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1. Introduction 

The differential quadrature element method (DQEM) 
introduced by Chen [1], is a robust and computationally efficient 
numerical method that utilizes the DQ rule [2] to discretize the 
differential equations, continuity, and boundary conditions 
governing each element in the numerical model of structures. The 
application of the DQ method has been successfully investigated 
in a variety of engineering problems [3-12]. Since there are always 
some uncertainties in physical and elemental parameters of the 
numerical models of structures, different model updating schemes 
are utilized to estimate the uncertain parameters based on 
experimentally obtained data. These methods can be classified as 
direct and iterative ones or in another classification as gradient-
based methods and non-gradient ones with random computations. 
A good review of different updating methods was done by 
Mottershead and Friswell [13]. While all the updating methods are 
aimed to reduce the difference between the outputs of the 
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numerical model and those of the real structure, each has its own 
pros and cons. The direct methods are computationally efficient 
and are therefore proper for large, complicated models; however, 
the updated matrices may not be physically correct. Among the 
iterative methods, selection of the design parameters can help to 
estimate uncertainties in the model, but the convergence of the 
gradient-based approaches depends highly on the initial guess for 
the design parameters. On the contrary, the success of the random 
iterative algorithms does not depend on the initial model, which is, 
in fact, selected randomly from the search space, but the drawback 
of these methods is their computational costs where the best result 
is usually obtained after lots of iterations. Since proper selection 
of the design parameters plays an important role in the success of 
all the updating procedures, a sensitivity analysis is usually 
performed, and the design parameters to which the output of the 
model is insensitive are avoided. Different techniques for 
sensitivity analysis can be utilized to estimate local and global 
sensitivities of the model output to the design parameters. A 
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In this paper, following a two-stage methodology, the differential quadrature 
element (DQE) model of a three-story frame structure is updated for the vibration 
analysis. In the first stage, the mass and stiffness matrices are updated using the 
experimental natural frequencies. Then, having the updated mass and stiffness 
matrices, the structural damping matrix is updated to minimize the error between 
the experimental and numerical damping ratios. Note that two different damping 
models are used, including a diagonal matrix with unknown diagonal elements and 
a general damping model. Since the structural joints of the frames are not 
completely rigid in practice, several parameters are used to model the flexibility of 
these joints. The optimum values of the material and geometrical design parameters 
are obtained by updating the DQE model using the experimental modal parameters 
obtained through modal testing. Considering the robustness of the evolutionary 
optimization algorithms in the model updating practice, a combination of particle 
swarm optimization and artificial bee colony algorithm, that benefits from the 
advantages of both approaches, is utilized. By updating the DQE model, the 
effectiveness of the evolutionary optimization algorithms, especially in a high-
dimensional optimization problem, e.g., finding the optimum general damping 
matrix, is studied. The results show that, considering the geometrical lengths of the 
frame as the design parameters, the natural frequencies of the updated model match 
better with the experimental ones. In addition, using the general damping matrix, 
the errors of the damping ratios significantly are decreased.   
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review of the available techniques for parameter sensitivity 
analysis was presented by Hamby [14]. When a global 
representation of structures, e.g., a frame structure, is of interest, it 
is unnecessary and computationally expensive to have a model 
with many details. In such cases, one-dimensional elements are 
commonly used; however, one of the facing challenges is how to 
model the joints efficiently. Since the welded joints are not 
completely rigid in practice, one way to deal with flexibility of the 
joint is using rotational and/or translational springs, but it is not an 
efficient model mainly because the modal parameters of the 
structure are almost insensitive to the associated stiffness 
parameters of the springs [15]. In the following work, to model the 
flexibility of the welded joints in a frame structure, the effective 
lengths of the members connected by the joints are increased and 
the effect of using these geometrical design parameters on the 
accuracy of the updated model is also studied. The optimum values 
of these parameters in a specific range are obtained by solving an 
optimization problem. The objective is to minimize the sum of the 
squared differences between the numerical and experimental 
modal parameters of the structure. Considering the robustness of 
the evolutionary algorithms, the particle swarm inspired multi-
elitist artificial bee colony (PS-MEABC) algorithm [16] which 
benefits from the advantages of both the particle swarm 
optimization (PSO) method [17] and the artificial bee colony 
(ABC) algorithm [18], is used to solve the problem. In most 
literatures dealing with model updating of structures, the damping 
characteristics of the structures are neglected. However, without 
damping identification, the vibration amplitude at resonance 
frequencies cannot be predicted. Even if there is no viscous 
damping, the inherent structural damping still exists and affects the 
response of the structures. Therefore, to have a more accurate 
numerical model, the structural damping matrix of the model 
should also be included in the updating procedure. Maia et al. [19] 
discussed the need to develop the identification methodologies of 
general damping models and addressed the difficulties facing 
researchers. Adhikari [20] developed fundamental methods for the 
analysis and identification of a general non-viscous damping 
model. Arora et al. [21] updated the damped finite element model 
of an F-shape structure using the experimental FRF data by 
focusing on the joints' parameters. They modeled the joints using 
vertical and torsional springs and updated the mass and stiffness 
matrices using an iterative sensitivity-based method while the 
damping matrix was updated using a direct method. The maximum 
error in their prediction of the natural frequencies in the updated 
model was 3.6% which could be even better if the joints were 
modeled more efficiently. Arora [22] also proposed a direct 
method to identify the structural damping matrix using a complete 
normal FRF matrix.  

In the suggested two-stage updating procedure of the DQE 
model, using the experimental modal parameters of a damaged 
three-story frame and utilizing an iterative random evolutionary 
algorithm e.g., the PS-MEABC algorithm, the DQE model of the 
frame is updated. In the first stage of the updating, to update the 
mass and stiffness matrices, Young's modulus, density, and some 
geometrical and elemental design parameters to recover the 
flexibility of the joints, are considered as design parameters. To 
verify the suggested design parameters, local and global 
sensitivities of the natural frequencies to the design parameters are 
evaluated. By choosing different sets of design parameters, it is 
shown how the selection of the design parameters will affect the 
accuracy of the results. Besides, for damping identification, two 
different structural damping models are used.  In the first one, the 
damping matrix is assumed to be diagonal, while in the second 
model, a general damping model is used and all the elements of 

the damping matrix are identified. The robustness and simplicity 
of the evolutionary algorithms, especially in the case of a problem 
with high dimensions, e.g., identifying all the elements of the 
damping matrix, make them a good candidate for engineering 
optimization problems. Their drawback of being computationally 
expensive can also be tackled by high-performance computers. 

2. The differential quadrature element model of the frame 

In the case of a uniform cross-section and constant Young’s 
modulus, and following the Euler-Bernoulli beam theory, the 
differential equations governing the axial and transverse vibrations 
of a frame element (see Figure (1)) are stated by Eqs. (1-2).  

 
Figure 1. One-dimensional differential quadrature frame element 
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where 
i
eu  and 

i
ev  are the ith node’s axial and transverse 

displacements in the local coordinate system of eth element,  is 
the natural frequency, Ee, Ae, ρe, Ie and Ne stands for Young’s 
modulus, the area of the cross-section, the density, the area 
moment of inertia and the number of nodes of the eth element, 
respectively. Moreover, using the DQ rule, the nth derivation of 
the function f can be evaluated as the weighted summations of the 
function values at the domain nodes.                                                                                          
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where n( )C is the weighting matrix of the nth derivative. 
Employing the DQ rule on Eqs. (1) and (2), one can obtain Eq. (4).  
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in which le and eδ  are the length and the displacement vector of 
the eth element, ( )C i

u
 and ( )C i

v
are the weighting coefficient 

matrices of the ith order derivative of u and v, respectively. uI and 
vI  are identity matrices [23]. Eqs. (3) and (4) can be expressed in 

the following matrix form. 

2( - ) 0e e e k m δ                                                    (6) 
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where ek  and em  are the stiffness and mass matrices of the eth 
element. Considering a frame structure with Me elements, the 
governing equations of the vibrations of the system can be stated 
by Eq. (7).  

 2- 0 K M δ                                                                     (7) 

where 

1 2 e

T

M   δ δ δ δ                                                            (8)
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To take into account the damping effects, Eq. (7) is modified 
by adding the structural damping matrix D as follows. 

 2- 0j  K+ D M δ                                               (12) 

Note that by employing the boundary and continuity 
conditions, one can relate the displacements of the boundary points 
to those of the domain points and define Eq. (12) only in terms of 
the domain points. Detailed descriptions regarding the DQEM 
applied to frame structures can be found in an article written by 
Fatahi and Moradi [23].  Considering the fact that many damaged 
engineering structures are still at work, and proper modeling of 
them is of great importance, a three-story cracked frame is chosen 
as the experimental case study. Assuming the crack only affects its 
vicinity, Rizos et al. [24] analyzed a cracked beam as two segments 
that were connected by a rotational spring; the spring constant Kθ 
was found using Eq. (13). This method is utilized in the current 
work to model the cracks. 

2
1
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EIK

f bh 



                                            (13) 

where EI, ν, h, and a are the bending stiffness, the Poisson’s ratio, 
the height of the beam, and the crack depth, respectively.

( / )f b  is also a modification factor defined in Eq. (14).   
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3. Experimental model of the damaged three-story steel 
frame  

To construct a small scale three-story steel frame, two column 
and three beam members were welded together as shown in Figure 
(2). To give a nearly clamped condition to the ends, the columns 
were welded to a thick beam which was itself bolted to a heavy 
basement. All the welded beads of the joints were then grinded to 
remove the excess metal. Besides, to have a damaged structure, 
two cracks were artificially introduced in the structure using a 
coping saw. The normalized depths of the cracks on the left and 
right columns are 0.5 and 0.3, respectively. To obtain the 
experimental model of the structure, modal testing was performed 
to extract the experimental modal parameters. The equipment used 
to perform a roving hammer modal test is listed in Table (1).  

Table 1. The equipment used for modal testing of the cracked frame structure 

Equipment Description 

Impact Hammer AU02 with plastic tip - Global Test 

Accelerometer Magnet-mounted Piezoelectric 
Accelerometer A/120/V DJB 

Data Acquisition System 
and Signal Analyzer 

6/1-ch Input/Output ModuleType 3032A 
B&K with Pulse LabShop Software 

 

Each point of the total of 82 points shown in Figure (3) was 
hit by the hammer twice. Note that the impact locations were 
selected based on a combination of Optimum Driving Point1  and 
Average Driving DOF Velocity2 techniques [25]. The ODP 
technique is used to find DOFs that are close to or at nodal lines of 
the modes in the frequency range of interest. For a DOF located 
near the nodal line of a specific mode, the value of the modal 
constant of that mode is close to zero. Therefore, to identify 
whether a DOF is close to the nodal lines of the m modes, all modal 
constants of that DOF for all selected modes should be multiplied 
as mentioned in Eq. (15). Those DOFs with non-zero ODP values 
can be chosen as possible impact locations.   

2 ADDOFV 
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Figure 2. The experimental setup of the three-story frame on the left, the 
geometrical properties on the right 

 
Figure 3. Schematic of the roving hammer modal test performing on the 

three-story frame structure 
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Besides, to reduce the risk of double-hits while impacting the 
structure, one should avoid hitting the points with high average 
velocity. The ADDOFV parameter defined in Eq. (16) is then used 
to find the average velocity of each DOF.  
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                                                                      (16) 

Combining both ODP and ADDOFV techniques, the DOFs 
with higher values of ODP/ADDOFV are the best ones to be 
impacted. In addition, to select the best locations to measure the 
response of the structure, ADDOFA-EI1 method is used [25]. This 
method is based on the effective independence technique [26] 
modified by the ADDOFA parameter (see Eq. (17)). The main goal 
is to have a full rank experimental mode shape matrix whose 
elements do not as well have low responses. 

2
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m

i,r
r
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                                                 (17)  

By performing the modal test, the FRFs2 were evaluated using 
PULSE LabShop software in the frequency range of 0-800 Hz with 
a frequency increment of 0.125 Hz. Figure (4) illustrates one of the 
experimentally obtained FRF diagrams. The experimental FRFs 
were then exported to the MEscope software where the multi-
reference complex mode indicator function3 and the multi 
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1 Average Driving DOF Acceleration - Effective Independence  
2 Frequency Response Functions 

reference polynomial methods were utilized to extract the 
experimental modal parameters. Note that an exponential time 
window with a time constant of 2 seconds was applied to the 
captured time responses, which increased the apparent damping of 
the measured FRFs. Thus, the added damping was removed from 
the extracted damping ratios. 

Figure 4. An experimentally obtained FRF diagram 

 

4. The DQE Model updating using the PS-MEABC algorithm 

To update the DQE model of the frame using the experimental 
data, an optimization problem is defined in which the objective 
function is constructed using the weighted summation of the 
squared error between the natural frequencies of the experimental 
and the DQE models, as stated in Eq. (18).  
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where wi is the weighting factor of the ith mode used to represent 
the confidence in the measurement and Nm is the number of modes. 
The subscripts e and d also refer to the experimental and DQE 
models, respectively. Considering equal measurement accuracy 
for all the Nm modes, all the weighting factors are assumed to be 
unity. As seen in Eq. (18), only the natural frequencies are used in 
the updating process and the measured mode shape data are only 
utilized to assure the correspondence between the experimental 
and numerical modes. Therefore, they are not used in the 
construction of the objective function. This is mainly because the 
experimental natural frequencies are obtained easily even from a 
single or a few FRF diagrams, while extraction of proper mode 
shapes of real-life structures usually requires lots of FRF 
measurements as well as accessibility to all parts of the structure, 
which is not always possible.  Therefore, for the sake of 
applicability, the objective function only consists of the natural 
frequencies After defining the objective function, the PS-MEABC 
algorithm is utilized to minimize Eq. (18) based on the 
experimental data obtained from modal testing. The next two 
sections are devoted to the discussion on the methodology of the 
PS-MEABC algorithm and the selection of the design parameters.   
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4.1. The particle swarm inspired multi-elitist artificial bee colony 
algorithm 

The artificial bee colony (ABC) algorithm was first introduced 
by Karaboga [18] and since then has been applied to solve many 
engineering problems [27-28]. The ABC algorithm imitates the 
social behavior of honey bees in finding and exploiting food 
sources to construct an optimization method. The swarm in the 
ABC algorithm consists of employed bees, onlookers and scouts. 
Using the explorations and exploitations, the bees can find the best 
food source, or in the optimization terminology, the best solution. 
Unlike the gradient-based optimization approaches, the 
convergence of the ABC algorithm does not depend on the initial 
guess of the design parameters; however, it has some drawbacks 
in the exploitation phase. Xiang et al. [14] modified the standard 
ABC algorithm and developed a particle swarm inspired multi-
elitist artificial bee colony algorithm that improves the exploitation 
in the ABC by inspiration from the PSO algorithm. The PS-
MEABC algorithm is described in Figure (5) in which Eqs. (19) to 
(23) are utilized. To initialize N random solutions, Eq. (19) is used 
for i from 1 to N. 
 

( )ij j j jX LB UB LB                                              (19) 

where Xij is the jth parameter of the ith solution, LBj and UBj  are 
the lower and upper bounds of the parameter j, respectively, and 
 is a random number between 0 and 1. The updating equation for 
the employed bees is mentioned in Eq. (20).  

updated ij ij ijX X V                                                      (20) 

The modification factor Vij is defined by Eq. (21). 

_ ,( ) ( )ij ij ij ij kj ij ij Sel i jV X X X X EL                  (21) 

where k is the index of a randomly selected solution, and β and α
are the two random matrices whose elements are between -1 and 
1. ELSel_i,d stands for the value of dth dimension of the elitist chosen 
by the roulette wheel method, and Sel_i is the selected index. The 
probability of the ith solution is also calculated by Eq. (22).  

1

( )

( )
i N

i

fitness iP
fitness i






                                                       (22)    

To find a neighborhood food source for an onlooker bee, Eq. 
(23) is utilized. 

( ) ( )ij ij ij ij kj ij ij jV X X X X gbest                      (23) 

where gbestj is the jth dimension of the best global solution found 
so far. Moreover, based on the boundary treatment in the standard 
ABC algorithm, if one dimension of the solution goes beyond its 
boundary, then its value is set to the boundary value in both the 
employed and onlooker bees phases. In the PS-MEABC algorithm, 
for the onlooker bee phase, the boundary treatment is similar to the 
standard ABC, but in the employed bees phase, the value of the 
parameter exceeding the boundary is set to that of the selected 
elitist, i.e. if Xij > UBj or Xij < LBj, then Xij = ELSel_i,j  to keep 
the population diverse [14]. 

 
Figure 5. The main steps of the PS-MEABC algorithm [14] 

5. Results and Discussions  
Modeling the structures especially with one-dimensional 

elements imposes some geometrical simplifications to the 
numerical models. Therefore, these models always have some 
uncertainties due to the way that the boundary conditions or joints 
are defined, and also due to the material properties of the 
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structures. To estimate these uncertainties, different updating 
methods can be utilized where the selection of proper design 
parameters is very crucial. The output of the model (e.g., the 
natural frequencies) should be sensitive to the selected design 
parameters; otherwise, the updating procedure fails to achieve an 
accurate model. To find the most influential design parameters on 
the output of the model, sensitivity analysis can be performed. 
From one point of view, methods of sensitivity analysis can be 
classified into local and global analyses. A local analysis examines 
the sensitivity relative to a specific estimate of the parameter value 
while a global analysis investigates the sensitivity with regard to 
the entire domain of the parameter. The design parameters having 
high global sensitivity can speed up the exploration phase of the 
evolutionary optimization algorithms while the high local 
sensitivity to the design parameter can improve the exploitation 
phase. Note that a high global sensitivity to a parameter does not 
imply its high local sensitivity and vice versa. Therefore, to 
improve the efficiency of both exploration and exploitations 
phases, and thereby to speed up the convergence of the updating 
(i.e. optimization) method, the global and local sensitivities of the 
model output to the suggested design parameters should be 
investigated separately.   

5.1. Sensitivity Analysis 

One of the simplest local sensitivity analyses is one-at-a-time1 
method [30], in which one input parameter is changed by a 
percentage of its baseline value while other parameters are held 
constant. The sensitivity index is then determined by calculating 
the ratio of the change in the output to the input parameter 
variation.  A Similar procedure is repeated for each input 
parameter. Therefore, assuming Xi and Y as the ith input and the 
corresponding output of the model, respectively, the local 
sensitivity index is calculated using Eq. (24). 

i
i

i

XYLSI
X Y





                                                                (24) 

where the multiplier iX Y is introduced to remove the effects of 
the units. A more powerful OAT method examines the variation in 
the output as each parameter is individually changed by a factor of 
its standard deviation. Thereby, the parameter's variability and the 
associated influence on the output of the model are also included 
[29]. 

In the structural optimizations, some of the most uncertain 
parameters belong to the welded joints. To take into account the 
flexibility of a welded joint, one of the methods is to replace the 
joint by a spring with uncertain stiffness parameter. This research 
aims at a more efficient modeling of the flexibility of welded 
joints. Thus, instead of using point springs and elastic foundations, 
the focus is on the bending and axial stiffness of the elements 
connected to the joint. In addition, modeling the structure with 
one-dimensional elements, the effective length of the members 
connected to the joint can also be increased to recover the joint 
flexibility. Therefore, to assess the effectiveness of the suggested 
joints' parameters, Young's modulus and the cross-sectional area 
of the elements connected by the joints, the geometrical lengths of 
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1 OAT 

the beam and column members as shown in Figure (2), and two 
rotational springs to model the end supports are selected as the 
design parameters. To investigate the local and global sensitivities 
of the natural frequencies to the design parameters, a base-case 
DQE model of the frame is required. Table (2) provides the lower 
and upper bounds of each suggested design parameter. An average 
value of each parameter is utilized to construct a base-case DQE 
model.  

Table 2. The suggested design parameters for the DQE model updating of the 
three-story steel frame 

No. Description Symbol (Unit) Lower 
Bound 

Upper 
Bound 

1 Density ρ (Kg/m3) 7700 7850 

2 Young's modulus  E (N/m2) 180e9 210e9 

3 Geometrical length  Ld(m) 0.300 0.320 

4 Geometrical length  La (m) 0.260 0.285 

5 Geometrical length  Lb (m) 0.465 0.485 

6 Geometrical length  Lc (m) 0.680 0.695 

7-14 Young's modulus of the 
elements connected by the 
joints1 to 8 

E1, E2, … ,E8 (N/m2) 140e9 220e9 

15-22 Width of the cross-section of 
the elements connected by the 
joints1 to 8 

a1, a2, … ,a8 (m) 0.013 0.015 

23-30 Height  of the cross-section of 
the elements connected by the 
joints1 to 8 

b1, b2, … , b8 (m) 0.013 0.015 

31- 32 Stiffness of the rotational 
springs at two ends 

Kt1, Kt2 (N.m/rad) 5e6 5e11 

 

Note that the density and Young's modulus of the structure are 
included as the design parameters. The joint numbers are shown in 
Figure (6).  

 
Figure 6. The joint numbers in the DQE model of the frame 

The local sensitivity value of the natural frequencies to the 
design parameters is visualized in Figure (7). As observed in this 
figure, among the parameters utilized to model the joints, the 
highest local sensitivity values in all the first three modes are of 
the geometrical lengths Lc and the lowest ones are of the rotational 
springs used to model the flexibility of the support.  
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Figure 7. The local sensitivity indices of the natural frequencies to the design 

parameters  

To quantify the global sensitivity, one can evaluate the 
variation in the output when changing one input parameter from 
its minimum to maximum values [30]. The global sensitivity index 
of the ith input parameter is then calculated as follows.  

max min
i

max

Y YGSI
Y


                                                            (25) 

where Ymax and Ymin are the outputs of the model using the 
maximum and minimum values of the ith input parameter, 
respectively. Figure (8) shows the GSI values of the first three 
natural frequencies to the suggested design parameters. The 
minimum GSI values are of the rotational springs which again 
confirm the low contributions of the springs' stiffness in the model 
updating procedure. The GSI of the other design parameters 
related to the joints, especially the geometrical lengths of the 
members and Young's modulus of the elements connected by 
joints, are good enough to approve their positive roles in the 
success of the model updating routine. Another method to 
investigate the global sensitivity of the model output to the input 
parameters is the employment of a simple random sampling 
method in the search space of each input parameter. In this work, 
2000 random samples are selected from the uniform distribution 
of each design parameter in its domain while other parameters are 
kept fixed. Figure (9) illustrates the resulting change in the first 
natural frequency due to changes in E, ρ, Lc, E3, a3, b3,  Kt1 and Kt2. 
As can be seen, while the relationship between E, ρ, Lc, E3, a3 and 
b3 with the first natural frequency are almost linear, the changes 
introduced in the first natural frequency due to changing Kt1 and 
Kt2 are negligible. To better assess the relationship between the 
change in the natural frequencies and the change in the design 
parameters, the Spearman correlation coefficient can be utilized 
[31]. The Spearman coefficient is defined as the Pearson 
correlation coefficient between ranked variables. Considering xi 
and yi as the ranked variables corresponding to the Xi and Yi, then 
the Spearman coefficient is given by Eq. (26). 

 
Figure 8. The global sensitivity indices of the natural frequencies to the 

design parameters  

 

  

  

  

  

Figure 9. Percent change in the natural frequencies due to changing 
the design parameters for 2000 random samples 
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Note that xm and ym are the average values of x and y, 
respectively. If Y tends to increase monotonically as X increases, 
the Spearman correlation coefficient will be +1. If Y tends to 
constantly decrease as X increases, the Spearman correlation 
coefficient gets the value of -1. A Spearman correlation of zero 
shows no tendency for Y to change as X changes. Figure (10) 
shows the evaluated Spearman correlation coefficients. The low 
values of this coefficient corresponding to the stiffness parameters 
of the springs prove the fewer tendencies of the natural frequencies 
to change as these stiffness parameters vary. The Spearman 
coefficients of other design parameters are close to +1 or -1 
showing the monotonic relationships between the natural 
frequencies and these design parameters. 
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Figure 10. Spearman correlation coefficients between the natural frequencies 

and the design parameter 

From the obtained results of the sensitivity analysis, one can 
conclude that in order to have an efficient random optimization 
algorithm, all the design parameters provided in Table (2) are 
acceptable except for Kt1 and Kt2 where in the selected search 
space, the value of local and global sensitivities of the natural 
frequencies to these two stiffness parameters were low.   

5.2. Results of the DQE model updating  

The updating process is performed in two stages. In the first 
stage, the mass and stiffness matrices are updated. To investigate 
how La, Lb, Lc and Ld (i.e. the geometrical design parameters) affect 
the accuracy of the updated model, two different sets of design 
parameters are utilized as described in Table (3). The swarm size 
of the PS-MEABC was set to 50 and after 25000 function 
evaluations, the optimum values of the design parameters have 
been recorded.  

Table 3. Two different sets of design parameters 

Design 

Parameter 
Set 1 Set 2 

Design 

Parameter 
Set 1 Set 2 

E(N/m2) 
  a2(m)   

ρ(Kg/m3) 
  a3(m)   

Ld(m) × 
 a4(m)   

La(m) × 
 a5(m)   

Lb(m) × 
 a6(m)   

Lc(m) × 
 a7(m)   

E1(N/m2) 
 

 a8(m)   

E2(N/m2) 
 

 b1(m)   

E3(N/m2)   b2(m)   

E4(N/m2)   b3(m)   

E5(N/m2)   b4(m)   

E6(N/m2)   b5(m)   

E7(N/m2)   b6(m)   

E8(N/m2)   b7(m)   

a1(m)   b8(m)   

 

——— 
 
1 Experimental Modal Analysis 

The evolution of the best objective function value is illustrated 
in Figure (11), where a significantly lower objective value has 
been obtained using Set 2 of the design parameters. Table 4 
contains the first five natural frequencies obtained from the 
experimental and the updated DQE models. It is seen that the 
frequency errors of Set 2 are considerably lower than those of Set 
1. Hence, using optimum values of the Set 2 as tabulated in Table 
(5), more accurate results are obtained. The comparison of the 
mode shapes of the updated DQE model using Set 2 with the 
corresponding experimental ones is illustrated in Figure (12) 
which confirms the mode pairing of Table (4).  

 
Figure 11. The evolution of the best objective function value  

Table 4. The results obtained from the first stage of the model updating  

Mode 

No. 

Natural Frequency (Hz) Absolute Relative 

Error (%) 

EMA1 
Updated DQE Model 

Set 1 Set 2 
Set 1 Set 2 

1 42.500 43.770 42.503 2.988 0.007 

2 167.625 167.644 167.701 0.011 0.045 

3 334.500 319.605 334.448 4.453 0.015 

4 467.250 466.934 467.222 0.068 0.006 

5 517.250 518.098 517.256 0.164 0.001 

 

Table 5. The optimum values of the design parameters (Set 2) 

Design 

Parameter 

Optimum 

Value 

Design 

Parameter 

Optimum 

Value 

E(N/m2) 209e9 a2(m) 0.0135 
ρ(Kg/m3) 7743 a3(m) 0.0146 

Ld(m) 0.307 a4(m) 0.0149 
La(m) 0.284 a5(m) 0.0132 
Lb(m) 0.483 a6(m) 0.0138 
Lc(m) 0.685 a7(m) 0.0134 

E1(N/m2) 143e9 a8(m) 0.0138 
E2(N/m2) 165e9 b1(m) 0.0138 
E3(N/m2) 213e9 b2(m) 0.0143 
E4(N/m2) 212e9 b3(m) 0.0136 
E5(N/m2) 186e9 b4(m) 0.0139 
E6(N/m2) 186e9 b5(m) 0.0141 
E7(N/m2) 152e9 b6(m) 0.0150 
E8(N/m2) 140e9 b7(m) 0.0131 

a1(m) 0.0144 b8(m) 0.0139 
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1st mode 2nd Mode 3rd Mode 

  
                    4th Mode    5th Mode 

Figure 12. The first five mode shapes of the updated DQE model (solid lines) 
together with the corresponding experimental ones (solid circles)   

In the next stage of the model updating procedure, the 
structural damping matrix is updated. Two different damping 
models are utilized; Model 1: a diagonal matrix with unknown 
diagonal elements and Model 2: a general damping model where 
all the elements of the damping matrix are unknown. The 
drawback of using a general damping model is having a large 
number of design parameters; however, utilizing an evolutionary 
optimization algorithm, e.g., the PS-MEABC algorithm, unlike the 
gradient-based approaches, no difficulty will arise in the 
convergence. As observed from Figure (13), after 50,000 function 
evaluations, Model 2 which utilizes a general damping model, has 
brought more accurate results.  The damping ratios of the first five 
modes of the updated damped DQE models are compared with the 
experimental counterparts in Table (6). According to this table, 
using a general damping model, the 3rd and 4th modes have been 
improved significantly. The mesh of both diagonal and general 
damping matrices are shown in Figure (14). 

   

 
(a) 

 
(b) 

Figure 13. The evolution of the best objective function value during the 
optimization of (a) Model 1 (b) Model 2 

 

 
(a) 

 
(b) 

Figure 14. The mesh of the damping matrix of (a) Model 1 (b) Model 2 
 

Table 6. The results obtained from the second stage of the model updating  

Mode 
No. 

Damping Ratio (%) Absolute Relative 
Error (%) 

EMA 
Updated Damped DQE 

Model 1 Model 2 Model 1 Model 2 

1 0.262 0.261 0.260 0.038 0.076 

2 0.033 0.033 0.033 0.000 0.000 

3 0.120 0.021 0.116 82.500 3.333 

4 0.141 0.047 0.158 66.666 12.057 

5 0.039 0.039 0.039 0.000 0.000 

 
4. Conclusions 

In this paper, a two-stage model updating scheme was utilized to 
update the differential quadrature element (DQE) model of frame 
structures. In the first stage, using an iterative random 
methodology, the mass and stiffness matrices were updated. The 
best design parameters, especially those related to the welded 
joints, were selected based on the local and global sensitivities of 
the natural frequencies to the candidate design parameters. The 
suggested updating procedure was applied to a three-story 
damaged frame structure. After evaluating different sensitivity 
indices, the density and Young's modulus of the structure, and 
several geometrical and elemental parameters related to the 
flexibility of the joints were selected as the design parameter. A 
modified artificial bee colony algorithm was then utilized to 
optimize the DQE model of the frame. It was observed that 
considering the geometrical lengths as the design parameters, 
decreased the errors in natural frequencies of the updated model. 
Furthermore, the damping matrix was also updated in the second 
stage of the model updating using two different structural damping 
models, diagonal and general damping matrices, where using the 
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second model brought a more accurate damped updated model, but 
it had a drawback of being computationally expensive.  
Nevertheless, the robustness and simplicity of the evolutionary 
algorithms, especially for a high-dimensional optimization 
problem, e.g., identifying all the elements of the general damping 
matrix, made them a good candidate for such engineering 
optimization problems. A High-performance computer could also 
alleviate the drawback of the computational costs. 
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