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1. Introduction 

The combined materials usage has been increasing day by day 
due to the lack of ability of conventional engineering materials to 

meet the desired properties demanded by the aerospace and other 

industries. These demanding properties can be achieved by 

employing the functionally graded materials (FGMs). These 

properties are attained by grading the physical properties in the 

thickness/length direction from one side to another side of the 
plate. Moreover, the porosity lowers the density and improves the 

stiffness of the structure. Hence, the materials with porosities have 

been extensively used in many fields of engineering like, aircraft, 

space vehicles, and military. Therefore, by coalescing the FGMs 

with porous materials, a novel material can be obtained which is 

known as porous FGMs [1-2]. These kinds of novel materials are 
produced by working with the pore coefficient and materials 

microstructure. Plates, shells and beams are the key elements in 
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structural systems made of FGMs. The rectangular plates made 

with FGMs with porosities will have wide-ranging applications in 

the field of engineering. Therefore, it is important to investigate 

the bending analysis of FGPs with different kinds of porosities 

subjected to both sinusoidal loads (SSL) and uniformly distributed 

load (UDL) under simply supported boundary conditions. 

In the past, many investigators contributed a lot in analyzing 

the static and dynamic behavior of perfect and porous FGPs. The 

vibration behavior of thin sector plates supporting on a Pasternak 

elastic foundation was analyzed by Mohammadi et al. [3] using a 

new differential quadrature method. These authors [4] also studied 

the effect of temperature change and in-plane pre-load on the 
vibration of circular and annular grapheme sheet embedded in a 

Visco-Pasternak foundation. Safarabadi et al. [5] used Gurtin-

Murdoch model to investigate the surface effects on the vibration 

of rotating nano-beam. The influence of magnetic field, surface 

energy and compressive axial load on the dynamic and the 
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The modern engineering structures require the advanced engineering materials to 
resist the high temperatures and to provide high stiffness. In particular the 
functionally graded porous materials (FGPMs) introduced are expected to have 
these desired properties, consequently eliminating local stress concentration and 
de-lamination. In the present paper, a new shear strains shape function is chosen to 
research the bending analysis of functionally graded plates (FGPs) with uneven 
symmetrical, uneven asymmetrical and even distributions of porosity. The material 
properties of uneven porosity distributions along the thickness of the FGPs vary 
with cosine function. The present theory includes the influence of thickness 
stretching. This theory also fulfills the nullity of the shear stresses in the transverse 
direction on the top and bottom of the plate, thus avoids the use of a shear correction 
factor. The virtual displacement principle is employed to develop the equilibrium 
equations for porous FGPs. The Navier’s method is used to obtain the solutions of 
porous FGPs for simply supported (SS) conditions. The accuracy of the developed 
theory is established with numerical results of perfect and porous FGPs available 
in the open source. The transverse displacements and stress results have been 
reported and studied for evenly, unevenly symmetrical and unevenly asymmetrical 
distributions with different porosity volume fraction (PVF), thickness ratios and 
aspect ratios. From the numerical results it is concluded that the type of porosity 
distribution needs to be considered as a key factor in the optimal design of the 
porous FGPs. 

Keywords: 

Functionally graded porous plates 

Bending analysis 

Rule of Mixtures 

Porosity distribution 

Porosity volume fraction 

 



Reddy and Reddy 

 

418 

 

stability behavior of nano-beam was investigated by Baghani et 

al. [6] using non local elasticity theory and the Gurtin Murdoch 
model. Goodarzi et al. [7], studied the effect of temperature on the 

vibration of FG circular and annular nano-plate embedded in a 

Visco-Pasternak foundation.  

The elastic behavior of thick walled functionally graded 

spherical vessels under internal pressure was investigated by 

Zamani Nejad et al. [8]. These authors [9] also analyzed the ealsto-
plastic deformations and stresses in FG rotating disk using elasto-

perfectly-plastic material model. The effect of angular speed of 

the propagation of the plastic zone was studied and concluded that 

the density variation had a significant effect on the deformations 

and stresses. Mohammad Hosseini et al. [10-12] analyzed the 

stresses in a rotating functionally graded nano-disk subjected to 
thermo-mechanical loads using a strain gradient theory. Zeinab 

Mazarei and Mohammad Zamani Nejad [13] considered thick-

walled functionally graded spherical vessel as thermo-elasto-

plastic problem and analyzed by exposing the inner and outer 

surface to a uniform heat flux and an airstream respectively.  

Mohammad Zamani Nejad et al. [14] used Frobenus series 
method to analyze the cylindrical pressure vessel for stresses. 

Mohammad Zamani Nejad et al. [15] provided an extensive 

literature review on the analysis of functionally graded thick 

cylindrical and conical shells by elastic theories, shear 

deformation theories, simplified theories and mixed theories. The 

effect of capture size in a spheroid living cell membrane under 
hydrostatic pressure was investigated by Hadi et al. [16] using 

strain gradient theory. Nejad et al. [17] analyzed the stresses in 

rotating functionally graded cylindrical pressure vessels under 

thermal load for purely elastic, partially plastic and fully plastic 

deformation condition by assuming the inner surface exposed to 

an airstream and the outer surface exposed to a uniform heat flux. 
The resonance behavior of Kirchhoff-three directional FG nano-

plates were investigated by Behrouz Karami et al. [18]. The bi-

Helmholz nonlocal strain gradient theory considered to capture the 

influence of small scale. Esmail Zarezadeh et al. [19] studied the 

influence of capture size in functionally graded nano-rod under 

magnetic field supported by a torsional foundation using nonlocal 
elasticity theory. To define the influence of torque of an axial 

magnetic field Maxwell’s relation has been used.  

The buckling response of nano-scale rectangular / circular 

plates made of graphene sheets was studied using the Galerkin 

method by Farajpour et al. [20-22] under different types of loading 

condition by considering the small scale effect. The first order 
shear deformation theory was used by Ghayour et al. [23] to 

examine the vibration of damped finite cylindrical shells in 

vacuum or in contact with interior/exterior dense acoustic media. 

Farajpour et al. [24] presented natural frequencies for nano-rings 

using the shear deformable ring theory by considering the small 

scale effect and concluded that the nonlocal effects should be 
considered in studying the vibrations. Danesh et al. [25] 

investigated the small scale effect on the axial vibration of the 

tapered nano - rod under different boundary conditions by 

employing the nonlocal elasticity theory and differential 

quadrature method. Ghayour et al. [26], Goodarzi et al. [27] and 

Mohammadi et al. [28] used the nonlocal elasticity theory and 
differential quadrature method to investigate the vibration 

behavior of orthotropic rectangular graphene sheet embedded in 

an elastic medium/ viscoelastic medium under biaxial pre load/ in-

plane load.  

The influence of temperature on the vibration of orthotropic 

rectangular/ annular nano plates made of nono-layer graphene 
sheet embedded in an elastic medium/Visco-Pasternak foundation 

was studied by Mohammadi et al. [29-31]. These authors also 

studied in the papers [32-33], the vibration behavior of circular 
and annular plates made of graphene sheets under in-plane pre-

load and different boundary conditions using nonlocal elasticity 

theory and differential quadrature method. Asemi et al. [34] 

developed the nonlocal continuum plate model to study the 

transverse vibration of double-piezoelectric-nano-plate systems 

by employing the Pasternak foundation model with initial stress 
under an external electric voltage. The in-plane preload and small 

scale plays a significant effect on the resonance mode of smart 

nano structures. They also developed the nonlinear continuum 

model [35] to investigate the large amplitude vibration of nano-

electro-mechanical resonators using piezoelectric nano-films 

under external electric voltage. Mohammadi et al. [36-37] used 
nonlocal elasticity theory to study the post buckling /shear 

buckling response of orthotropic single-layered graphene sheet. 

Farajpour et al. [38] investigated the influence of surface on the 

buckling behavior of microtubule systems in the visco-elastic 

surrounding cytoplasm using a modified Timoshenko beam 

model. These authors in [39] also investigated the vibration, 
buckling and smart control of microtubules embedded in an elastic 

medium in thermal environment using a piezoelectric nano shell. 

Asemi et al. [40] developed a nonlocal continuum model to 

investigate the piezoelectric nano films and double piezoelectric-

nano-film systems. 

Farajpour et al. [41] developed a nonlocal continuum model to 
study the nonlinear free vibration of size-dependent magneto-

electro-elastic nano-plates under external electric and magnetic 

potentials. The influence of geometric nonlinearity was taken into 

account and the coupled nonlinear differential equations were 

solved using a perturbation technique. These authors also 

investigated in [42] the buckling of nano-plates resting on a two-
parameter elastic foundation by developing the size-dependent 

plate model and in [43] the vibration of piezoelectric nano-films 

subjected to thermo-electro-mechanical loads using a higher order 

nonlocal strain gradient theory. The effect of humidity on the 

vibration frequencies of the rotating viscoelastic nano-beam 

embedded in the  visco-Pasternak foundation under thermal 
environment was investigated by Mohammadi et al. [44]. 

 Moslem Mohammadi  and Abbas Rastgoo [45-46] carried out 

the experimental investigation of nonlinear free and forced 

vibration analysis of the sandwich nano-plates without and with 

considering porosity in the presence of the external harmonic 

excitation force. The foundation of the system was modeled by the 
nonlinear Pasternak foundation. The type of  porosity distribution 

affects the mechanical behavior of the composite nano-plate. 

Mohammadi  et al. [47] used nonlocal strain gradient elasticity 

theory to study the nonlinear free and forced vibration analysis of 

functionally graded nano-beam resting on a nonlinear foundation 

with porosity under mechanical and electrical loads. They found 
that length-scale parameters plays important role in the nonlinear 

vibration behavior of such structures. Sidda Reddy et al. [48-56] 

investigated the static bending subjected to mechanical and 

thermal load, inplane buckling and the free vibration behavior of 

perfect laminated composite and functionally graded plates with 

and without considering the thickness stretching using higher 
order shear deformation theory. 

Many authors investigated on the free vibration and buckling 

behavior of FGPs with porosities (see Ref. [57-59].)  In the last 

two years, only a few researchers investigated the flexural 

behavior of FGPs with porosities. The flexural behavior of FGPs 

with single layer and sandwich plate with porosities was 
investigated by Zenkour [57]. The plate was graded using 
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exponential and polynomial laws and primarily concentrated on 

sandwich plate. The influence of side to thickness ratios, aspect 

ratios, and exponents and porosity on the dimensionless 

deflections and stresses were examined. 

Akbas [60] presented a Navier’s solution to study the porosity 

influence and gradation index on the bending and the free 
vibration behavior of FGPs considering all sides are simply 

supported. The effective properties of the material such as 

modulus of elasticity and mass density were varied according to a 

power law distribution. The increase of porosity increases the 

dimensionless center deflections of the FG plate while it decreases 

the fundamental frequencies. Nguyen et al. [61] investigated the 
nonlinear response of FGPs using C0 type higher order theory. In 

this, the two types of porosity models were considered along the 

thickness direction of the plate. The flexure, buckling and natural 

frequency behavior of nano FG porous plate’s build-up with 

graphene platelets were studied by Li et al. [62]. Merdaci [63] 

analyzed the flexural response of rectangular FG plates with 
porosities by a higher order theory with four unknowns. The 

influence of exponent indexes in addition to porosity on the 

behavior of FGPs was also investigated. Demirhan and Taskin 

[64] used state-space approach to provide benchmark results to the 

bending and vibration of rectangular FGPs with porosity. Kim et 

al. [65-66] presented the numerical results of bending, vibration 
and buckling of FG porous micro plates. These plate theories were 

not satisfied the nullity conditions. Yang et al. [67] compared the 

bending solutions and the buckling response of different form of 

porous FG plates with a traditional sandwich plate. The effect of 

porosity and dimension ratios on stresses was also studied. The 

flexural behavior of FG sandwich plates with even, uneven, 
logarithmically uneven and linear-uneven porosities was 

investigated by Daikh et al. [68]. Amir Farzam and Behrooz 

Hassani [69] analyzed the static response of FG micro plates 

considering the porosities by employing Isogeometric analysis 

and modified couple stress theory. Sidda Reddy and Vijaya Kumar 

Reddy [70] investigated the effect of side to thickness ratio, aspect 
ratio, volume fraction of porosity, and type of porosity on the 

flexural behavior of functionally graded porous plates. In which, 

porosity is considered as a defect in manufacturing FG plate. 

From the open source, and to the author’s knowledge, it can be 

established the influence of thickness stretching needs to be 

considered to analyze the bending behavior of FG porous plates. 
These considerations are motivated to present the numerical 

results based on a novel higher order Quasi-3D theory to the 

bending response of FGPs with different forms of porosities 

considering the transverse extensibility along the thickness 

direction. This theory divides the transverse deflection into 

bending & shear components to see their contributions to the total 
transverse displacement.  The present theory uses the novel higher 

order shear strain shape function that assesses the boundary 

conditions without restrictions on the upper and lower side of the 

FGPs in the absence of shear correction factors. The physical 

properties across the thickness of the FG plates with porosities are 

supposed to change with a cosine function while the Poisson’s 
ratio keeps on constant. Navier solution is adopted to attain 

solutions for SS FGPs. The influence of side to thickness ratios, 

aspect ratios, and porosity distribution and also the volume 

fraction of porosity on the displacements and stresses are 

investigated in detail. 

2. Formulation of novel higher order theory 

Fig.1 represents a FG plate having physical dimensions and 

different kinds of porosity distributions with three dimensional 

Cartesian coordinate system. The plate made of FGM is subjected 

to bi-sinusoidal load q (x, y).  

 

(a) Perfect FG Plate 

 

(b) Uneven symmetrical distribution 

 

(c)Uneven asymmetrical distribution 

 

(d) Even distribution 
Figure.1. Representation of FG rectangular plate with different 

kinds of Porosities [2] 

The effective physical properties (P (z)) such as modulus of 
elasticity in tension, Young’s modulus in shear and material mass 

along the thickness direction of the FG plates for three types of 

porosity distributions (Uneven symmetric distribution (USD), 

Uneven asymmetrical distribution (UAD) and Even 

distribution(ED) are expressed as [2]:   

 𝑃(𝑧) = 𝑃(1 − PVF ∗ χ(z))                                            (1a) 
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where,  𝑃  is the property on the upper side of the plate & PVF is 

the porosity volume fraction. 

 

Figures 2a-c depicts the variation of volume fraction of 

effective physical properties of the FG plates for three types of 
porosity models. In this, the volume fraction of effective physical 

properties is assessed using the Eq. (1) for different volume 

fraction of porosity (PVF) = 0.1, 0.3, 0.5, 0.7 and 0.9.  

 

 

 
 (a) 

 

 
 

 
(b) 

 
(c) 

Figure. 2.  Volume fraction variation along the thickness of the 
FG plate for various values of  PVF for (a) Uneven 

symmetrical distribution; (b) Uneven asymmetric 
distribution; (c) Evenly distribution. 

From Figure 2a, it can be seen that the volume fraction of 
physical property of the uneven symmetrical distribution is the 

minimum at the plate center and maximum at the upper and lower 

side of the plate. Also, the volume fraction of physical property 

decreases with the increase of PVF. In case of uneven 

asymmetrical porosity distribution, volume fraction of physical 

property decreases along the thickness direction from top to 
bottom with the increase of PVF (see Figure 2b), whereas in even 

porosity distribution,  the volume fraction of physical property 

remains constant in the direction of thickness and decreases with 

the increase of the PVF (see Figure 2c). 

2.1. Novelty of the Present Theory  

(i) The normal and transverse shear deformations contribute 

significantly in accurately estimating the structural behavior 

of FG plates. Hence this theory considers the influence of 

normal and transverse shear deformations. 

(ii) The displacement in the x and y-direction comprises 
extension, bending and shear components. 

        𝑢̅(𝑥, 𝑦) = 𝑢 − 𝑧𝑤𝑏,𝑥 −𝜓(𝑧)𝑤𝑠,𝑥                                     (2a) 

 𝑣̅(𝑥, 𝑦) = 𝑣 − 𝑧𝑤𝑏,𝑦 −𝜓(𝑧)𝑤𝑠 ,𝑦                                    (2b) 

       Where 𝜓(𝑧) = 𝑧 − 𝜍(𝑧)                                      (2c) 

          𝜍(𝑧) = −
8𝑧3

3ℎ3√1+2𝜋2
+ Sinh−1 (

√2𝑧

ℎ𝜋
)                               (2d) 

The comma followed by the subscripts represents 

differentiation with respect to the subscripts throughout the 
paper.  Equations (2c-d) represents the novel higher order 

shear strain function that satisfies the nullity conditions of 

the transverse stress at the top and bottom side of the plate. 

Thus, this theory doesn’t require the shear correction factor. 

(iii) The displacement in transverse direction w contains the 

bending (wb), shear (ws) and through the thickness stretching 
(wt). The bending and shear parts are functions of x and y 

coordinates and the thickness stretching part is a function of 

x, y and z. 

𝑤̅ = 𝑤𝑏 +𝑤𝑠 +  𝜍(𝑧),𝑧𝜉                                  (2e) 
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𝜉  takes account of influence of normal stress. 

(iv) The present theory involves only five unknown parameters. 

2.2. Strain-displacement equations 

The necessary relations are derived by assuming the strains are 
small. The strain displacement relations associated with the 

displacement model of Eqs. (2a-e), can be applied for thick to thin 

plates are as follows.  

𝜖11 = 𝑢,𝑥 − 𝑧𝑤𝑏,𝑥𝑥 − 𝜓(𝑧)𝑤𝑠,𝑥𝑥                                      (3a) 

𝜖22 = 𝑣,𝑦 − 𝑧𝑤𝑏,𝑦𝑦 −𝜓(𝑧)𝑤𝑠,𝑦𝑦                        (3b) 

𝜖33 =  𝜍(𝑧),𝑧𝑧  𝜉                          (3c) 

𝜖12 = (𝑢,𝑦 + 𝑣,𝑥) − 2𝑧𝑤𝑏,𝑥𝑦 − 2𝜓(𝑧)𝑤𝑠,𝑥𝑦                       (3d) 

𝜖13 = 𝜍(𝑧),𝑧(𝑤𝑠,𝑥 + 𝜉,𝑥)                          (3e) 

𝜖23 = 𝜍(𝑧),𝑧(𝑤𝑠,𝑦 + 𝜉,𝑦)                          (3f)  

2.3. Stress-strain relations 

The linear stress-strain relations are given as: 

𝑠11 = 𝑄11𝜖11 +𝑄12(𝜖22 + 𝜖33)                        (4a) 

𝑠22 = 𝑄11𝜖22 +𝑄12(𝜖11 + 𝜖33)                         (4b) 

𝑠33 = 𝑄11𝜖33 +𝑄12(𝜖11 + 𝜖22)                                       (4c) 

(𝑠12, 𝑠13, 𝑠23)  = 𝑄66(𝜖12, 𝜖13 , 𝜖23)                         (4d) 

In which, 𝑠 = {𝑠11, 𝑠22, 𝑠33 , 𝑠12, 𝑠13, 𝑠23} are the stresses and  

𝜖 = {𝜖11, 𝜖22, 𝜖33, 𝜖12, 𝜖13 , 𝜖23}  are the strains with regard to the 

coordinating system adopted for the plate and  

𝑄11 =
𝐸(𝑧)(1−𝜇)

(1−2𝜇)(1+𝜇)
                                                       (4e) 

𝑄12 =
𝜇𝐸(𝑧)

(1−2𝜇)(1+𝜇)
                                                         (4f) 

𝑄66 =
𝐸(𝑧)

2(1+𝜇)
                                         (4g)      

2.4. Equilibrium Equations of motion 

The static equations of equilibrium can be obtained by 

considering the virtual work and expressed in analytic form as 

∫ ∫ ∫ [𝑠11𝜖11 + 𝑠22𝜖22 + 𝑠33𝜖33 + 𝑠12𝜖12 +  𝑠13𝜖13 +𝑧𝑦𝑥

𝑠23𝜖23]𝑑𝑥𝑑𝑦𝑑𝑧 − ∫ ∫ 𝑞[𝛿𝑤𝑏 + 𝛿𝑤𝑠 + 𝜍(𝑧),𝑧|
ℎ/2𝜉]

𝑦𝑥
𝑑𝑥𝑑𝑦=0  (5) 

or 

∫ ∫ [𝑁1𝑦
𝛿𝑢,𝑥 −𝑀1𝛿𝑤𝑏,𝑥𝑥𝑥

−𝑃1𝛿𝑤𝑠 ,𝑥𝑥 +𝑁2𝛿𝑣,𝑦 −𝑀2𝛿𝑤𝑏,𝑦𝑦 −

𝑃2𝛿𝑤𝑠 ,𝑦𝑦 + 𝑆3𝛿𝜉 + 𝑁6(𝛿𝑢,𝑦 + 𝛿𝑣,𝑥) − 2𝑀6𝛿𝑤𝑏,𝑥𝑦 −

2𝑃6𝛿𝑤𝑠 ,𝑥𝑦 +𝑄13(𝛿𝑤𝑠,𝑥 + 𝛿𝜉,𝑥) + 𝑄23 (𝛿𝑤𝑠 ,𝑦 + 𝛿𝜉,𝑦)−

𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠 + 𝜍(𝑧),𝑧|−ℎ/2
ℎ/2

𝜉)]𝑑𝑥𝑑𝑦=0                         (6) 

In which Ni, Mi, Pi,  Si, Qi denotes the forces and moment results 

which can be defined as follows 

(𝑁𝑖 ,𝑀𝑖 , 𝑃𝑖) = ∫ 𝑆𝑖𝑗(1, 𝑧,𝜓(𝑧))
ℎ/2

−ℎ/2
𝑑𝑧,    (𝑖, 𝑗 = 1, 2, 6)(7a)                    

𝑆3 = ∫ 𝑆33
ℎ/2

−ℎ/2
𝜍(𝑧),𝑧𝑧𝑑𝑧                          (7b) 

𝑄𝑗3 = ∫ 𝑆𝑗3
ℎ/2

−ℎ/2
𝜍(𝑧),𝑧𝑑𝑧                      (7c) 

The equations of equilibrium are obtained from Eq. (6) by 

applying the integration by parts to the gradients of displacements 

and putting the coefficients of 𝛿𝑢, 𝛿𝑣, 𝛿𝑤𝑏 , 𝛿𝑤𝑠  and  𝛿𝜉 to zero, 

independently. So, according to this theory, we have 

𝛿𝑢 = 𝑁1,𝑥 + 𝑁6,𝑦 = 0                           (8a) 

𝛿𝑣 = 𝑁2,𝑦 + 𝑁6,𝑥 = 0                                        (8b) 

𝛿𝑤𝑏 = 𝑀1,𝑥𝑥
+𝑀2,𝑦𝑦

+ 2𝑀6,𝑥𝑦
= −𝑞                       (8c) 

𝛿𝑤𝑠 = 𝑃1,𝑥𝑥 + 𝑃2,𝑦𝑦 + 2𝑃6,𝑥𝑦 +𝑄13,𝑥 +𝑄23,𝑦 = −𝑞        (8d) 

𝛿𝜉 = 𝑄13,𝑥 +𝑄23,𝑦 − 𝑆3 = 0                          (8e) 

By putting Eq. (4a-g) into the Eq. (7a-c), and further 

substitution of the resulting equations into Eq. (8a-e) gives the 
system of equations in an abbreviated form as: 

[Θ]5×5[Δ] 5×1=[F] 5×1                                                                                       (9) 

Where [Θ] contains stiffness terms and {Δ} =
{𝑢, 𝑣, 𝑤𝑏 ,𝑤𝑠 , 𝜉 }

𝑡denotes the unknown amplitudes and {𝐹} =
{0,0, −𝑞, −𝑞, 0}𝑡 is the force matrix.  

3. Analytical solution 

In what follows, the solution for the Eq. (9) is obtained by 

prescribing the simply supported conditions at all the side edges: 

𝑁1,𝑀1,𝑃1, 𝑣,𝑤𝑏 , 𝑤𝑠 ,𝑤𝑏,𝑦 ,𝑤𝑠 ,𝑦 , 𝜉 = 0 @ 𝑥 = 0, 𝑎.  

𝑁2,𝑀2, 𝑃2, 𝑢, 𝑤𝑏, 𝑤𝑠 , 𝑤𝑏,𝑥, 𝑤𝑠 ,𝑥, 𝜉 = 0  @ 𝑦 = 0, 𝑏.                (10) 

In accordance with Navier’s solution, the external transverse 

bi-sinusoidal load can be given as: 

q(x, y) = 𝑞𝑘𝑙𝑠𝑖𝑛(𝜑𝑥)𝑠𝑖𝑛(𝜙𝑦), (𝑘, 𝑙 = 1, 2, … . .∞)               (11) 

Where  𝜑 =
𝑘𝜋

𝑎
 , 𝜙 =

𝑙𝜋

𝑏
 , k and l are the mode numbers. For 

uniformly distributed, qkl can be defined as: 

𝑞𝑘𝑙 = {
16𝑞

𝑘𝑙𝜋2
, for odd k and l

0, otherwise
                                                     (12) 

In accordance with Navier’s method, the assumed expressions 

for solutions that satisfy the SS conditions at all the side edges are  

u(x, y) = 𝑢𝑘𝑙𝑐𝑜𝑠(𝜑𝑥)𝑠𝑖𝑛(𝜙𝑦)  

v(x, y) = 𝑣𝑘𝑙𝑠𝑖𝑛(𝜑𝑥)𝑐𝑜𝑠(𝜙𝑦)  

[𝑤𝑏,  𝑤𝑠 , 𝜉  ] = [𝑤𝑏𝑘𝑙 ,𝑤𝑠𝑘𝑙 , 𝜉𝑘𝑙]𝑠𝑖𝑛(𝜑𝑥)𝑠𝑖𝑛(𝜙𝑦), (𝑘, 𝑙 =
1, 2,… . . ∞)                                                                         (13a-c)                                                                                      

Where  𝑢𝑘𝑙,  𝑣𝑘𝑙 , 𝑤𝑏𝑘𝑙 ,  𝑤𝑠𝑘𝑙 ,  𝜉𝑘𝑙 are the unknowns to be 

determined.  

Substitution of Eqs. (13a-c) into Eqs.(8a-e), the following 

system of equations in the first order is obtained. 

[Θ̅]5×5[Δ̅]5×1 = [F]̅5×1                                                                                                 (14) 

Where 

Θ11 = −(𝐴11𝜑
2 +𝐴66𝜙

2)  

Θ12 = −(𝐴12 +𝐴66)𝜑𝜙  

Θ13 = 𝐵11𝜑
3 + (𝐵12 + 2𝐵66)𝜑𝜙

2  

Θ14 = 𝐵11
𝑆 𝜑3 + (𝐵12

𝑆 + 2𝐵66
𝑆 )𝜑𝜙2  

Θ14 = 𝐸11𝜑  

Θ22 = −(𝐴66𝜑
2 +𝐴11𝜙

2)  

Θ23 = 𝐵11𝜙
3 + (𝐵12 + 2𝐵66)𝜙𝜑

2  

Θ24 = 𝐵11
𝑆 𝜙3 + (𝐵12

𝑆 + 2𝐵66
𝑆 )𝜙𝜑2  

Θ25 = 𝐸12𝜙  

Θ33 = −𝐷11(𝜑
4 +𝜙4) − (2𝐷12 + 4𝐷66)𝜑

2𝜙2  
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Θ34 = −𝐷11
𝑆 (𝜑4 +𝜙4) − (2𝐷12

𝑆 + 4𝐷66
𝑆 )𝜑2𝜙2  

Θ35 = −𝐺12(𝜑
2 + 𝜙2)  

Θ44 = −𝐹11(𝜑
4 +𝜙4) − (2𝐹12 + 4𝐹66)𝜑

2𝜙2 − 𝐿66(𝜑
2 + 𝜙2)  

Θ45 = −𝐽12(𝜑
2 + 𝜙2) − 𝐿66(𝜑

2 +𝜙2)  

 Θ55 = −𝐿66(𝜑
2 + 𝜙2) − 𝐾11  

Where (𝐴𝑖𝑗 |𝐵𝑖𝑗|𝐷𝑖𝑗 |𝐵𝑖𝑗
𝑠 |𝐷𝑖𝑗

𝑠 |𝐹𝑖𝑗|𝐸𝑖𝑗|𝐺𝑖𝑗|𝐽𝑖𝑗 |𝐾𝑖𝑗|𝐿𝑖𝑗) =

∫
𝑄𝑖𝑗(1|𝑧|𝑧

2|𝜓(𝑧)|𝑧𝜓(𝑧)|𝜓(𝑧)2|𝜍(𝑧),𝑧𝑧|𝑧𝜍(𝑧),𝑧𝑧|𝜓(𝑧)𝜍(𝑧),𝑧𝑧|𝜍(𝑧),𝑧𝑧
2
|𝜍(𝑧),𝑧

2
)𝑑𝑧 

   (𝑖, 𝑗 = 1, 2, 6)

ℎ/2

−ℎ/2
 

{Δ̅} = {𝑢𝑘𝑙 , 𝑣𝑘𝑙 ,𝑤𝑏𝑘𝑙 , 𝑤𝑠𝑘𝑙 , 𝜉𝑘𝑙  }
𝑡
  

{𝐹̅} = {0, 0, −𝑞𝑘𝑙 , −𝑞𝑘𝑙 , 0}
𝑡  

4. Results and Discussion 

In the present paper, the results for the flexural response of 

simply supported porous FG rectangular plates are presented by 

applying SSL and UDL on the top side of the plate.  The properties 

of materials used in the present paper are  

Aluminium: Modulus of Elasticity (Em)= 70 GPa, and 
Poisson’s ratio (𝜇)  are assumed as 0.3. 

The displacements and stresses assessed here are presented 

using the following dimensionless forms: 

𝑊 = 𝑤(
𝑎

2
,
𝑏

2
, 𝑧)

10𝐸𝑚ℎ
3

𝑞𝑘𝑙𝑎
4

 ; 𝑆11 = 𝑠11 (
𝑎

2
,
𝑏

2
, 𝑧)

ℎ2

𝑞𝑘𝑙𝑎
2
 ; 

 𝑆22 = 𝑠22 (
𝑎

2
,
𝑏

2
, 𝑧)

ℎ2

𝑞𝑘𝑙𝑎
2
; 𝑆33 = 𝑠33 (

𝑎

2
,
𝑏

2
, 𝑧)

ℎ2

𝑞𝑘𝑙𝑎
2
 ; 

 𝑆13 = 𝑠13 (0,
𝑏

2
, 𝑧)

ℎ

𝑞𝑘𝑙𝑎
                                                  (15) 

To validate the present theory results for dimensionless center 

plate deflections and normal stresses of exponentially graded 
plates, comparisons are made with: (i) 3-D exact solutions of the 

perfect plate [71]; (ii) Novel higher order theory, which includes 

new trigonometric shear strain shape function developed by 

Mantari and Guedes Soares [72] for perfect plate and (iii) recently 

a Quasi-3D refined theory developed by Zenkour [57] for single 

layer and sandwich plates with porosities. 

Example 1: Considers transverse bi-sinusoidal load applied to 

the top of the rectangular/square plate.  Tables 1 & 2 consists, 

results of dimensionless transverse center deflection W with and 

without inclusion of the porosity volume fraction and normal 

stress S22 of exponentially graded plates for various values of a/h, 

b/a ratios, and exponents ξ (for details Refer Zenkour [71]; 
Mantari and Guedes Soares [72]). The results estimated by the 

present theory are very close to the 3D exact solutions provided 

by Zenkour [71] and Mantari and Guedes Soares [72] results. 

Mantari and Guedes Sores [73] also provided over estimated  

results for dimensionless center plate deflection considering a  

trigonometric shape function in which the through the thickness 
stretching  was neglected. So, the inclusion of through the 

thickness stretching is essential in estimating the dimensionless 

center deflections and stresses exactly. 

Example 2: The dimensionless center deflections of simply 

supported perfect and FG plate with even & uneven porosity 

variation subject to UDL are given in Table 3. The reported results 
are compared to those presented by DEMIRHAN and TASKIN 

[64] based on sinusoidal shape function with 𝜖33 = 0. On the basis 

of numerical results, it is noticed that the through the thickness 

stretching has noteworthy on the deflections. 

Lastly, additional results of dimensionless transverse center 

deflections, and stresses in rectangular FG porous plates with three 
kinds of distributions of porosity are reported in Tables 4-6. The 

increase of PVF increases the transverse deflection and axial 

stress, while it decreases the transverse shear stresses for both SSL 

& UDL. The reason is an increase in the PVF results in a decrease 

in the Young’s modulus of the plate. The dimensionless 

deflections decrease with the increase of a/h, while it increases 
with increase of b/a.  

The dimensionless center deflections are somewhat larger for 

even porosity distribution compared to uneven porosity 

distributions. We can affirm that the side-to-thickness ratio a/h, 

aspect ratio b/a, and PVF has a considerable effect on the 

deflections and stresses for the three types of distributions. The 
influence of shear component is to decrease the deflections with 

an increase of thickness ratios. It is because; the shear deformation 

is more noticeable in thick plates. 

Figure 3 indicates the through-the-thickness variation of 

dimensionless deflections of rectangular FG plate for a/h=5 with 

several values of PVF for three types of porosity distributions. 
From Figures 3a-c it is seen that the deflection increases as PVF 

increases for both SSL and UDL. The maximum center deflection 

occurs at the plate center for all types of porosity distributions, 

porosity volume fractions and varies symmetrically about the mid 

plane along the thickness of the plate (see Figures. 3a-c). Also 

seen that for the even porosity distribution with UDL shows larger 
deflection compared to other two types of uneven porosity 

distribution values along the thickness direction for all porosity 

volume fractions. 

The distribution of dimensionless axial stress S11 of thick 

(a/h=5) rectangular (b/a=3) FG plate in the thickness direction is 

portrayed in Figure 4 for several values of PVF. The axial stresses 
are tensile and compressive respectively at the top and bottom 

surface of the plate, for three types of porosity distributions and 

for all values of PVF. The increase of PVF results in increase of 

S11 for two types of uneven porosity distributions for both SSL 

and UDL. This can be defended by the reality that the porosity 

lessens the stiffness of the plate. Whereas for the even porosity 
distribution, S11 varies anti-symmetrically about the mid plate for 

all porosity volume fractions and for both SSL & UDL. Also, 

noticed that for even porosity distribution the stress S11 varies only 

in the thickness direction and is independent of PVF. From 

Figures. 4a-c it is noteworthy to see that the PVF of uneven 

symmetrical, uneven asymmetrical and evenly distribution has no 
influence on axial stress in three, two and one position 

respectively, are S11=-0.6402 (UDL), -0.401(SSL) at z/h=-0.39, 

S11=0 (SSL and UDL) at z/h=0, and S11=0.4 (UDL), 0.64 (SSL) at 

z/h=0.39 & S11=-0.4 (UDL), 0.24(SSL) at z/h=-0.28, and S11=0.52 

(UDL), 0.32 (SSL) at z/h=0.356 & S11=0 (UDL and SSL) at z/h=0. 

The variation of normal stress S33 in the thickness direction of 
very thick (a/h=5) rectangular (b/a=3) FG plate is shown in Figure 

5 for several values of PVF.  The normal stresses are tensile and 

compressive respectively, are at the upper and lower surface of the 

plate, for three types of porosity distributions and for all values of 

PVF. The PVF has no influence on normal stress S33 in three and 

one positions for uneven symmetrical and evenly distributions 
(see Figures 5a, 5c) respectively, are S33=-0.02 (SSL), 0.037 

(UDL) at z/h=0.41, S33=0 (SSL& UDL) at z/h=0, S33=0.02 (SSL), 

0.032 (UDL) at z/h=0.41 & S11=0 (UDL and SSL) at z/h=0. The 

effect of PVF in the thickness direction for uneven asymmetrical 

distribution is shown in Figure 5b. 
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Table 1: Dimensionless deflections of perfect and porous FG plate (SSL) 

a/h b/a Theory ξ =0.1 ξ =0.3 ξ =0.5 ξ =0.7 ξ =1.0 ξ =1.5 

2 1 3-D  [71]  0.57693 0.52473 0.47664 0.4324 0.37269 0.28904 

  Mantari and Soares [72] 0.57789 0.5224 0.47179 0.42567 0.36485 0.27939 

  Zenkour [57]( PVF =0) 0.5751 0.5199 0.4695 0.4236 0.3624 0.2781 

  Present 0.57760 0.52220 0.47160 0.42550 0.36400 0.27930 

  Zenkour [57]( (PVF=0.1) 0.7182 0.6493 0.5864 0.5291 0.4526 0.3473 

  Present (PVF =0.1) 0.7214 0.6521 0.589 0.5314 0.4546 0.3488 

 2 3-D  [71]  1.19445 1.08593 0.9864 0.8952 0.77266 0.60174 

  Mantari and Soares [72] 1.19408 1.07949 0.97503 0.8799 0.75377 0.57862 

  Zenkour [57]( PVF =0) 1.1909 1.0766 0.9725 0.8776 0.7512 0.5771 

  Present 1.1938 1.0793 0.9748 0.8797 0.753 0.5785 

  Zenkour [57]( (PVF=0.1) 1.4873 1.3445 1.2145 1.096 0.9381 0.7208 

  Present (PVF =0.1) 1.4909 1.3479 1.2174 1.0987 0.9403 0.7224 

 3 3-D  [71]  1.44295 1.3116 1.19129 1.08117 0.93337 0.7275 

  Mantari and Soares [72] 1.4421 1.30373 1.17761 1.06279 0.91041 0.69925 

  Zenkour [57]( PVF =0) 1.4387 1.3007 1.1749 1.0604 0.9077 0.6977 

  Present 1.4419 1.3035 1.1774 1.0626 0.9096 0.6991 

  Zenkour [57]( (PVF=0.1) 1.7968 1.6244 1.4673 1.3242 1.1336 0.8713 

  Present (PVF =0.1) 1.8007 1.6279 1.4704 1.3271 1.136 0.8731 

4 1 3-D  [71]  0.349 0.31677 0.28747 0.26083 0.22534 0.18054 

  Mantari and Soares [72] 0.3486 0.31519 0.28477 0.2571 0.22028 0.1697 

  Zenkour [57]( PVF =0) 0.3481 0.3148 0.2844 0.2568 0.22 0.1695 

  Present 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697 

  Zenkour [57]( (PVF=0.1) 0.4348 0.3931 0.3552 0.3207 0.2748 0.2117 

  Present (PVF =0.1) 0.4353 0.3936 0.3556 0.3211 0.2751 0.212 

 2 3-D  [71]  0.81529 0.73946 0.67075 0.60846 0.52574 0.412 

  Mantari and Soares [72] 0.81448 0.73647 0.66547 0.60093 0.51508 0.39732 

  Zenkour [57]( PVF =0) 0.8135 0.7357 0.6648 0.6003 0.5146 0.3969 

  Present 0.8145 0.7365 0.6655 0.6009 0.5151 0.3973 

  Zenkour [57]( (PVF=0.1) 1.0161  0.9187 0.8302 0.7497 0.6426 0.4957 

  Present (PVF =0.1) 1.0172 0.9197 0.8311 0.7505 0.6433 0.4962 

 3 3-D  [71]  1.01338 0.91899 0.8335 0.75606 0.65329 0.51209 

  Mantari and Soares [72] 1.01243 0.91546 0.82724 0.74704 0.64037 0.49408 

  Zenkour [57]( PVF =0) 1.0113  0.9145 0.8264 0.7463 0.6397 0.4936 

  Present 1.0124 0.9155 0.8272 0.747 0.6404 0.4941 

  Zenkour [57]( (PVF=0.1) 1.2630  1.1421 1.032 0.932 0.7989 0.6164 

  Present (PVF =0.1) 1.2644 1.1433 1.0331 0.9329 0.7997 0.617 

 

Table 2: Dimensionless axial stress of perfect and porous FG plate (SSL) 

a/h b/a Theory ξ =0.1 ξ =0.3 ξ =0.5 ξ =0.7 ξ =1.0 ξ =1.5 

2 1 3-D  [71]  0.31032 0.32923 0.34953 0.37127 0.40675 0.47405 

  Mantari and Soares [72] 0.29244 0.31468 0.33826 0.36325 0.40405 0.47848 

  present 0.2927 0.3149 0.3386 0.3636 0.4039 0.479 

 2 3-D  [71]  0.31998 0.33849 0.35833 0.37956 0.41417 0.47989 

  Mantari and Soares [72] 0.30422 0.32613 0.34945 0.37427 0.41483 0.49052 

  present 0.3049 0.3269 0.3503 0.3752 0.4156 0.4918 

 3 3-D  [71]  0.30808 0.32525 0.34362 0.36329 0.39534 0.45619 

  Mantari and Soares [72] 0.29122 0.31177 0.33369 0.35707 0.39537 0.46732 

  present 0.2921 0.3127 0.3348 0.3582 0.3964 0.4689 

 4 3-D  [71]  0.30084 0.31727 0.33486 0.35368 0.38435 0.44257 

  Mantari and Soares [72] 0.28335 0.30317 0.32431 0.3469 0.38394 0.45373 

  present 0.2843 0.3042 0.3255 0.3481 0.3851 0.4554 

4 1 3-D  [71]  0.22472 0.23995 0.25621 0.27356 0.30177 0.35885 

  Mantari and Soares [72] 0.22372 0.23907 0.25544 0.27291 0.30137 0.35555 

  present 0.2244 0.2399 0.2563 0.2739 0.3024 0.3568 

 2 3-D  [71]  0.24314 0.25913 0.27618 0.29434 0.32385 0.37968 

  Mantari and Soares [72] 0.23953 0.25497 0.27154 0.28936 0.3187 0.37562 

  present 0.2408 0.2564 0.2731 0.291 0.3205 0.3777 

 3 3-D  [71]  0.23188 0.24692 0.26295 0.28002 0.30775 0.36021 

  Mantari and Soares [72] 0.22721 0.24137 0.25663 0.27312 0.30044 0.35404 

  present 0.2287 0.243 0.2584 0.275 0.3025 0.3565 

 4 3-D  [71]  0.2247 0.23918 0.2546 0.27103 0.2977 0.34816 

  Mantari and Soares [72] 0.21957 0.23302 0.24754 0.26327 0.28943 0.34105 

  present 0.2211 0.2347 0.2494 0.2652 0.2916 0.3436 
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Table 3: The dimensionless center deflection of perfect and porous FG square plates subjected to UDL 

a/h Exponent (ξ) Method ε33 

Even   Unevn   

PVF 

0 0.2 0.4 0 0.2 0.4 

5 0 Ref. [64] =0 0.5352 0.60706 0.70111 0.5352 0.58052 0.63466 

  Present 0  0.5443 0.6175 0.7133 0.5443 0.5664 0.5909 

 0.1 Ref. [64] =0 0.58992 1.67969 0.80066 0.58992 0.64981 0.71393 

  Present 0  0.5997 0.69 0.8126 0.5997 0.6263 0.6561 

 0.5 Ref. [64] =0 0.8083 0.98705 1.3267 0.8083 0.92411 1.08409 

  Present 0  0.8124 1.0003 1.3145 0.8124 0.8644 0.9257 

 1 Ref. [64] =0 1.04469 1.43735 2.47062 1.04469 1.27236 1.66012 

  Present 0  1.0371 1.4063 2.3506 1.0371 1.1339 1.2587 

10 0 Ref. [64] =0 0.46655 0.52922 0.61134 0.46655 0.5045 0.54923 

  Present 0  0.477 0.5411 0.6251 0.477 0.4929 0.5101 

 0.1 Ref. [64] =0 0.51714 0.59566 0.89806 0.51714 0.56398 0.64537 

  Present 0  0.5279 0.6079 0.7166 0.5279 0.5475 0.5688 

 0.5 Ref. [64] =0 0.71361 0.8895 1.18947 0.71361 0.81751 0.95489 

  Present 0  0.7223 0.8931 1.1821 0.7223 0.763 0.8098 

 1 Ref. [64] =0 0.92873 1.29241 2.29216 0.92873 1.13392 0.8372 

  Present 0  0.9234 1.2641 2.1611 0.9234 1.0019 1.1015 

20 0 Ref. [64] =0 0.44939 0.50971 0.5888 0.44939 0.48543 0.52782 

  Present 0  0.46 0.5218 0.6028 0.46 0.4744 0.4897 

 0.1 Ref. [64] =0 0.49834 0.57412 0.67728 0.49834 0.54338 1.38928 

  Present 0  0.5097 0.5871 0.6923 0.5097 0.5276 0.5467 

 0.5 Ref. [64] =0 0.69209 0.86177 1.1551 0.69209 0.79069 0.92626 

  Present 0  0.6995 0.8661 1.1487 0.6995 0.7373 0.7806 

 1 Ref. [64] =0 0.89968 1.25611 2.2436 0.89968 1.09915 1.44418 

  Present 0  0.8946 1.2282 2.1132 0.8946 0.9685 1.0618 

 

Table 4: Influence of thickness ratio, aspect ratio, porosity distribution and porosity volume fraction on Dimensionless center 
defection in FG plate 

a/h b/a Distribution 
PVF =0.1 PVF =0.3 PVF =0.5 PVF =0.7 PVF =0.9 

SSL UDL SSL UDL SSL UDL SSL UDL SSL UDL 

2 1 USD 0.6484 1.0511 0.7535 1.2216 0.9096 1.4745 1.1735 1.9024 1.7497 2.8366 

  UAD 0.6487 1.0517 0.7536 1.2217 0.9059 1.4686 1.1542 1.8711 1.6849 2.7315 

  ED 0.6491 1.0523 0.7566 1.2265 0.9177 1.4878 1.1979 1.942 1.9048 3.0879 

 2 USD 1.332 2.1594 1.5255 2.4731 1.806 2.9278 2.2677 3.6762 3.2484 5.2661 

  UAD 1.3392 2.1711 1.5528 2.5173 1.8651 3.0236 2.3843 3.8653 3.5543 5.762 

  ED 1.3412 2.1742 1.5632 2.5341 1.8962 3.074 2.4751 4.0124 3.9355 6.38 

 3 USD 1.6064 2.6041 1.8332 2.9718 2.1595 3.5009 2.6924 4.3648 3.8144 6.1837 

  UAD 1.617 2.6214 1.874 3.038 2.2505 3.6484 2.8795 4.6681 4.3146 6.9946 

  ED 1.6197 2.6258 1.8878 3.0605 2.29 3.7124 2.9892 4.8458 4.753 7.7052 

 4 USD 1.7261 2.7982 1.9671 3.189 2.313 3.7498 2.876 4.6625 4.0572 6.5772 

  UAD 1.7383 2.8181 2.0142 3.2654 2.4188 3.9212 3.0958 5.0188 4.6477 7.5345 

  ED 1.7414 2.8231 2.0297 3.2903 2.462 3.9913 3.2137 5.2098 5.11 8.284 

5 1 USD 0.3514 0.5697 0.3887 0.6301 0.4379 0.7099 0.5096 0.8262 0.6402 1.0379 

  UAD 0.3574 0.5793 0.4125 0.6688 0.4948 0.8021 0.6379 1.0342 0.9981 1.6181 

  ED 0.3584 0.5811 0.4178 0.6772 0.5068 0.8215 0.6615 1.0723 1.0518 1.7051 

 2 USD 0.8418 1.3647 0.9241 1.4981 1.0296 1.6691 1.1765 1.9072 1.4246 2.3094 

  UAD 0.858 1.391 0.9896 1.6043 1.1866 1.9237 1.5327 2.4847 2.4217 3.9258 

  ED 0.8613 1.3964 1.0039 1.6275 1.2178 1.9742 1.5896 2.5769 2.5275 4.0975 

 3 USD 1.0518 1.7051 1.1529 1.869 1.2816 2.0777 1.4588 2.3649 1.7525 2.8411 

  UAD 1.0726 1.7388 1.2368 2.0051 1.483 2.4041 1.9162 3.1064 3.0335 4.9177 

  ED 1.0769 1.7458 1.2552 2.0348 1.5225 2.4683 1.9874 3.2218 3.1601 5.1229 

 4 USD 1.145 1.8562 1.2544 2.0336 1.3933 2.2588 1.5838 2.5675 1.8972 3.0756 

  UAD 1.1678 1.8932 1.3466 2.183 1.6146 2.6174 2.0865 3.3825 3.3054 5.3584 

  ED 1.1726 1.901 1.3667 2.2156 1.6579 2.6877 2.164 3.5082 3.441 5.5783 

10 1 USD 0.3061 0.4962 0.3331 0.54 0.3663 0.5938 0.4091 0.6632 0.4721 0.7654 

  UAD 0.3128 0.5071 0.3604 0.5843 0.432 0.7004 0.5592 0.9065 0.8934 1.4483 

  ED 0.314 0.509 0.3659 0.5933 0.4439 0.7196 0.5794 0.9393 0.9213 1.4936 

 2 USD 0.7689 1.2464 0.8348 1.3533 0.9145 1.4826 1.0149 1.6454 1.1544 1.8715 

  UAD 0.7864 1.2749 0.9058 1.4685 1.0857 1.7601 1.4061 2.2795 2.2533 3.653 

  ED 0.7899 1.2805 0.9207 1.4925 1.1168 1.8105 1.4577 2.3632 2.3179 3.7576 

 3 USD 0.9697 1.572 1.0523 1.7059 1.152 1.8676 1.2769 2.0701 1.4484 2.348 

  UAD 0.9919 1.608 1.1425 1.8521 1.3694 2.2199 1.7736 2.8753 2.8439 4.6104 

  ED 0.9965 1.6154 1.1614 1.8828 1.4088 2.2839 1.8389 2.9812 2.924 4.7403 

 4 USD 1.0591 1.717 1.1492 1.863 1.2578 2.039 1.3935 2.2591 1.5791 2.5599 

  UAD 1.0835 1.7564 1.2479 2.023 1.4957 2.4247 1.9374 3.1407 3.1071 5.037 

  ED 1.0885 1.7646 1.2687 2.0567 1.5389 2.4948 2.0088 3.2565 3.1941 5.178 
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Table 5: Influence of porosity distribution and PVF on Dimensionless axial stress S11 in FG plate 

  

Distribution 

PVF =0.1 PVF =0.3 PVF =0.5 PVF =0.7 PVF =0.9 

a/h b/a SSL UDL SSL UDL SSL UDL SSL UDL SSL UDL 

2 1 USD 0.2944 0.4772 0.3234 0.5242 0.3609 0.585 0.4139 0.6709 0.5055 0.8195 

  UAD 0.2958 0.4795 0.3291 0.5336 0.3751 0.6081 0.4468 0.7243 0.6001 0.9729 

  ED 0.282 0.4572 0.282 0.4572 0.282 0.4572 0.282 0.4572 0.282 0.4572 

 2 USD 0.5215 0.8455 0.5708 0.9253 0.6331 1.0263 0.7181 1.1641 0.8564 1.3884 

  UAD 0.5237 0.849 0.5804 0.9409 0.6586 1.0677 0.7823 1.2681 1.059 1.7167 

  ED 0.5004 0.8112 0.5004 0.8112 0.5004 0.8112 0.5004 0.8112 0.5004 0.8112 

 3 USD 0.6152 0.9973 0.6726 1.0903 0.7448 1.2074 0.8424 1.3656 0.9986 1.6188 

  UAD 0.6177 1.0015 0.6842 1.1091 0.7757 1.2575 0.9208 1.4928 1.2477 2.0227 

  ED 0.5904 0.9571 0.5904 0.9571 0.5904 0.9571 0.5904 0.9571 0.5904 0.9571 

 4 USD 0.6563 1.0639 0.7173 1.1628 0.7938 1.2869 0.8969 1.454 1.0608 1.7197 

  UAD 0.6591 1.0685 0.7298 1.183 0.8272 1.341 0.9817 1.5915 1.3306 2.1571 

  ED 0.63 1.0213 0.63 1.0213 0.63 1.0213 0.63 1.0213 0.63 1.0213 

5 1 USD 0.2182 0.3537 0.2368 0.3839 0.2593 0.4204 0.2876 0.4663 0.3267 0.5296 

  UAD 0.2189 0.3549 0.2406 0.3901 0.2707 0.4388 0.3195 0.5179 0.4384 0.7108 

  ED 0.21 0.3404 0.21 0.3404 0.21 0.3404 0.21 0.3404 0.21 0.3404 

 2 USD 0.4471 0.7248 0.4845 0.7855 0.5294 0.8582 0.5847 0.9478 0.6577 1.0662 

  UAD 0.4491 0.7281 0.4941 0.801 0.5562 0.9016 0.6564 1.0641 0.8974 1.4548 

  ED 0.4305 0.6979 0.4305 0.6979 0.4305 0.6979 0.4305 0.6979 0.4305 0.6979 

 3 USD 0.541 0.8771 0.5862 0.9504 0.6402 1.0378 0.7065 1.1453 0.7933 1.286 

  UAD 0.5436 0.8813 0.5983 0.97 0.6737 1.0922 0.7951 1.289 1.0858 1.7602 

  ED 0.521 0.8447 0.521 0.8447 0.521 0.8447 0.521 0.8447 0.521 0.8447 

 4 USD 0.5823 0.944 0.6309 1.0227 0.6888 1.1167 0.7599 1.232 0.8527 1.3824 

  UAD 0.5852 0.9486 0.6441 1.0442 0.7253 1.1759 0.8561 1.3878 1.1685 1.8944 

  ED 0.5608 0.9091 0.5608 0.9091 0.5608 0.9091 0.5608 0.9091 0.5608 0.9091 

10 1 USD 0.2083 0.3376 0.2254 0.3654 0.2457 0.3984 0.2703 0.4383 0.3014 0.4887 

  UAD 0.209 0.3388 0.2292 0.3715 0.2571 0.4168 0.3028 0.4909 0.4171 0.6762 

  ED 0.2007 0.3253 0.2007 0.3253 0.2007 0.3253 0.2007 0.3253 0.2007 0.3253 

 2 USD 0.4373 0.7089 0.473 0.7669 0.5153 0.8354 0.5663 0.918 0.6296 1.0207 

  UAD 0.4393 0.7122 0.4828 0.7826 0.5427 0.8797 0.6397 1.037 0.8758 1.4198 

  ED 0.4213 0.683 0.4213 0.683 0.4213 0.683 0.4213 0.683 0.4213 0.683 

 3 USD 0.5312 0.8612 0.5747 0.9316 0.626 1.0148 0.6877 1.1149 0.7643 1.239 

  UAD 0.5339 0.8655 0.587 0.9516 0.6602 1.0703 0.7784 1.2619 1.0641 1.7251 

  ED 0.5119 0.8299 0.5119 0.8299 0.5119 0.8299 0.5119 0.8299 0.5119 0.8299 

 4 USD 0.5725 0.9281 0.6193 1.004 0.6746 1.0936 0.741 1.2013 0.8234 1.3348 

  UAD 0.5754 0.9328 0.6328 1.0259 0.7118 1.154 0.8393 1.3607 1.1468 1.8591 

  ED 0.5517 0.8944 0.5517 0.8944 0.5517 0.8944 0.5517 0.8944 0.5517 0.8944 
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Table 6: Influence of porosity distribution and PVF on dimensionless stress, S13 in FG plate 

  

Distribution 

PVF =0.1 PVF =0.3 PVF =0.5 PVF =0.7 PVF =0.9 

a/h b/a SSL UDL SSL UDL SSL UDL SSL UDL SSL UDL 

2 1 USD 0.2288 0.3709 0.2158 0.3499 0.1963 0.3182 0.1629 0.264 0.0889 0.1442 

  UAD 0.2329 0.3776 0.2305 0.3737 0.2272 0.3683 0.222 0.3599 0.2126 0.3447 

  ED 0.2339 0.3791 0.2339 0.3791 0.2339 0.3791 0.2339 0.3791 0.2339 0.3791 

 2 USD 0.3693 0.5988 0.3486 0.5651 0.3174 0.5145 0.2638 0.4277 0.1445 0.2343 

  UAD 0.3759 0.6093 0.3721 0.6032 0.3667 0.5945 0.3585 0.5812 0.3434 0.5568 

  ED 0.3774 0.6118 0.3774 0.6118 0.3774 0.6118 0.3774 0.6118 0.3774 0.6118 

 3 USD 0.4162 0.6746 0.3928 0.6368 0.3577 0.5799 0.2974 0.4822 0.1631 0.2644 

  UAD 0.4235 0.6865 0.4192 0.6796 0.4132 0.6699 0.404 0.6549 0.387 0.6274 

  ED 0.4252 0.6893 0.4252 0.6893 0.4252 0.6893 0.4252 0.6893 0.4252 0.6893 

 4 USD 0.4354 0.7059 0.411 0.6663 0.3743 0.6069 0.3113 0.5046 0.1707 0.2768 

  UAD 0.4431 0.7183 0.4386 0.7111 0.4324 0.7009 0.4227 0.6852 0.405 0.6565 

  ED 0.4449 0.7212 0.4449 0.7212 0.4449 0.7212 0.4449 0.7212 0.4449 0.7212 

5 1 USD 0.2331 0.3779 0.2202 0.357 0.2008 0.3255 0.1672 0.2711 0.0921 0.1493 

  UAD 0.2371 0.3844 0.2348 0.3806 0.2315 0.3753 0.2264 0.367 0.217 0.3517 

  ED 0.2381 0.386 0.2381 0.386 0.2381 0.386 0.2381 0.386 0.2381 0.386 

 2 USD 0.3734 0.6053 0.3528 0.5719 0.3217 0.5215 0.2681 0.4346 0.1477 0.2394 

  UAD 0.3798 0.6158 0.3761 0.6097 0.3708 0.6011 0.3626 0.5879 0.3476 0.5635 

  ED 0.3813 0.6182 0.3813 0.6182 0.3813 0.6182 0.3813 0.6182 0.3813 0.6182 

 3 USD 0.4201 0.6811 0.397 0.6435 0.362 0.5869 0.3017 0.489 0.1662 0.2694 

  UAD 0.4274 0.6929 0.4232 0.686 0.4172 0.6764 0.4081 0.6615 0.3911 0.6341 

  ED 0.4291 0.6956 0.4291 0.6956 0.4291 0.6956 0.4291 0.6956 0.4291 0.6956 

 4 USD 0.4394 0.7123 0.4152 0.673 0.3786 0.6138 0.3155 0.5115 0.1738 0.2818 

  UAD 0.447 0.7246 0.4426 0.7175 0.4364 0.7074 0.4268 0.6918 0.4091 0.6632 

  ED 0.4488 0.7275 0.4488 0.7275 0.4488 0.7275 0.4488 0.7275 0.4488 0.7275 

10 1 USD 0.2336 0.3787 0.2208 0.3579 0.2014 0.3264 0.1678 0.2721 0.0925 0.15 

  UAD 0.2377 0.3853 0.2353 0.3815 0.232 0.3761 0.2269 0.3679 0.2175 0.3526 

  ED 0.2386 0.3868 0.2386 0.3868 0.2386 0.3868 0.2386 0.3868 0.2386 0.3868 

 2 USD 0.3739 0.6061 0.3533 0.5728 0.3223 0.5225 0.2686 0.4355 0.1481 0.2401 

  UAD 0.3804 0.6166 0.3766 0.6105 0.3713 0.602 0.3632 0.5888 0.3482 0.5644 

  ED 0.3818 0.619 0.3818 0.619 0.3818 0.619 0.3818 0.619 0.3818 0.619 

 3 USD 0.4207 0.682 0.3975 0.6444 0.3626 0.5878 0.3022 0.49 0.1667 0.2702 

  UAD 0.4279 0.6937 0.4237 0.6869 0.4178 0.6773 0.4086 0.6624 0.3917 0.635 

  ED 0.4296 0.6964 0.4296 0.6964 0.4296 0.6964 0.4296 0.6964 0.4296 0.6964 

 4 USD 0.4399 0.7132 0.4157 0.6739 0.3792 0.6147 0.3161 0.5124 0.1743 0.2825 

  UAD 0.4475 0.7255 0.4431 0.7183 0.4369 0.7083 0.4273 0.6927 0.4096 0.6641 

  ED 0.4493 0.7283 0.4493 0.7283 0.4493 0.7283 0.4493 0.7283 0.4493 0.7283 

 

Lastly, Figure 6 illustrates the variation of dimensionless 
transverse shear stress S13 of FG rectangular (b/a=3) in the 

thickness direction for a/h=5 with different values of PVF. From 

Figures 6a & 6b it is noted that the S13 increases as PVF increases.  

The increase of PVF results in increase of S13 for two types of 

uneven porosity distributions for both SSL and UDL. For even 

porosity distribution, S13 varies anti-symmetrically about the mid 
plate for all porosity volume fractions for both SSL and UDL. 

Also, noticed that for even porosity distribution the stress S13 

varies only in the thickness direction and is independent of PVF. 

From Figures 6a-b it is noteworthy to see that the volume fraction 

of porosity PVF of uneven symmetrical and uneven asymmetrical 

distribution has no influence on transverse shear stress in two and 
one position respectively, are S13=0.41 (SSL), 0.64 (UDL) at z/h=-

0.19 & 0.19, and S13=0.48 (SSL), 0.74 (UDL) at z/h=0.04. The 

maximum transverse shear stress for uneven symmetrical and 

uneven asymmetrical distribution occurs at z/h=-0.3 and 0.3 & 

z/h=0.2 respectively and not at the plate center for both SSL and 

UDL. The S13 varies parabolically in the thickness direction of the 
plate for SSL and UDL of even porosity distribution and is 

independent of PVF values. 
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(b) 

 

 
(c) 

Figure. 3. Distributions of dimensionless deflection along the 

thickness of Rectangular (b/a=3) FG plate with (a) Uneven 
symmetrical distribution subjected to SSL &UDL; (b) Uneven 

asymmetric distribution subjected to SSL &UDL; (c) Evenly 
distribution subjected to SSL &UDL for  a/h=5. 
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(b) 

 
(c) 

Figure. 4. Distributions of dimensionless axial stress, S11 along 
the thickness of Rectangular (b/a=3) FG plate with (a) Uneven 

symmetrical distribution subjected to SSL &UDL; (b) Uneven 
asymmetric distribution subjected to SSL &UDL; (c) Evenly 

distribution subjected to SSL &UDL for  a/h=5. 
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(b) 

 
(c) 

Figure. 5. Distributions of dimensionless normal stress, S33 along 

the thickness of Rectangular (b/a=3) FG plate with (a) Uneven 
symmetrical distribution subjected to SSL &UDL; (b) Uneven 

asymmetric distribution subjected to SSL &UDL; (c) Evenly 
distribution subjected to SSL &UDL for  a/h=5. 

Lastly, Figure 6 illustrates the variation of dimensionless 

transverse shear stress S13 of FG rectangular (b/a=3) in the 

thickness direction for a/h=5 with different values of PVF.  

 
(a) 

 
(b) 

 
(c) 

Figure. 6. Distributions of dimensionless Transverse shear stress, 
S13 along the thickness of Rectangular (b/a=3) FG plate with (a) 

Uneven symmetrical distribution subjected to SSL &UDL; (b) 
Uneven asymmetric distribution subjected to SSL &UDL; (c) 

Evenly distribution subjected to SSL &UDL for  a/h=5. 

5. Conclusions 

A thickness stretching higher order displacement model with a 

new shear strain shape function is considered to research the 

single-layered FG plates with porosities subjected to both SSL and 

UDL. This theory fulfills the nullity of the transverse shear 

stresses at the top and bottom of the FG plate and thus eliminates 
the use of a shear correction factor. The equilibrium equations are 

obtained by employing the principle of virtual displacements. The 

even, uneven symmetrical and uneven asymmetrical porosity 

distributions are used to approximately portray the variations of 

the properties of porous FG plates. Several examples are presented 

to validate the present theory. The numerical results estimated by 
the present theory are accurate in estimating the bending response 

of perfect and porous FG plates. The influence of ratios of a/h, b/a, 

and PVF on the flexural response of porous FGPs are studied. The 

numerical results to the center deflections and stresses for several 

values of volume fraction of porosities and distributions are also 

reported and analyzed. From the results of the present theory, it is 
established that the inclusion of porosity, increases the 

dimensionless center deflections and axial stresses while it 

decreases the transverse shear stresses. Also, the even porosity 

distribution leads to somewhat larger deflections and transverse 

shear stresses compared to other two types of uneven distributions, 

while the axial stress is considerably lower values which could be 
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considered as a key factor in the optimal design of the porous 

FGPs.  Also, the control results provided in this paper can be used 

to assess various plate theories and also to compare the results 

provided by other analytical methods and finite element methods.  
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