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1. Introduction 

Recently, micro and nanotechnology has found  a special place 

in various sciences such as medical and engineering [1]. So the 
attention of scientists has been attracted to this science. In this 

regard, mechanical engineers have done a lot of research to 

decipher the ambiguities of nanotechnology. In nano and micro 

scale the material properties is dependent on size [2-6]. Some of 

these theories are nonlocal elasticity theory [7-10], strain gradient 

theory [11], couple stress theory [12-14] and surface stress theory. 
Couple stress theory is one of the most important non-classical 

theories in the field of micro/nano-mechanics. The couple stress 

theory was introduced by Toupin [12], Mindlin and Tiersten [13] 

and Koiter [14]. Modified couple stress theory has been 

introduced by Yang et al. [15]. In this theory two higher order 

material length scale parameters are introduced in addition to the 
two Lame constants. One of the good aspects of this theory is that 

the four additional parameters in the micropolar theory and five 

additional parameters in the strain gradient theory were reduced to 

two additional parameters. This property has attracted some 

researchers in recent years to derive formulations of mechanical 

analyzing for micro-beams and micro-plates and investigate their 
mechanical behavior based on this theory. The formulations and 

mechanical behavior of homogeneous linear micro-beams [16-18] 

homogenous nonlinear micro-beams [19, 20], functionally graded 

(FG) linear micro-beams [21], functionally graded nonlinear 

micro-beams [22], linear micro-plates [23, 24], nonlinear micro-

——— 

 Corresponding author. E-mail: zare40087@gmail.com  

plates [25, 26] and composite laminated beams [27] have been 
presented in the framework of the modified couple stress theory.  

Functionally graded material (FGM) is one of latest concept in 

the composite material design field. The material properties of 

functionally graded material continuously vary from point to 

another point. In other words, material properties are functions of 

location. The use of FG materials reduces the weight and increases 
the strength of structures. A number of papers considering various 

aspects of FGM have been published in recent years [28-53]. It 

should be noted that most of the above-mentioned analyses are 

related to FGMs with material properties varying in one direction 

only. However, there are practical occasions which require 

tailored grading of properties in two or even three directions. As 
reported by Steinberg [54], the fuselage of an aerospace craft 

undergoes an extremely high temperature field with excessive 

temperature gradient on the surface and through the thickness, 

when the plane sustains flight at a speed of Mach 8 and at an 

altitude of 29 km. In this circumstance, the conventional 

unidirectional FGMs may not be so appropriate to resist multi-
directional severe variations of temperature. Therefore, it is of 

great significance to develop novel FGMs with properties varying 

in two or three directions (2D or 3D FGMs) to withstand a more 

general temperature field.  

Consider a beam-type actuator contains two conductive 

electrodes which one is fixed and the other one is movable. A 
voltage difference is applying between these two electrodes causes 

the movable electrode to deflect towards the fixed electrode 
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(ground electrode), because of the electrostatic forces.  A voltage 

which is causes the electrode becomes unstable and pulls-in onto 

the ground electrode [55] is known as pull-in voltage. Currently, 
Yang et al. [56] investigated the pull-in behavior of beams using 

Eringen’s nonlocal elasticity theory and the small-scale effect on 

the pull-in voltage was captured. Rahaeifard et al. [21] studied the 

deflection and static pull-in behavior of micro-cantilevers by 

utilizing the modified couple stress theory and numerical results 

were presented. Approximation solution for pull-in voltage of 
clamped-clamped and clamped-free microbeams via Rayleigh–

Ritz method by Kong [16]. In recent years, a lot of research on 

pull-in phenomena [55, 56] and micro/nano-structures [2, 3, 34, 

57-63] had been done.  

This paper presents couple stress theory for solids predicting 

the small-scale effect on the pull-in behavior of electrostatically 
actuated bi directional functionally graded microbeams. 

2. Analysis 

As one could see in the schematic view of the system in Figure 1, 
the system under study is a microbeam with a rectangle cross-section 

with L length, b width, and h thickness. In this figure, the distance 
between the electrode and the microbeam is d. E is Young's modulus. 
The system's coordinate system is xyz, and it is assumed that the 
electric force is applied to the microbeam in the z-direction. w (x) 
shows the transverse displacement of the middle axis of the beam.  

 

Fig. 1 Schematic of an electrostatic actuated FGM micro beam 

The differential equation will be extracted taking into account the 

assumptions governing the Euler-Bernoulli beam. In order to model 
the beam, the effects of gravity and shear deformation have been 
ignored. Also, the cross-sectional area along the beam is constant, and 
in this research, the axial displacement and traction of the middle plate 
in modeling will be considered. 

According to modified couple stress theory, the strain energy for 
the linear elastic material resulting from the displacement field at 
volume v is both dependent on the strain tensor and dependent on the 
second derivative of the displacement, which is presented below. 

(1)  ij ij ij ij

V

U m dv      

In the above relation, the Cauchy stress tensor “σ”, the ε strain 

tensor, the couple-stress deviation component “m”, and the symmetric 
curvature tensor “χ” (the symmetrical part of the rotational gradients) 
are defined as follows. 

 2ij kk ij ij       (2) 

22ij ijm l   (3) 

 , ,

1

2
ij i j j iu u    (4) 

 , ,

1

2
ij i j j i     (5) 

In the above relations, λ is the first constant of Lameh, µ is shear 

modulus, ij is Kronecker delta. l is the length scale parameter and 

property of a material that is small compared to the dimensions of the 
object, and its effect becomes important when the dimensions of the 
object are on a micro-nano scale. The value of the length scale 
parameter is obtained using laboratory methods. u and θ are the 
vectors of displacement and rotation, and the relationship between 
them is as follows. 

,

1

2
i j i ijk ku e   (6) 

According to Euler bernouli beam theory, the displacement of the 

beam in three directions x, y and z can be shown as follows. 

 

1 0

2

3

0

dw
u u z

dx

u

u w x


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
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 (7) 

That u1, u2, and u3 are the components of the displacement vector 
along the x, y, and z axes, respectively. According to the modified 

couple stress theory for Euler–Bernoulli beams, the components of θ  
is as follows: 

(8) 0,  ,  0x y z

dw

dx
     

By applying Equation (8) in Equation (5), χ is obtained as follows. 
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And by placing the relation (9) in relation (3) for m, the following 
relation is obtained. 

(10)  

2

2

2
2

2

0 0

0 0

0 0 0

d w

dx

d w
m l

dx


 
 

 
 

  
 
 
 
  

 



Journal of Computational Applied Mechanics, Vol. 51, No. 2, December 2020 

 

474 

 

The strain component can be obtained from the following 

equation: 

(11) 

 

 

In this study, the arbitrary functional model in both x and z 

directions is considered for Young's modulus and coefficient of 
thermal expansion. 

(12)  

(13)  

Due to the above relationships, the non-zero stress components are 
calculated as follows. 

(14)  

In relation (14), E, α and v are the Young's modulus, the coefficient 
of thermal expansion, and the Poisson's coefficient, respectively. T is 
temperature changes. For slender beams with a large length to height 
ratio, the Poisson effect is small and can be ignored. By placing v = 0, 
the equation (14) is simplified as follows. 

(15) 
 

Using the principle of account of changes and the principle of 
Hamilton, the equation and boundary conditions are obtained using 

0U V    relation in the longitudinal and transverse directions; 

where U and V, represent the potential energy and the work of the 
non-conservative forces respectively to be determined. By placing the 

above equations in Equation (1), the strain energy of the beam is 
obtained as follows. 

 

 

(16)  

In the above relation, the resulting stresses are defined as follows: 

(17)  

(18)  

(19)  

Due to the fact that the system of this problem is under two 
electrostatic forces and temperature changes, the work of the external 

force is defined in two parts: 

(20)  

The Thermal field work is defined as follows: 

(21)  

which  is defined as follows: 

(22) 
 

where 

(23)  

As a result, heat-induced work can be described as follows: 

(24)  

The work caused by electrostatic force is as follows: 

(25)  

The electrostatic force is as follows. 

(265)  

In the above relation,  is Vacuum permittivity,  is the beam 

width, V is the applied voltage and d is the distance to the potential 
level of zero. Using the minimum potential relationship, and the above 
relations we have the following: 

  

(27)  

Using part by parts integral, the equilibrium equation and 
boundary conditions governing the problem is obtained. 
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Equilibrium equation: 

 
 

(28) 
 

Boundary conditions for two clamped beams: 

(29) 
 

The resultant stress can be derived as follow: 

 
 

(30) 
 

(31)  

(32)  

where 

(33) 
 

Now, using the equilibrium equation and the resultant stress the Navier equation of problem can be obtained: 

  

(34)  

For convenience, the following nondimensionalizations are used 
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According to the dimensionless parameters, the Navier equation on the problem becomes dimensionless as follows: 
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(36)  

To obtain an approximate response, Equation (36) is solved using the Galerkin method. To solve this equation, a uniform shape mode is used. 

The static response is assumed to be as follows: 

(37)  
1

k

i i

i

w a x



  

where ai is the constant coefficients and  𝜑𝑖(𝑥)  is the symmetrical shape mode of the clamped beam. k is also the number of shape mode 

required to solve the equation. In order to make the algebraic equation of ai appear simpler and more compound, first the denominator of the 

sentence related to the electrostatic force (1 − 𝑤(𝑥))2 is multiplied by the sides of the equation. Then, by placing the relation 37 and 

multiplying φi (x) as a weight function and integrating it in the range x = 0-1, the couple algebraic equations are obtained as follows: 
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Here's how to do it according to Galerkin method: 

(39)  

1

0

. 0i x eqdx   

In this way, the spatial coordinate is removed and the differential equation becomes an algebraic equation: 
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The ai coefficient is obtained by numerical solution of this system of equations. In this way, static deformation can be calculated for different 

ai as a result of different DC voltages. 

3. Results 

In this section, the numerical results from the previous section are 
examined. First, the validity of the results is checked. Past articles will 
be used for this purpose. In the following, various parameters such as 
heterogeneity coefficients, temperature field effect, and size effects 

will be studied. To verify the accuracy of the results, the present paper 
is compared with Stuberg et al. [64]for homogeneous microbeam with 
different lengths in Figure 2. In the article by Stoeberg et al., the 

properties of materials are considered as 169E Gpa ، 0.3  ،

50b m ، 0l  ، 1d m . It could be observed that the answer to 

the present project is very accurate. 

The E elastic modulus and α coefficient of thermal expansion 

are considered as the arbitrary function that changes in both 

length and thickness according to the following. The Poisson 

ratio is also assumed to be constant. 

  1 1, ( ) ( )E x z f x g z  

  2 2, ( ) ( )x z f x g z   

In direction of the thickness of the beam, the modulus of elasticity and 
the coefficient of thermal expansion are written according to the rule 
of mixtures: 

 1 c c m mg z E V E V   

 2 c c m mg z V V    

The m and c indexs are the metal and ceramic, respectively. Volume 
fraction of metal and ceramics is presented as follows: 
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Also, the properties of the microbeam in terms of the length of the 
material are assumed based on the exponential function: 

1

1( )

n
x

Lf x e  

 
2 2 3 4

2 1 1
0 12 2 3 4

1 2
d f d w df d w d w

I sl f
dx dx dx dx dx

 
    

 

2 2

1 2
2 1 1 2 2 2

0
(1 )

df df dw d w V
f f T f f T

dx dx dx dx w

 
     

 



Zarezadeh and Shirpay 

477 

 

2
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n
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As a result, the modulus of elasticity and coefficient of thermal 
expansion in terms of thickness are obtained as follows: 
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In order to examine the problem parameters in all the following 
results, the metal and ceramic parts of FG material are considered 

aluminum and zirconia, respectively. The properties of these materials 
are presented in Table 1 [65]. 

 
Figure 2. Comparison of Presented results obtained for pull-in 

voltage with those presented in the literatures  ( 169E Gpa ،

0.3  ، 50b m ، 0l  ، 1d m و 14.4h m ) 

 

 

Table 1. Material properties of microbeam 

Properties Material 

 ( )E Gpa   

0.3 70 Aluminum(AL) 
0.3 200 Zirconia(ZrO2) 

 
Figure 3 and 4 show the dimentionless modulus of elasticity along the 

length and thickness of thebeam for different values of 1n and 
3n . If 

1n is considered zero, the beam is full ceramic and if 1n is infinite, it is 

full metal. The ceramic and metal alterations is linear for 
1 1n  . 

Figure 3 shows the distribution of the dimensionless modulus of 

elasticity based on the /z h in 0x  , which shows the distribution of 

the modulus of elasticity along the thickness of the microbeam. It is 

observed that with the increase of the gradient index of the  1n

material, the modulus of elasticity decreases, which is due to the fact 

that with the increase of the 1n metal phase, the modulus of elasticity 

of the metal is less than that of the ceramic in this sample. Figure 4 
also shows the distribution of dimensionless elastic modulus based on 

the /x L  in / 2z h  , which shows the distribution of modulus of 

elasticity along the length of the beam. It is observed that with 

increasing β the modulus of elasticity increases exponentially. For β = 
0, the modulus of elasticity distribution is constant. The effect of the 
temperature field on the pull-in instability voltage is shown in Figure 
5. As the temperature rises, the deflection of the beam increases at a 
constant voltage. In addition, with increasing temperature, the beam at 
low voltage becomes unstable and causes a short circuit in the 
electrical circuit. By lowering the temperature and cooling, the pull-in 
instability voltage can be delayed and it can be controlled. 

Figure 6 examines the effect of the length scale parameter on pull-
in instability voltage. As can be seen in this figure, the deflection of 
microbeam decreases with increasing length scale parameter. This 
means that as the size of the microbeam smaller, the structure hardens 
and shows more rigid behavior than the balk material, and the 

experimental results of previous research confirm this. At the same 
time, as the length scale parameter increases, the voltage of the pull-
in instability increases. If the length scale parameter equal to zero is 
the classic response, which reports lower the pull-in voltage 
instability. 

To investigate the effect of beam thickness, the frequency ratio 
parameter (𝑉𝑟) is defined as follows: 

 Couple Stress

r

Classic

V
V

V
 

Figure 7 shows the effect of beam thickness on Vr. This figure shows 
that in small sizes, the two classical theory and the couple stress theory 
have significant differences and the effects of size cannot be ignored. 
But in large sizes, the magnitude Vr tends to 1, indicating that two 
theories give the same answer, and that the theory of the couple stress 
can be omitted. Couple stress theory also predicts the stiffness 

compared to classical theory. 
 

 
Figure 3. Distribution of module of elasticity  versus z/h at x=0  

 

 
Figure 4. Distribution of module of elasticity  versus x/L at z=-h/2 
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Figure 5. Efect of temperature on pull-in instability voltage (  

70cE Gpa ، 70mE Gpa ، 611 10 1m C  

623.1 10 1c C   ، 0.3  ، 1b m ، 100L m ، 0.01l  ، 

1d m ، 1h m ،
1 2n  ،

2 2n  ،
3 2n  ،

4 2n   ) 

 

 
Figure 6. Efect of size parameter on pull-in instability voltage       

( 70cE Gpa ، 70mE Gpa ، 611 10 1m C  

623.1 10 1c C   ، 0.3  ، 1b m ، 100L m ، 2T C ، 

1d m و 1h m ،
1 0.25n  ،

2 0.25n  ،
3 0n  ،

4 0n   ) 

 

 
Figure 7. Efect of thicknesson pull-in instability voltage                    

( 70cE Gpa ، 70mE Gpa ،
611 10 1m C  

623.1 10 1c C   ، 0.3  ، 1b m ، 100L m ، 2T C ،

0.01l  ، 1d m ،
1 0.25n  ،

2 0.25n  ،
3 0n  ،

4 0n  ) 

 

The effect of the n1 parameter on the pull-in instability voltage is 
shown in Figure 8. The results of this figure show that by increasing 
n1 the pull-in instability voltage is delayed, which is due to the fact 
that with increasing n1 the modulus of elasticity increases and 
naturally the polarity instability voltage increases. In addition, at a 
constant voltage, with increasing n1, the deflection of the beam 
decreases. The effect of the n2 parameter on the polarity instability 

voltage is shown in Figure 9. The results of this figure show that with 
increasing n2 the polarity instability voltage occurs earlier, which is 
due to the fact that with increasing n2 the coefficient of thermal 
expansion increases and naturally the polarity voltage decreases. By 
increasing n2, the thermal stresses help the pullen, which causes the 
polarity of the voltage to become more stable. Meanwhile, at a 
constant voltage, with increasing n2, the rise of the beam increases. 
Also, the effect of n2 is less than n1 on the polarity voltage. The effect 

of the n3 parameter on the polarity instability voltage with the 
dimension is shown in figure 10. The results of this figure show that 
with increasing n3 the polarity instability voltage is delayed, which is 
due to the fact that with increasing n3 the modulus of elasticity 
increases and naturally the polarity instability voltage increases. 
Meanwhile, at a constant voltage, with increasing n3, the rise of the 
beam decreases. 

 

Figure 8. Efect of 1n pull-in instability voltage ( 70cE Gpa ،

70mE Gpa ، 611 10 1m C   623.1 10 1c C   ، 0.3  ،

1b m ، 100L m ، 1h m ، 0T C ، 0.01l  ، 1d m ،

2 0n  ،
3 0n  ،

4 0n  ) 

 

 
Figure 9. Efect of 

2n pull-in instability voltage (  70cE Gpa ،

70mE Gpa ،
611 10 1m C   623.1 10 1c C   ، 0.3  ،

1b m ، 100L m ، 1h m ، 20T C ، 0.01l  ، 1d m ،

1 0n  ،
3 0n  ،

4 0n  ) 
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Figure 10. Efect of 

3n pull-in instability voltage (  70cE Gpa ،

70mE Gpa ، 611 10 1m C   623.1 10 1c C   ، 0.3  ،

1b m ، 100L m ، 1h m ، 5T C ، 0.01l  ، 1d m ،

1 0n  ،
2 0n  ،

4 0n  ) 

4. Conclusions 

The present paper has discussed the applicability of a non-classical 
continuum theories by couple stress theory to obtain the size 
dependent on pull-in behavior of electrostatically actuated cantilever 
micro/nano beams made of bi directional functionally graded 

materials. Comparison of the results obtained from couple stress 
theory with those of obtained from other paper solution proved the 
efficiency and accuracy of this method. Finally, some numerical 
results are presented to compare the results of the proposed model with 
those predicted by Classical theory. It is also shown that small scale 
effects significantly contribute to the pull-in behavior of 
electrostatically actuated cantilever micro/nano beams and cannot be 
neglected. Further, pull-in voltage decreases with the increase in the 

size scale parameter value. 
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