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1. Introduction 

Nowadays the behavior of the boundary layer on a moving 

sheet is one of the most important types of flow which is seen 
in many industrial and engineering processes. In many cases 

the used fluids are non-Newtonian and researchers interested 

in study non-Newtonian fluids. One of these fluids is 

viscoelastic fluid which has numerous applications in various 

industries 

Flow and heat transfer in a second grade fluid over a stretching 

sheet is examined numerically by Vajravelu and Roper [1]. The 

surface temperature was constant and the effects of frictional 

heat, heat source or sink within the fluid and work due to the 

elastic deformation was determined. It was shown that by 

increasing the elastic parameter and the source rate, the 

temperature increases and with increasing Prandtl number, the 
temperature decreases. 

The boundary layer flow of a second grade non-Newtonian 

fluid with variable heat flux on the wall was investigated by 

Massoudi [2]. The central difference method with non-uniform 

grid was used to investigate the effect of the non-Newtonian 

parameter and the heat flux variation on the thermal boundary 

layer.  

Vajravelu and Rollins [3] examined hydrodynamic flow of a 

second grade fluid over a stretching sheet numerically. They 

concluded that by increasing the permeability and the magnetic 

parameters, the dimensionless velocity decreases and by 

increasing the viscoelastic parameter, the dimensionless 

velocity increases. Moreover, they showed that by increasing 

the viscoelastic parameter and reducing the magnetic and the 

permeability parameters, the transverse velocity increases. 

Flow and heat transfer of an electrically conducting second 
grade fluid over a stretching sheet with suction which subjected 

to the transverse magnetic field was studied by Cortell [4]. The 

Runge-Kutta method was used to solve the problem. It was 

concluded that by increasing of the viscoelastic parameter, 

Prandtl number, the permeability parameter and the wall 

temperature gradient increases, thus more heat transferred 

from sheet and reducing the thickness of the thermal boundary 

layer. However, Eckert number and the magnetic parameter 

have opposite effect on the wall temperature gradient and the 

thermal boundary layer.  

The first study on the fourth grade viscoelastic fluid was 
performed by Sajid et al. [5]. The steady flow of a fourth grade 

flow on a porous sheet was studied. The problem was solved 

by analytical homotopy method. Two years later, the same 

problem was solved by modified homotopy method [6]. It was 

showed that like second and third grade fluid, by increasing the 
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parameters related to the second, third and fourth grade fluid 

that are available in governing equations of the flow, fluid 

velocity decreases. 

Sajid et al. [7] numerically investigated the third grade fluid 

flow on a horizontal sheet with slip condition. The results 

showed that the suction velocity and the slip parameter have an 

important role in control of the boundary layer thickness. 

The Second grade viscoelastic fluid flow over a stretching 

sheet subjected to the transverse magnetic field with heat and 

mass Transfer was investigated by Aiboud and Saouli [8]. The 

viscoelastic and magnetic parameters effects on the velocity 
and the length of the sheet, also the effects of the magnetic 

parameter, source and Prandtl number on the temperature has 

been studied. It was shown that by increasing the viscoelastic 

and magnetic parameters, the velocity and the length 

decreases. Moreover, by increasing the magnetic parameter 

and source, the temperature increases and by increasing of the 

Prandtl number, the temperature decreases.  

Sahoo [9] investigated the effects of slip condition on the 

sheet-driven flow and heat transfer of a non-Newtonian fluid 

past a stretching sheet. The results showed that the momentum 

boundary layer thickness reduces and the thermal boundary 
layer thickness increases with the slip condition. However, 

third grade fluid parameter has an opposite effect on the 

velocity and temperature boundary layers.  

Convection heat and mass transfer in a hydromagnetic flow of 

a second grade fluid in the presence of thermal radiation and 

thermal diffusion was studied by Olajuwon [10]. The results 

show that with increasing the second grade parameter, the rate 

of the heat and mass transfer and fluid flow increases. By 

increasing the heat radiation parameter, mass transfer rate 

decreases while heat transfer rate increases. By increasing 

Schmidt number, the mass transfer rate increases but the heat 

transfer rate reduces.  
Islam et al. [11] investigated the optimal solution for the flow 

of a fourth-grade fluid with partial slip. The modified 

homotopy solution was used. The results showed that with 

increasing of the slip parameter, the velocity decreases and by 

decreasing of the non-Newtonian parameter and axial pressure 

gradient, the velocity reduces. 

Flow and heat transfer of a third grade fluid past an 

exponentially stretching sheet with partial slip boundary 

condition was studied by Sahoo and Poncet [12]. It was 

concluded that the third grade fluid parameter increases the 

momentum boundary layer thickness and decreases the 
thermal boundary layer thickness. The study showed that the 

dimensionless slip parameter has a significant effect on the 

thickness of the boundary layers. 

MHD flow of a third grade fluid in a porous half space with 

plate suction or injection with an analytical approach was 

studied by Aziz and Aziz [13]. The effects of the several 

parameters on the velocity distribution were discussed. 

Ganji et al [14] studied a Non-Newtonian fluid flow in an 

axisymmetric channel with porous wall. The analytic method 

(OHAM) was used to solve the problem. The results compared 

with the numerical results and there was good agreement 

between them. 
Analysis of a thin film of a second grade fluid flow over a 

vertical oscillating belt with was investigated by Islam et al 

[15]. Governing equation for velocity field with suitable 

boundary condition was solved by analytical method (ADM). 

For comparison the OHAM was used. 

The flow of a second grade fluid over a stretching sheet with 

the variable thermal conductivity and viscosity in the presence 

of a heat source / sink was investigated by Akinbobola and 

Okoya [16]. The effect of the heat source/sink, heat radiation 

and viscous dissipation was considered. It was assumed that 

the viscosity was a nonlinear function of the temperature and 

the thermal conductivity coefficients are linear functions of 

temperature. The results showed that by increasing the 

viscoelastic parameters, the horizontal and the vertical 

components of the velocity increase while the temperature 

decreases.  
Mustafa [17] studied a viscoelastic fluid flow and heat transfer 

over a Non-Linearly stretching sheet. The OHAM was used for 

solving governing equations. The results showed that by 

increasing of the nonlinear index (n) and the second grade fluid 

parameter, the horizontal velocity component increases. Also 

by increasing of (n), Prandtl number and the second grade fluid 

parameter, the dimensionless temperature decreases.  

The main purpose of this study is to solve the momentum 

equation of a second order non-Newtonian fluid flow over a 

permeable stretching sheet under the influence of a magnetic 

field by three different methods; Finite Element Method 
(FEM), the Collocation Method (CM) and 4th order Range-

Kutta (RK4). Also, effect of the magnetic, permeability and 

non-Newtonian parameters on the velocity components were 

investigated. 
 

2. The Problem Statement 

Let’s consider the steady laminar boundary layer of a 

conducting second grade non-Newtonian fluid over a 

permeable stretching sheet under the influence of a uniform 

magnetic field, as shown in Fig. 1. The x and y axes are 

considered along and perpendicular to the sheet, respectively. 
Two equal opposite forces in direction of x axis stretch the 

sheet from its center. Due to these forces, the sheet stretches 

with velocity, u1=cx, and the fluid flow. It is assumed that the 

magnetic Reynolds number is small so the induced magnetic 

field can be neglected. 

The governing equations of the described problem are written 

as [4]: 

 

0,V    (1) 

,
DV

p divT j B
Dt

       (2) 

 

 
Figure 1. Problem schematic 

 

where V is the velocity vector,  is the constant density, D/Dt 
is the substantial derivative, T is the stress tensor, p is the 
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pressure, j is the electric current density and B=B0+b is the 

total magnetic field (where B0 is the external magnetic field 

and b is the induced magnetic field). In the present study, the 

magnetic Reynolds number is assumed small therefore the 

induced magnetic field can be neglected. 

For defined problem, the B can be written as [18, 19]: 

0 ,B B j  (3) 

And in absence of the electric field, j is obtained by Ohm's 

law as [18, 19]: 

0 ( B) ,j V   (4) 

Where σ0 is fluid electrical conductivity. 

The stress tensor for second order fluid is defined  as [20]: 
2

1 1 2 2 1
,T pI A A A        (5) 

Where μ is the viscosity and 1, 2 are the material coefficients 
that usually referred to the coefficients of the normal stress and 

A1, A2 are defined as follow: 

1 ( ) ( ) ,TA gradV gradV   (6) 

2 1 1 1( ) ( ) .TD
A A A gradV gradV A

Dt
      (7) 

In this model (Eq. 5) due to the thermodynamics fundamentals, 

the following relationships must be established [21]: 

1 1 20, 0, 0.        (8) 

By applying Eqs. (2-8), the momentum equations in x and y 

direction is obtained as: 
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Using the Prandtl's boundary layer assumptions and the order 

of magnitude technique, Eqs. (9a) and (9b) can be simplified 

as: 
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where ν is kinematic viscosity.  

New parameter p̂ is defined as follow: 

2

1
ˆ 2 .

u
p p

y

 

   
 

 
(11) 

By using Eq. (11), Eqs. (10a) and (10b) can be rewritten as: 
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It can be deduced from Eq. (12b) that p̂ is only the function of 

x, ˆ ˆ ( )p p x .  
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It is known from the Prandtl approximation, the flow outside 

of the boundary layer can be considered potential and thus the 

viscous term can be neglected. Besides, the velocity outside of 

the boundary layer (in the potential region) equals to upstream 

flow velocity. By applying the above conditions on Eq. (12a), 

we have: 
2

0 01
,

B
u

pu
u

x x



 


  




 
 

(13) 

Where u
is flow velocity outside of boundary layer. Outside 

of the boundary layer the fluid is still therefore, we have 

1
0.

p

x


 


 (14) 

According to Eq. (11), outside of the boundary layer the 
viscous forces are zero and we have: 

ˆ .p p  
(15) 

Therefore,  

ˆ
0.

p

x





 (16) 

Thus, the governing equations for problem are simplified as: 

0,
u v

x y
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(18) 

As problem definition, the boundary conditions are considered 

as follow: 

1 0, 0,u u cx v v at y     (19) 

0, 0 .
u

u as y
y


  


 

(20) 

In Eq. (19), c is the sheet stretching rate of and has positive 

value. 

The similarity parameter   and '( )f  are defined as 

1 2

1

y, ( ) ,
c u

f
u

 


 
 
 

   
(21) 

Combining eq. (17) and (21) gives: 

  
1 2

( ), ( ),u cxf c f       
(22) 

Applying similarity parameters (Eq. 21) in the governing 

equations (Eqs. 17-18) and the boundary conditions (Eqs. 19-

20) yields: 
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(23) 

, 1 0,f R f at     (24) 

0 , 0 ,f f as      (25) 
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

  
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Where M, λ1, R are the magnetic parameter, the non-Newtonian 

parameter and the permeability parameter respectively.   

 

3. Solution of the problem 

In this work, three different methods are used for solving the 

problem. The first method is numerical finite element method 

(FEM) and the second one is the analytical collocation method. 

For checking the accuracy of the solutions, the 4th order Rung 

– Kutta numerical method is used.  More details of these 

solutions are described as follow. 

3.1 Finite element method (FEM) 

The geometry of the problem was modeled in FlexPDE. The 

physics of the problem, boundary conditions, governing 

equations, variables and the precision of the solution is coding 

and accordingly the solution is performed. Using the default 
meshing sequence of software, the finite element method is 

applied for solving. 

The basic idea in the finite-element method is to find the 

solution of a complicated problem by replacing it by a simpler 

one. Since the actual problem is replaced by a simpler one in 

finding the solution, we will be able to find only an 

approximate solution rather than the exact solution. The 

existing mathematical tools will not be sufficient to find the 

exact solution (and sometimes, even an approximate solution) 

of most of the practical problems. Thus, in the absence of any 

other convenient method to find even the approximate solution 
of a given problem, we have to prefer the finite element 

method. Moreover, in the finite element method, it will often 

be possible to improve or refine the approximate solution by 

spending more computational effort. In the finite element 

method, the solution region is considered as built up of many 

small, interconnected sub-regions called finite elements [18, 

22]. 

3.2 Collocation Method 

The collocation method is used to solve obtained equations 

[23, 24]. As defined earlier, this problem has some infinite 

boundary conditions (eq.25). By using a suitable 

transformation, the infinite boundary condition can be 
transformed into a finite boundary condition. For this purpose 

some new parameters are defined as:  

( )
, ( ) .

f
z g z

k k

 
   

  (27) 

If k is selected large enough, by using Eq. (27), the Eqs. (23-

25) are transformed as below: 
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0 , 0 1.g g as z     (30) 
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The prim represents the derivative with respect to z and

 0,1z . To obtain an approximate solution for the problem 

(Eq. 28), g(z) a trial polynomial function in terms of z, has been 

defined such that  satisfies boundary conditions (29-30) as 

follow: 

   
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(31) 

By substituting Eq. (31) in Eq. (28), residual function R(z) 

obtained as 

0 1 2 3

4 5 6

2

7 0 1

R( ) 2 8c (70/3)c (392/9)c (1820/27)c

(7664/81)c (10150/81)c (38800/243)c

(144232/729)c +... (1420/729)k c c

z     

   



 

2 2

0 2 1 0(8000/2187)k c c ... (24496/2187) c   

2 2

1 0 1 0(49706020/531441) c (1596146980/4782969) c ...   

 

1 0 1 1 1 2

2 2

1 3 0 1

24 Rc /k (160/3) Rc /k (640/9) Rc /k-

(17920/243) Rc /k+... (32/729)k Mc (1040/6561)k Mc

  



  

 

 
2

7... (11811160064/3486784401)k Mc 0    

 
 

(32) 

By try and error the k value is chosen as 6.0 which is large 

enough to satisfy the infinite boundary conditions. 

To find constants
 0

c to 7c , eight points are selected in the 

interval of 0 1z  . The residual function must approach to 

zero at these points. Then we have: 

       
   

9 9 9 9

9 9

1 2 3 4
0, 0, 0, 0

5 6
, 0 , 0,

R R R R

R R

   

 

 

   7 8

9 9
0, 0.R R   

 

(33) 

Thus, eight equations with eight unknowns are formed. By 

using Maple 18.0 to solve these equations, constant values 

0 1 7, ,...,c c c are obtained for different values of 1, ,M R are 

obtained. By inserting constants 0 1 7, ,...,c c c in Eq. (31), g(z) 

can be calculated. Then by using transformation (27), ( )f 
 

and ( )f  which are approximation solutions of the 

momentum equation, can be achieved. For example, for

11.5, 5, 2R M    the functions g(z) and ( )f  are 

obtained as below: 
2

3 4

5 6

( )= 0.2636203866+z-3.133611297z

+6.543115066z -10.21969661z

+12.64625077z -12.70069256z

g z

 

7 8 9+10.28143387z -6.460892259z 2.931285417z  
10 11-0.8426870665z +0.1138152987z ,  

 

(34) 

 

2 3

4 5

( )= 1.500000000+0.9999999998

0.5507225477 +0.2020970735

0.05547549725 +0.01206459434e

f  

 

 





6 7

5 8 6 9

-0.002129443252 +0.0003029563694

3.345851284 10 +2.667841202 10

 

   

7 10 9 11-1.347894590 10 +3.199469524 10 .   
 

 

(35) 

 

Figure 2.  Comparison among results obtained from three different 

methods 

( 1̀5, 10, 10R M    ) 

4. Results and discussion 

In the present study, the velocity profiles are provided by using 

three different methods. Fig. 2 presents a comparison between 

the results of three methods for a special case. Also, Table 1 is 
prepared to show the results of these different solutions. It can 

be observed that the suggested methods which used to solve 

the problem have adequate accuracy. 

 

Table 1. The results of three different methods for ( )f   

( 1̀5, 10, 10R M    ) 

η FEM CM RK4 

0.0 1.00000 1.00000 1.00000 

0.5 0.76354 0.74045 0.74045 

1.0 0.57093 0.54586 0.54586 

1.5 0.42028 0.39955 0.39955 

2.0 0.31502 0.28917 0.28917 

2.5 0.23208 0.20562 0.20562 

3.0 0.16902 0.14224 0.14224 

3.5 0.11324 0.09425 0.09425 

4.0 0.07088 0.05827 0.05827 

4.5 0.03809 0.03202 0.03202 

5.0 0.01797 0.01403 0.01403 

5.5 0.00434 0.00349 0.00349 

6.0 0.00000 0.00000 0.00000 

The vectors of ( )f  over the permeable stretching sheet are 

presented in Fig. 3. 
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Figure 3. The vectors of  ( )f  over the sheet 

 

Figs. 4-6 show the effect of the physical parameters on the fluid 

behavior. Figs. 4 (a and b) demonstrate the effect of non-

Newtonian parameter on ( )f  and ( )f  . It is shown that for 

a special , by increasing of 
1 , ( )f  and

 
( )f   increases. 

Therefore, according to Eq. (20) the value of the velocity 

components increase. It means that, the surface movement has 

more effect on the fluid if the material coefficient of normal 

stress (non-Newtonian property) increases. 

 

(a) 

 

 (b) 

 

Figure 4. The effect of the non-Newtonian parameter 

( 10, 8R M  ) 

 

 

 

According to Figs. 5 (a and b), by increasing of the 

permeability parameter, ( )f  and ( )f   increase. As 

expected, the more suction velocity results the more influence 
of the permeability on the velocity in fluid region. 

 

 (a) 

 
(b) 

 
Figure 5. The effect of the permeability parameter ( 16, 8M   ) 

 

 (a) 
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(b) 

 
Figure 6. The effect of the magnetic parameter ( 12, 8R   ) 

 

The effect of the magnetic parameter on flow field has been 

shown in Figs. 6 (a and b). It is shown that by increasing of M, 

( )f  and ( )f   decreases. In physical aspect by increasing 

magnetic field the resistance Lorentz force increases, then u 

and v decreases. 

 

4. Conclusion 

In this paper, the second grade non-Newtonian fluid flow over 

a permeable stretching sheet under the influence of the 

magnetic field has been studied. Three different methods were 

applied for solution of the problem; FEM, CM and RK4. The 

FEM was applied by using the FlexPDE software package. In 

the analytical method, by using a special technique, the infinity 

boundary condition transformed to a finite one and the 

governing equation was solved analytically. These solution 

methods were compared for a special case. It seems that the 

technique suggested for analytical method can be used for a 

wide range of nonlinear problems with infinite boundary 

conditions. Furthermore, the effect of the physical parameters 
affecting the flow field was studied. 
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