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1. Introduction 

Many researchers incline to analyze the influence of composite 
plates reinforced with CNTs in recent years. It is due to the fact 
that applying CNTs in structure can improve the mechanical, 
electrical, thermal and other chemical/physical characteristics [1, 
2]. Shen and Zhang [3] studied thermal buckling and post-
buckling behavior of composite plates. The results demonstrate 
that the thermal post-buckling strength of the plate can be 
improved as a result of a functionally graded reinforcement. 
Mechanical buckling of nanocomposite rectangular plate 
reinforced by aligned and straight single-walled carbon nanotubes 
was presented by Jafari Mehrabadi et al. [4]. In this paper, the 
Eshelby–Mori–Tanaka approach and the extended rule of mixture 
were applied in order to consider the effective material properties. 

——— 
*  Corresponding author. Email: bijan_mohammadi@iust.ac.ir  

Liew et al. [5] carried out the post-buckling of composite 
cylindrical panels under axial1 compression using a meshless. 
Nonlinear post-buckling and vibration response of smart two-
phase nanocomposite plates with surface-bonded piezoelectric 
layers under a combined mechanical, thermal and electrical 
loading was analyzed by Rafiee et al. [6]. Jamali et al. [7] 
presented buckling analysis of composite nanocomposite cut out 
plate using domain decomposition method and orthogonal 
polynomials. Buckling analysis of arbitrary two-directional 
functionally graded Euler-Bernoulli nano-beams based on 
nonlocal elasticity theory was discussed by Nejad et al. [8]. 
Nonlocal analysis of free vibration of bi-directional functionally 
graded Euler-Bernoulli nano-beams was introduced by Nejad et 
al. [9].  Agglomeration effects on the dynamic buckling of 
viscoelastic microplates reinforced with CNTs using Bolotin 
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The effect of central opening on the buckling and nonlinear post-

buckling response of carbon nanotubes (CNTs) reinforced micro composite 

plate embedded in elastic medium is considered in this paper. It is assumed 
that the system is surrounded by elastic medium, therefore; the influence of 

Pasternak foundation on buckling and post-buckling behavior are analyzed. 

In order to derive the basic formulations of plate the Mindlin plate theory is 

applied. Furthermore, nonlocal elasticity theory is applied to consider the 

size-dependent effect. Analytical approach and Newton-Raphson iterative 

technique are utilized to calculate the impact of cut out on the buckling and 

nonlinear post-buckling response of micro composite plate. The variation of 

buckling and post-buckling of micro composite cut out plate based on some 

significant parameters such as volume fraction of CNTs, small scale 

parameter, aspect ratio, square cut out and elastic medium were discussed in 

details. According to the results, it is concluded that the aspect ratio and 

length of square cut out have negative effect on buckling and post-buckling 
response of micro composite plate. Furthermore, existence of CNTs in 

system causes improvement in the buckling and post-buckling behavior of 

plate. Meanwhile, considering elastic medium increases the buckling and 

post-buckling load of system. 
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method was analyzed by Kolahchi and Cheraghbak [10]. In this 
research, agglomeration effects are considered based on Mori–
Tanaka approach and dynamic instability region of structure is 
calculated based on navier and bolotin’s methods. Nejad et al. [11] 
presented consistent couple stress theory for free vibration 
analysis of Euler-Bernoulli nano-beams made of arbitrary bi-
directional functionally graded materials. Hadi et al. [12] 
considered buckling analysis of functionally graded Euler-
Bernoulli nano-beams with 3D-varying properties based on 
consistent couple stress theory. Nejad et al. [13] presented bending 
analysis of bi-directional functionally graded Euler-Bernoulli 
nano-beams using integral form of Eringens non-local elasticity 
theory. 

Post buckling of nanoplates have been studied by many researches 
so far. Farajpour et al. [14] investigated post-buckling analysis of 
multi-layered graphene sheets under non-uniform biaxial 
compression. They analyzed the effects of nonlocal parameter, 
buckling mode number, compression ratio and non-uniform 
parameter on the post-buckling behavior of multi-layered 
graphene sheets. The influence of surface energy on the post-
buckling behavior of nanoplates was studied by Wang and Wang 
[15]. They showed that the influence of surface energy on the post-
buckling load of the nanoplates becomes increasingly significant 
when the thickness of the plate decreases. Nonlocal post-buckling 
behavior of both uni-axially and bi-axially loaded graphene sheets 
in a polymer environment according to an orthotropic nanoplate 
model was proposed by Naderi and Saidi [16]. Analysis of shear 
deformable functionally graded (FG) nanobeams in post-buckling 
based on modified couple stress theory was carried out by 
Akbarzadeh Khorshidi et al. [17]. Sahmani et al. [18] considered 
Size-dependent axial buckling and post-buckling characteristics 
of cylindrical nanoshells in different temperatures. Wu et al. [19] 
analyzed thermal buckling and post-buckling of FG graphene 
nanocomposite plates. The post-buckling response of FG 
nanoplates by using the nonlocal elasticity theory of Eringen to 
consider the size effect was studied by Thai et al. [20]. They 
considered the influences of gradient index, nonlocal effect, ratio 
of compressive loads, boundary condition, thickness ratio and 
aspect ratio on the post-buckling behavior of FG nanoplates.  

The famous classical plate theory (CLPT) which is based on 
Kirchhoff’s hypothesis, supposes that straight lines normal to the 
mid-plane will be straight and normal to the mid-plane and will 
not change according to thickness stretching. CLPT cannot be 
applied in thick plates wherein shear deformation effects are more 
important because the transverse shear deformation is ignored in 
this theory. The first order shear deformation theory (FSDT) is an 
improvement over the CLPT because in this theory transverse 
shear deformation is considered. In this theory, the transverse 
shear strain is presumed to be constant across the thickness; 
therefore, shear correction factor to correct the strain energy of 
shear deformation is required [21]. Ghorbanpour et al. [22] 
presented analytical approach for buckling analysis and smart 
control of a single layer graphene sheet using a coupled poly 
vinylidene fluoride (PVDF) nanoplate based on the nonlocal 
Mindlin plate theory. Buckling of FG circular/annular Mindlin 
nanoplates with an internal ring support using nonlocal elasticity 
was analyzed by Bedroud et al. [23]. Liu et al. [24] investigated 
the buckling and post-buckling behaviors of piezoelectric 
nanoplate based on the nonlocal Mindlin plate model and von 
Karman geometric nonlinearity. Soleimani et al. [25] attempted to 
investigate the nonlocal post-buckling analysis of graphene sheets 
with initial imperfection based on FSDT. The effect of various 
parameters such as nonlocal parameter, edge length, boundary 
conditions, compression ratio, and aspect ratio on the post-
buckling was studied. The results of this work represented the high 
accuracy of FSDT for post-buckling behavior of graphene sheets. 

Size dependent free vibration analysis of nanoplates made of 
functionally graded materials based on nonlocal elasticity theory 
with high order theories was presented by Daneshmehr et al. [26]. 

With respect to the literature, there is not any study which is about 
the effect of cut out on the buckling and post-buckling behavior of 
micro composite plate based on Mindlin plate theory and 
surrounded by elastic foundation. CNTs are used to reinforce the 
plate through the thickness and the structure is embedded in 
Pasternak medium. Based on domain decomposition and 
Rayleigh-Ritz methods in conjunction Newton-Raphson iterative 
technique the post-buckling response of the system is obtained. 
The influence of some important parameters such as small scale 
effect, cut out dimension, volume fraction of CNTs, aspect ratio 
of plate and elastic medium on the buckling and post-buckling 
behavior of system are calculated. 

 

2. Modeling of the problem 

A schematic of micro composite rectangular cut out Mindlin 

plate with geometrical characteristics as length a, width b and 
thickness h is depicted in Figure 1. As it is obvious, the cut out 

shape of plate is square with length (d) and the system is 

subjected to uniaxial load (Nx). Moreover, the plate is 

reinforced with CNTs and the type of them through the 

thickness is uniform distribution (UD). In addition, the system 

resting in Pasternak foundation, which is consist of spring 

constant (Kw) and shear layer (Gp) for considering normal and 

shear loads from medium, respectively.  

 

 

Figure 1. A schematic of a micro composite cut out plate with UD - 

CNTs distribution surrounded with elastic foundation subjected to 

uniaxial loading 

 

2.1 Review of CNT-reinforced composite plate 

The micro composite plate in this study is composed of UD-

CNTs and matrix. In order to define mechanical properties of 

this combination, rule of mixture is employed as [27] 
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in which mE , mG  are the properties of matrix and 
11

CNTE , 

22

CNTE  and 
12

CNTG  show Young’s moduli and shear modulus 

related to CNTs, respectively. The CNTs efficiency parameter,

 1,2,3j j  , exposes the scale-dependent material 

properties defined by matching the effective mechanical 

properties of CNTRC. 
CNTV

 
and 

mV  demonstrate volume 

fractions of CNT and matrix, respectively. 

In this section UD-CNTs through thickness is considered 

as Figure 1. 

 * ,                CNT CNTV V UD  (5) 

in which 

* ,CNT
CNT

CNT CNT
CNT CNT

m m

W
V

W W
 

 


   

    
   

 

(6) 

 

CNTw expresses the mass fraction of nanotube, 
CNT  and 

m define the densities of carbon nanotube and matrix, 

respectively. The Poisson’s ratio, 
12 and density,   of micro 

composite plate are 

12 12 ,CNT m

CNT mV V     (7) 

,CNT m

CNT mV V     (8) 

where 
12

CNT  and m demonstrate Poisson’s ratios of CNT 

and matrix, respectively. 

2.2 Energy analysis of nonlocal Mindlin plate theory 

The displacement field based on Mindlin plate theory is 

explained as follows [28-30]: 

     0 1u x , y , z u x , y z x , y ,   (9a) 

     0 2v x , y , z v x , y z x , y ,   (9b) 

0w(x, y,z)= w (x, y) ,  (9c) 

 

Where 
0u , 

0v  and 
0w  are in-plane displacements of the 

mid-plane in x, y and z directions, respectively. 
1  and 

2  are 

the rotations about x and y directions, respectively. 

According to the Eringen's nonlocal elasticity theory [31], 

the constitutive equations of system is related to small scale 

effect and atomic forces. Local and nonlocal stresses, which 

are defined from the nonlocal balance law, can be extracted as 

[32] 

 
ij ij

2 2 nl l

ij 01 C : , e a ,          (10) 

 

where 2  is the Laplace operation in the x-y coordinate 

system; l

ij  and nl

ij  express stress in  local and  nonlocal 

theories, respectively; a defines internal  characteristic length, 

and  e0 is material constant extracted by the experiment. 

Employing Eq. (10), the plane stress constitutive relation 

for a nonlocal FG-CNTRC micro plate is obtained as  
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 , 1,2,...,6ijQ i j   is defined as 
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The strain field extracted by applying strain-displacement 

relations in conjunction with von-Karman as 
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The stress resultants nl

ijN , nl

ijM  and nl

kQ  are expressed as 
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ks demonstrates the transverse shear correction coefficient. 

By using Eq. (11) with Eqs. (16-18), the nonlocal constitutive 

relations can be defined as 
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the stiffness components may be extracted as 

(27) 
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The micro composite plate is exposed to two types of 

forces such as biaxial compression load and elastic medium. 

According to Figure 1, micro plate is subjected to uniaxial 

loading ( b

xN F  and b

yN 0 ); therefore, the work of 

compression load is calculated as 
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(29) 

 

The micro plate is surrounded by elastic medium; 
subsequently, the work of medium is 

 2 ,f w p
A

W K w G w w dA     

 

(30) 

wK  and 
pG represent Winkler’s spring modulus and shear 

foundation parameter, respectively. 

Eventually, total energy of micro composite plate is defined as 

2
1

0 0
2

2
0 0 0 0

0 0

1 2

1

0 5

1 2

0 0 2

0 5

U W   N u wxx
x xA

u v w w
N v w Nyy xy

y y y x x y

M M Mxx yy xy
x y y x

Q w Q wx
x

.

y

.

y



   

 

 
 
 
 

        

 
            



       



        
   

      

   
   

   

  
 

  

 


 

 


 



 

   

2 21

2

22
1

2

2 21

b bN w N

K w G w w .w p

wx y
x y





   
  








 
    




 


  


 
   

  

  

 

 

 

(31) 

 



Journal of Computational Applied Mechanics, Vol. 51, No. 1, June 2020 

 

235 

 

3. Analysis of buckling and post-buckling of micro composite 

cut out plate 
The displacement values based on the simply supported 

rectangular plate can be expressed as [29, 33] 

 0 mn

m x n y
w x , y w sin sin ,

a b

    
    

   
 

(32) 

 1 1 mn

m x n y
x , y cos sin ,

a b
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    
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(33) 

 2 2 mn

m x n y
x , y sin cos ,

a b

 
 

   
    

   
 

(34) 

in which m  and n  show mode numbers and 

 1 2, ,mn mn mnw   are amplitudes. By substituting Eqs. (32-34) 

to Eq. (31), the following matrix form is extracted 

 L NL GK K FK d 0 ,    (35) 

where 
LK , 

NLK and 
GK represent linear, nonlinear and 

geometric stiffness matrix, respectively. F is the post bucking 

load and d is equal to  1 2, ,
T

mn mn mnw   .  

Eq. (35) can be simplified to linear static buckling 

formulation of FG-CNTRC micro plate by ignoring nonlinear 

stiffness matrix such as follow 

 L cr GK F K d 0 ,   (36) 

in which 
crF  represents the critical buckling load calculated 

through Rayleigh-Ritz method. 

The post-buckling response of the micro plate can be 

obtained by using Eq. (35) via Rayleigh-Ritz method and 

Newton-Raphson iterative technique. At the beginning, the 

iterative scheme starts by solving an eigenvalue problem of Eq. 

(36) with neglecting the geometric nonlinear matrix to 

calculate the eigenvalue and corresponding eigenvector such 

as the first guesses for the buckling load and mode shape. 

Afterwards, the post-buckling response of plate can be 

calculated by applying iterative process. 

With respect to Figure 1 it is understood that the rectangular 

plate in this study has central square cut out; therefore, in order 

to approximate the post-buckling behavior of system, firstly by 

using domain decomposition method  [33-38] the FG-CNTRC 

micro plate divide to four sections such as Figure 2. After that 

by using Eq. (31), energy equation of each area is calculated 

and eventually energy equation of total plate is summation of 

four areas. Finally, post-buckling response of total plate is 

extracted by utilizing Eqs. (32-36) through Rayleigh-Ritz 

method and Newton-Raphson iterative technique. 

 
 

Figure 2. Division of plate into four different areas 

 

2. Results and discussion 

Cut out sensitivity on buckling and post-buckling response of 

micro composite plate reinforced with CNTs and rested in 

elastic medium subjected to uniaxial load is presented in this 

dissertation. The variation of buckling and post-buckling of 

micro composite cut out plate based on some significant 

parameters such as volume fraction of CNTs, cut out 

dimension, small scale effect, elastic medium and aspect ratio 

of plate are studied. 

To validate the results of this work with other studies, a 

comparison among the buckling analysis of this study and 

Jafari Mehrabadi et al. [4] is considered in Figure 3. In this 

figure, buckling load in terms of dimension of plate is 
demonstrated. It is apparent that the present results closely 

match with those presented by Jafari Mehrabadi et al. [4]. 

 
Figure 3. Comparison of buckling load versus dimension of plate for 

different volume fraction of CNTs 

 

Figure 4 demonstrates a comparison between the results of 

present article and ref. [39], for a square plate of dimension a, 

with a central square hole of dimension d. there is a good 

agreement for a normalized hole size up to d/a = 2.5. For larger 

size of hole, the difference increases as the size of hole 

increases. This difference may be attributed to the solving 

method, because El-Sawy and Nazmy [39] applied FEM but in 
this study analytical approach used; however, the result of this 

paper has a good agreement with ref. [39] totally. 

Volume fraction of CNTs is one of the important factors of 

composite plate; thus, variation of buckling load ratio in terms 

of nonlocal parameter under different volume fraction is 

showed in Figure 5 whereas the effect of volume fraction on 

post-buckling versus deflection amplitude according to 

different volume fractions is examined in Figure 6. 

Although by increasing volume fraction the critical buckling 

load increases but the buckling load ratio decreases, because 

the variation of local buckling load is more than nonlocal 

buckling load. In addition, according to Figure 6 it is concluded 
that increase volume fraction causes more post- buckling load, 

because volume fraction is a symbol of CNTs volume in 

composite structure; therefore, increase volume fraction 

improves mechanical properties of system. 
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Figure 4. Comparison of buckling coefficient versus normalized square 

hole dimension 

 

 

 
Figure 5. Variation of buckling load ratio in terms of dimensionless 

nonlocal parameter for different volume fraction 

 

 

The effect of the elastic medium on buckling response is 

expressed in this section. Figures 7 and 8 consider the 

influence of the elastic medium on buckling load based on 

different magnitude of dimensionless Winkler modulus 

parameter (
WK ) and shear modulus parameter (

PG ). It is 

apparent that Winkler modulus parameter and shear 

modulus parameter, improve the buckling behavior of micro 

plate, because considering elastic medium improves the 

stiffness of system and finally increases buckling load and 

decreases buckling load ratio. 

 
Figure 6. Variation of dimensionless post-buckling load in terms of 

dimensionless deflection amplitude for different volume fraction 

 
Figure 7. Effect of the Winkler modulus parameter on the buckling load 

ratio versus dimensionless nonlocal parameter 

 

 
Figure 8. Buckling load ratio versus dimensionless nonlocal parameter 

for different shear modulus parameter 

 

Moreover, Figures 9 and 10 indicates that variations of the 

post-buckling load and deflection amplitude are a function of 

the elastic foundation. It is obvious that considering elastic 

foundation has positive impact on the post-buckling response 

of structure. In addition, by analyzing the trend of Figures 9 

and 10, the influence of Pasternak foundation is more 

considerable than Winkler foundation. 

 

 
Figure 9. Effect of the Winkler modulus parameter on the dimensionless 

post-buckling versus dimensionless deflection amplitude 
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Figure 10. Dimensionless post-buckling load versus dimensionless 

deflection amplitude for different shear modulus parameter 

 

Figure 11 demonstrates the influence of magnitude of 

square cut out on the buckling load in terms of small scale 

effect. It is concluded that opening in plate causes defect in 

system and reduces the buckling behavior. Moreover, the 

influence of length of cut out on buckling load ratio is more 

remarkable for high dimensionless nonlocal parameter. In 

addition, the variation of dimensionless post-buckling load 

versus dimensionless deflection in terms of length of square 

hole is plotted in Figure 12. The figure depicts that by 

increasing length of square, stiffness of plate reduces; 
therefore, the post-buckling load decreases subsequently. 

 
Figure 11. Buckling load ratio versus dimensionless nonlocal parameter 

for different length of square cut out 

 

 
Figure 12. Dimensionless post-buckling load versus dimensionless 

amplitude of deflection for different length of square cut out 

 

3. Conclusion remarks 

In this essay, the effect of central square opening on the 

buckling and post-buckling response of micro composite plate 

based on nonlocal elasticity theory and surrounded by elastic 

medium is considered. By use of Mindlin plate theory and 

energy method, total energy of system was obtained. Buckling 

and nonlinear post-buckling of system was analyzed by use of 

analytical method. The effect of the volume fraction of CNTs, 

small scale parameter, aspect ratio, square cut out and elastic 

medium on the buckling and post-buckling behavior of the 

system were discussed in details. With respect to results, it is 

concluded that the aspect ratio and length of square cut out 

have negative effect on buckling and post-buckling response 
of micro composite plate. Furthermore, existence of CNTs in 

system causes improvement in the buckling and post-buckling 

behavior of plate. Meanwhile, considering elastic medium 

increases the buckling and post-buckling load of system. 
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