 100 %. 

The harvested specimens were of different average cross sectional areas: 90 mm2, 70 mm2 and 

50 mm2 with lengths of 50±2 mm. The tendon ends were clamped between two parallel plates 

whose gripping surfaces were tightly bonded with grade P60 sandpaper to reduce slippage of 

the tendon between the plates during testing. Although some amount of slippage might have 

occurred within the inner layers of the tendon tissue, it is expected that such slippage was 

insignificant within the linear elastic phase before the failure stages of the tendon tissue, and 

therefore might have negligible effect within the test region of study in this paper. Owing to 

the scarcity of these test specimens, no risks were taken to precondition them before the actual 

testing.  

The MTS EM Tensile tester was operated in displacement control at an average strain 

rate of 1.72 % s-1 for all the three tests as shown in Figure 2. As shown in the figure, it was 

extremely hard to maintain a constant strain rate and Test 3 shows a particularly high 

deviation in the strain rates. The tests were not conducted in any environmental chamber and 

all the tests were performed under room air temperature conditions up to rupture. The data 

were recorded through a MTS TestSuite on a dedicated computer and recorded in separate 

excel data sheets which were later exported to MATLAB for post processing.  

The Yeoh, Ogden and Martins material models were programmed in MATLAB and later 

modelled in Simulink (see the Simulink models in the Appendix) for the sensitivity analysis. 

The purpose of the sensitivity analysis was to refine the fitting accuracy by focussing the 

optimisation procedure on the more sensitive material parameters. In order to implement the 

sensitivity analysis, the material models were developed in MATLAB/Simulink in which the 
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material parameters were used as design variables. The optimal values as obtained from the 

initial optimisation process were used to prescribe the search ranges. Thirty data points were 

generated within each search range using the Latin hypercube method in MATLAB. This 

method typically generates parameter samples that systematically fills up the given space or 

range. Correlation plots of the material parameters were plotted in a scatter plot to detect the 

existence of any underlying correlations between the different material parameters. In case of 

any direct correlations, it would be appropriate to ignore one of the correlated material 

parameters to reduce the computational overhead during the sensitivity analysis. All the 

parameters in all the three material models showed no correlations as shown in Figure 3. 

Therefore the sensitivity exploration was conducted on all the parameters for all the three 

material models.  

 

Figure 2. A cluster plot of strain rates for each test. 

The sensitivities for each of the material parameters were calculated. The material 

parameters which yielded sensitivities higher than 0.5 were considered to exert significant 

influence on the square-error between model-calculated stress and measured stress. 

Thereafter, the optimisation was run for those parameters with high enough sensitivities while 

keeping the rest of the parameters constant at their initial values. The final optimal values are 

the ones that were used to determine the Cauchy stresses.  

Upon further analysis of the results, it was observed that the performance of the material 

models changed with different start- and end-points in the measured data range. As a result, 

this behaviour was investigated in the three tests through three-dimensional surface plots of 

correlation percentages of the three material models for various combinations of start points 

and end points in the form of surface plots. The data were linearly interpolated for a total of 
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512 sample points to allow for better investigation of this behaviour. In the plotted surface 

plots, the point number from which the data range started was denoted as “Delay”, while the 

number of samples which were cut out from the end-points of the original data range is called 

the “Upper cut-off”. The ranges of Delay were arbitrarily prescribed from 0 to 30 data points 

in steps of one data point, while the Upper cut-off ranges were prescribed from 0 to 150 data 

points in steps of 5 data points. This implies that a particular combination with Delay = 0 and 

Upper cut-off = 0 would mean that the original full data range was maintained, while that 

with Delay = Nd and Upper cut-off = Nu would mean that its data range is from the sample 

point number (Nd+1) up to a sample point number (N-Nu). In total, there were 961 different 

combinations of data sets investigated for each test and each model. Thus there are 

combinations of error points which were calculated for material models per test. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Scatter plots of the generated parameter sample space showing parameter 

correlations in (a) Yeoh (b) Ogden (c) Martins material models. 

In addition to the above investigation, the influence of initial parameter estimates were 

explored. Eleven   different initial seeds in the range {-10, 10} were applied to the models for 

each test. These results were examined through line graphs showing fitting errors and 

correlation percentages for each model and test.  

4. Results and Discussions 

The reported results are only for the combinations of start points and endpoints that yielded 

maximum correlations with experimental data for each model. This is why there are some 

differences in the start points and endpoints of the results. For example, the Martins model 

shows that the combinations that yielded its maximum correlation had a much larger start 

point and endpoint in test 1 than the Yeoh and Ogden models which had similar start points 

and endpoints. For test 2, only the Martins model had a much longer start delay but the 

endpoint is similar to the other models. In test 3, all models have similar start points and 

endpoint. For all the reported results, initial parameter estimates were set at a value of 5. The 

choice of this initial parameter estimate was based on the fact that all the models had their 

best performances within an initial parameter estimate range of {2, 8}. The results in Figures 

4-6 show levels of correlations in the frames labelled as (a), and fitting errors in the frames 

labelled as (b) for all three tests. The results show that the Martins model slightly outperforms 

the other two models with minimum level of correlation at 99.8 % and a fitting error of less 

than 5 %. This is largely attributable to its model formulation which is dependent on the 

principal stretches, the first principal strain, and the fibre direction which are not applicable 

for either the Yeoh or Ogden models. It is observed that this performance is not influenced by 

the number of the material parameters, since the Ogden material model which has the largest 

number of material parameters does not perform very well. The Yeoh model has three 
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material parameters and depends on the principal stretch and the first principal strain only, 

while the Ogden model depends solely on the principal stretch.  

 
Figure 4. Model results correlated with test 1 data and corresponding fitting errors. 

 

Figure 5. Model results correlated with test 2 data and corresponding fitting errors. 
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Figure 6. Model results correlated with test 3 data and corresponding fitting errors. 

Typically, all the three models perform poorly in the toe regions as compared to the linear 

elastic regions. Yeoh [23] shows that such errors in regions of small strains are due to the 

inability of the shear modulus to perfectly follow the soft tissue shear modulus. Martins et al. 

[21] further elaborate on this by stating that such errors are caused by the non-homogeneity 

and compressibility effects of soft tissues which are not sufficiently modelled by strain energy 

density functions. In addition to this, there are also marked deviations at the transitions 

between the toe region and linear region in all the test data, which cannot be modelled by any 

of the three models. Because it is not clear what causes such discontinuity, further 

investigation might be justifiable since this occurs in all the three tests. 

Table 1 shows the material parameters and convergence rate results of the optimisation 

processes for the three models on each test. The Yeoh model converges much faster than both 

the Ogden and Martins models. The results show that it converges over 20, and 8 times as fast 

as the Ogden and Martins models, respectively. This is largely due to its reduced number of 

function evaluations and number of required parameters as shown in Table 1. This gives it a 

big advantage over the Martins model when compared to the minor differences between the 

two models in correlations and fitting accuracies. 

Table 1 shows that the optimisation processes on test 2 are the most computationally 

challenging on the Yeoh and Martins models. This is evident from the much wider spreads in 

the values of the optimal material parameters and from the higher numbers of iterations as 

compared to the other two tests. An examination of the original measured data reveals that 

test 2 has a shorter toe region followed by a much steeper linear region as compared to the 

other tests. Between test 1 and 3, it is test 3 that has a shorter toe region and steeper linear 

region. This is also reflected in the relatively higher iteration numbers for test 3 when 

compared with test 1 for the Yeoh and Martins models. Therefore it would seem that the 
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length of the optimisation processes in the Yeoh and Martins models rely on the topological 

features of the test data both in the toe and linear region. On the other hand, the Ogden model 

is insensitive to these topological features as far as length of optimisation processes are 

concerned. The Ogden model only reflects these relative difficulties with optimisation 

processes through the amount of spread in the values of the optimal material parameters as 

shown in Table 1. 

Table 1. Material parameters for each model over each test. 

Model  Test 1 Test 2 Test 3 

Yeoh 
Material 

parameters 

-0.0498 

1.4693 

-0.4438 

1.0772  

35.2127   

-90.4680 

0.5100 

9.0520 

-13.7950 

     

 Iterations 2 4 2 

     

 Function 

evaluations 
12 20 12 

Ogden 

Material 

parameters 

-0.0572 

2.6988 

0.3693 

9.6320 

-0.2782 

9.6444 

0.0012 

59.3954 

-1.0973 

-1.1385 

0.0678 

29.5417 

-0.0007 

3.9542 

-0.3142 

4.2327 

0.3698 

11.5638 

     

 Iterations 85 85 85 

     

 Function 

evaluations 
602 602 602 

Martins 

Material 

parameters 

4.5734 

1.4996 

9.6464 

-1.9512 

46.8614 

0.8189 

125.9407 

-0.8685 

13.6473 

1.0691 

33.5004 

-1.1958 

     

 Iterations 16 59 22 

     

 Function 

evaluations 
85 300 115 

 

Test results show that there are differences in the definitions of the toe regions, the 

steepness of the linear regions, and magnitudes of stress and strains at the points close to the 

UTS. Viidik [2] found that these differences are caused by a specimen’s strain history, water 

content, specimen geometry and strain rates. During specimen dissection or excision, care 

should be taken to either avoid prestraining the specimens or to ensure consistency in the 

process of specimen dissection. In terms of water content, it was pointed out that 

overhydration lowers the elastic stiffness. It was also shown that shorter (< 10 mm long) soft 

tissue specimen exhibited a wide sensitivity range in their mechanical properties. Viidik [2] 

further showed that higher strain rates increased both elastic stiffness and UTS magnitudes, 

while Wren et al. [26] agreed with the increase in UTS magnitudes but argued that the elastic 

stiffness remained unchanged. In this study, the strain rates were kept reasonably constant on 
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all tests, and all the three specimens were equally wrapped in saline gauze for similar lengths 

of duration. Therefore differences in strain histories and specimen geometry, (evident from 

the differences in the ratios between cross-sectional areas to specimen lengths) may have 

played a major role in the observed differences in this study. We further hypothesize that 

differences in the prevailing laboratory temperatures from one test to another may have 

slightly affected the test results.  

Figure 7 shows surface plots of correlations on all three tests. The detailed descriptions of 

“Delay” and “Upper cut-off” are presented in Section 3. It is shown that only the Yeoh model 

exhibits smoother surfaces (> 99 %) without significant deviations, while the other models 

(especially the Ogden model) have high levels of deviations in the surface plots (above 90 %). 

This implies that despite the reported best performance of the Martins model in the fitting 

accuracy results, the Yeoh model is more stable at any given data range. On all tests, the Yeoh 

model shows that correlations are highest along the zero start point line. It further shows that 

correlations are more sensitive to start point changes than endpoint changes. With the 

exception of test 2, the Ogden model displays rather random behaviour, it shows a decrease in 

the correlations at longer start points. This might be a reflection of the non-convexity and 

non-uniqueness problems in the Ogden model as reported by some authors [27,28]. Although 

test 2 is largely smooth, it still has two outliers located on the negative correlation side. 

The result of the Martins model along lines very close to zero start points is rather 

surprising since it cannot be observed in the other tests. Test 1 is shown to be 

uncharacteristically elongated in its toe region although its impact seems to have more effect 

on the Martins model. Therefore, the Martins model does not yield the highest correlations 

along the zero start point line for test 1. 

 

Figure 7. Surface plots of model results correlations (%) with test results for all three tests. 

Figures 8 and 9 show that all the three models perform the best when the initial parameter 

values lie in the range between 2 and 8. The Ogden model is extremely poor on the negative 
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side of the initial parameter estimates almost for all tests and the Martins model is very poor 

at an initial parameter estimate of zero. Only the Yeoh model shows stable performance over 

the entire range of the initial parameter estimates. Its correlations remain above 99 % with 

fitting errors of less than 10 % for all seeding conditions.  

 

Figure 8. Comparison of correlations (%) variation due to different values of initial seeding 

(I.S.). 

 

Figure 9. Influence of initial seeding (I.S.) on the fitting errors (%). 

A sensitivity analysis of the parameters for each model around their optimal values as 

obtained from the nonlinear least squares technique was performed for further refinement of 
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the results. The analysis was performed using Simulink models in which each of the 

parameters for each model were selected as design variables, and the cost function was the 

error between the test and model calculated stresses. Thirty sample points were generated for 

each design variable and their scatter plots showed that they were actually uncorrelated with 

each other. This gave us confidence that the chosen design variables were actually unrelated 

to each other (no redundancy). Later, a sensitivity study showed that the Yeoh model yielded 

higher sensitivity above 0.7 only for parameter c2, while those yielded for parameters c1 and 

c3 were less than 0.3. Therefore, only c2 was optimised further while c1 and c3 were held at 

their original values. The new parameters were used to recalculate the Yeoh stresses, but there 

was no significant improvement in the calculated Cauchy stresses. The Ogden and Martins 

models yielded sensitivities below 0.3. As a result, it was concluded that the calculated 

stresses for these models are quite insensitive to parameter changes around their optimal 

parameter values as obtained by the nonlinear least squares method used in this technique. It 

can be further concluded that the nonlinear least squares optimisation technique is quite 

satisfactory in determining the optimal parameter values without any need for further 

refinement of the optimal values for all three models.  

5. Conclusion 

This paper evaluates the computational performances of three hyperelastic material models, 

namely the Yeoh, Ogden and Martins models. Although all the models are derived from the 

strain energy density function, they are actually dependent on different factors. The Yeoh 

model is dependent on the principal stretch and the first strain invariant; the Ogden model is 

only dependent on the principal stretch; and the Martins model is dependent on the principal 

stretch, first strain invariant and the fibre direction. The fitting performances of these models 

on tendon tissue tensile behaviour seem to be influenced by these factors, as it is found that 

the Martins model yields the highest fitting accuracies with correlations of above 99.8 % and 

fitting errors of less than 5 %. The Yeoh model is second with correlations of above 99.6 % 

and fitting errors of less than 10 %; while the Ogden model has a minimum correlation of 

99.1 % with fitting errors under 12 %. So, modelling of fibre direction in soft tissue is an 

important factor if accurate fitting accuracies have to be obtained. However, it should be 

emphasised that these results were evaluated from combinations of start and endpoints that 

yielded maximum correlations for each model. Therefore, post-processing should involve the 

identification of test data ranges that can produce such high correlations if these results are to 

be reproduced in any given test data. This is the case especially for the Martins and Ogden 

models, which show high deviations to changes in test data ranges.  

When comparing the optimisation efficiencies, it was found that the Yeoh model had the 

fastest convergence rates on all the three tests. Its convergence speed is 8 times as fast as that 

of the Martins model and 20 times as fast as that of the Ogden model. This speed advantage 

may offset any benefits obtained from the better fitting accuracies of the Martins model. 

Furthermore, in terms of its sensitivity to initial parameter estimate changes, the Yeoh model 

is also the most stable. The Martins model yields very poor results at initial parameter 

estimates around zero, while the Ogden model does not perform very well with negative 

initial parameter estimates for all the tests reported in this paper. 

The Ogden model shows that it is insensitive to test data topological features. While the 

Yeoh and Martins models change from 2 to 4 iterations and from 16 to 59 iterations 

respectively, from test 1 to test 2 due to the differences in these features. The Ogden model 

remains at 85 iterations for both tests with the only notable changes occurring in the spread of 

the optimal parameters between the two tests.  
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However, all the three models yield relatively lower fitting accuracies in the toe regions 

than in the linear regions on all tests. These findings are in support of those found in 

Martins et al. [21]. Mooney [29] hypothesises that strain energy function-based hyperelastic 

models are incapable of accurately modelling mechanical behaviour in small strains even 

when the theory is extended to the second or higher orders of approximation. 

In conclusion, it is shown that each of the three models have their strengths and 

weaknesses, although it is generally observed in this study that the Yeoh model has more 

significant benefits owing to its relatively excellent convergence rates during optimisation, its 

stability across different test data ranges and its good fitting accuracies. We further observe 

that modelling of fibre direction, especially in soft tissue, effects some improvements in the 

fitting accuracies. For further study, we recommend more investigation into tissue modelling 

in the regions of small strains where these models yield relatively poorer correlations. 

Directly linked to this is the need for the development of better testing techniques, facilities 

and specimen preparation procedures to ensure test result reproduction in regions of small 

strains, as this may assist in understanding complex tissue behaviour under physiological 

conditions. 
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Appendix  

 

In the Figures A1-A3, showing Simulink modelled material models, the material 

parameters are set up as gain block variables with predefined ranges around the initially 

calculated optimal values from the nonlinear least squares routine.  

 

 
Figure A1.  A Simulink Yeoh material model. 

 

https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html%20on%2030/12/2019
https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html%20on%2030/12/2019


Journal of Computational Applied Mechanics  43 

 
Figure A2. A Simulink Ogden material model. 

 

 

 

 
Figure A3. A Simulink Martins material model. 

 


