Investigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations

Mohammad Hosein Fakhar*, Ahmad Fakhar, Hamidreza Tabatabaei and Hossein Nouri-Bidgoli

Department of Mechanical Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran

ARTICLE INFO

Article history:
Received: 1 April 2020
Accepted: 14 May 2020

Keywords:
Instable fluid velocity
Nanofluid
Pipe
Navier-Stokes
Hamilton's principle.

ABSTRACT

In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, Al2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in the radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displacements of the structure are described by first order shear deformation theory (FSDT). The final equations are calculated by Hamilton’s principle. Differential quadrature method (DQM) is utilized for presenting the instable fluid velocity. The influences of length to radius ratio of pipe, volume fraction, diameter and type of nanoparticles are shown on the instable fluid velocity. The outcomes are compared with other published articles where shows good accuracy. Numerical results indicate that with enhancing the volume fraction of nanoparticles, the instable fluid velocity is increased. In addition, the instable fluid velocity of SiO2-water is higher than other types of nanoparticles assumed in this work.

1. Introduction

Instability is a destructive factor of the structures which can induce financial and psychological damages. One of the factors which create the instability is internal fluid flow in the pipelines. When the nanofluid velocity reaches to a special value, the structure will be instable which is very dangerous. However, investigation of instable fluid velocity in the pipes conveying fluid flow is very important for the optimum design of them. For this purpose, we focused on this subject in this article.

* Corresponding author, Ph.D.,
E-mail: a.fakhar@iaukashan.ac.ir
moving load. Variable density fluid was simulated by Bai et al. [17] using novel mathematical model that satisfies the continuity of the fluid flow. Dynamic response of curved pipe with internal fluid and arbitrary un-deformed configuration was presented by Hu and Xhu [18].

In the field of mathematical modeling of structure, Daneshmehr et al. [19] used higher order theory for free vibration of functionally graded (FG) nanoplate. Zamani Nejad et al. [20-22] studied vibration and bending of FG nano-beams based on Euler-Bernoulli model. A review of FG thick cylindrical and conical shells was presented by Zamani Nejad et al. [23]. Hadi et al. [24, 25] and Zamani Nejad et al. [26] investigated vibration response of FG nanobeams utilizing different theories. Zarezadeh et al. [27] and Barati et al. [28] studied vibration of FG nano-rod and nanobeam subjected to magnetic field. Dehsahri et al. [29] investigated vibration response of FG nanoplate utilizing differential quadrature method. Static torsion analysis of FG microtube was presented by Barati et al. [30]. Noroozi et al. [31] studied torsional vibration analysis of bi-directional FG nano-cone.

In this paper, the instable fluid velocity in the pipes with internal fluid is presented for the first time. The nanofluid is mixed by SiO₂, Al₂O₃, CuO and TiO₂ nanoparticles in which the mixture rule is utilized for calculating the equivalent properties. Based on FSDT and Hamilton’s principle, the final equations are obtained. DQDM is used for solution for calculating the instable fluid velocity. The influences of length to radius ratio of pipe, volume fraction, diameter and type of nanoparticles are shown on the instable fluid velocity.

2. Mathematical modelling

Fig. 1 shows a pipe with radius R, length L and thickness h, which is conveying nanofluid. The pipe is located at both ends at supports. Our purpose in this work is mathematical modeling of structure and calculating the instable fluid velocity.

![Figure 1. A pipe with internal nanofluid](image)

Utilizing FSDT, the displacements of the pipe are [32]

\[
\begin{align*}
\delta u_x(x, \theta, t) &= u_x(x, \theta, t) + z \psi_x(x, \theta, t), \\
\delta u_y(x, \theta, t) &= u_y(x, \theta, t) + z \psi_y(x, \theta, t), \\
\delta w(x, \theta, t) &= w(x, \theta, t),
\end{align*}
\]

where \((u(x, \theta, t), v(x, \theta, t), w(x, \theta, t))\) are the general displacements in \((x, \theta, z)\) directions, \((u(x, \theta, t), v(x, \theta, t), w(x, \theta, t))\) show the mid-plane displacements in \((x, \theta, z)\) directions, respectively; \(\psi_x\) and \(\psi_y\) present the rotations about \(x\)- and \(\theta\)- directions, respectively. The strain relations for the present system are

\[
\begin{align*}
\varepsilon_{xx} &= \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + \frac{z}{2} \frac{\partial^2 w}{\partial x^2}, \\
\varepsilon_{yy} &= \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 + \frac{z}{2} \frac{\partial^2 w}{\partial y^2}, \\
\gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{z}{2} \frac{\partial^2 w}{\partial x \partial y}, \\
\gamma_{yz} &= \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} + \frac{z}{2} \frac{\partial^2 w}{\partial x \partial z}, \\
\gamma_{xz} &= \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} + \frac{z}{2} \frac{\partial^2 w}{\partial y \partial z}.
\end{align*}
\]

Utilizing Hook’s law, the stress relations are

\[
\begin{align*}
\sigma_{xx} &= C_{11} \varepsilon_{xx} + C_{12} \varepsilon_{yy} + C_{13} \varepsilon_{yy}, \\
\sigma_{yy} &= C_{12} \varepsilon_{xx} + C_{22} \varepsilon_{yy} + C_{23} \varepsilon_{yy}, \\
\sigma_{zz} &= C_{13} \varepsilon_{xx} + C_{23} \varepsilon_{yy} + C_{33} \varepsilon_{yy}, \\
\tau_{xy} &= C_{44} \gamma_{xy}, \\
\tau_{yz} &= C_{55} \gamma_{yz}, \\
\tau_{xz} &= C_{66} \gamma_{xz}.
\end{align*}
\]

where \(C_{ij}\) are elastic constants. The potential energy for the pipe conveying nanofluid is

\[
U_p = \frac{1}{2} \int_0^L \int_0^R \left[\int_0^1 \left(N_u \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + M_{\psi_x} \frac{\partial^2 w}{\partial x^2} \right) + N_v \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 + M_{\psi_y} \frac{\partial^2 w}{\partial y^2} \right] + N_w \frac{\partial w}{\partial z} + \frac{1}{2} \left(\frac{\partial w}{\partial z} \right)^2 + M_{\psi_z} \frac{\partial^2 w}{\partial z^2} \right] dA.
\]

Substituting Eqs. (4)-(8) into Eq. (10) yields

\[
\begin{align*}
U &= \frac{1}{2} \int_0^L \int_0^R \left[\int_0^1 \left(N_u \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + M_{\psi_x} \frac{\partial^2 w}{\partial x^2} \right) \right] + N_v \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 + M_{\psi_y} \frac{\partial^2 w}{\partial y^2} \right] \right] + N_w \frac{\partial w}{\partial z} + \frac{1}{2} \left(\frac{\partial w}{\partial z} \right)^2 + M_{\psi_z} \frac{\partial^2 w}{\partial z^2} \right] dA.
\end{align*}
\]

where the stress resultant-displacement relations are

\[
\begin{align*}
N_u &= \int_0^h \sigma_{xx} dz, \\
N_v &= \int_0^h \sigma_{yy} dz, \\
N_w &= \int_0^h \sigma_{zz} dz, \\
Q_x &= k \int_0^h \psi_x dz, \\
Q_y &= k \int_0^h \psi_y dz, \\
M_{\psi_x} &= \int_0^h \psi_x dz, \\
M_{\psi_y} &= \int_0^h \psi_y dz, \\
M_{\psi_z} &= \int_0^h \psi_z dz.
\end{align*}
\]

In which \(k\) is shear correction factor. The kinetic energy of the structure is

\[
K = \frac{1}{2} \int_0^L \left[I_1 \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial x} \right)^2 + I_2 \left(\frac{\partial v}{\partial y} + \frac{\partial w}{\partial y} \right)^2 \right] dA + I_2 \left(\frac{\partial \psi_x}{\partial x} + \frac{\partial \psi_y}{\partial y} \right)^2 dA + I_3 \left(\frac{\partial \psi_y}{\partial y} + \frac{\partial \psi_z}{\partial z} \right)^2 dA.
\]

here the moments of inertias are
\[
\left\{ \begin{array}{c}
I_0 \\
I_1
\end{array} \right\}^2 = \int_{-\infty}^{\infty} \left[\begin{array}{c}
\rho \\
\rho z \\
\rho z^2
\end{array} \right] dz.
\]
(16)

The governing equation of the fluid can be presented by the well-known Navier-Stokes equation as follows [33]
\[
\rho \frac{dV}{dt} = -\nabla P + \mu \nabla^2 V + F_{ext},
\]
(17)
where \(V = (v_1, v_2, v_3)\) is the flow velocity vector; \(\mu\) and \(\rho\) are respectively the pressure, nanofluid influenceive viscosity and nanofluid influenceive density; \(F_{ext}\) denotes the body forces. In addition, the total derivative operator with respect to \(t\) can be given as
\[
\frac{d}{dt} = \frac{\partial}{\partial t} + v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y} + v_3 \frac{\partial}{\partial z}.
\]
(18)

At the contact between the fluid and the pipe, we have the following boundary condition
\[
v_1 = \frac{dw}{dt}.
\]
(19)

Combining Eqs. (17)-(19), the radial force induced by the nanofluid flow can be obtained as
\[
F_{net} = \rho I \frac{\partial^2 w}{\partial t^2} = -\rho \left(\frac{\partial^2 w}{\partial t^2} + 2v_1 \frac{\partial^2 w}{\partial x \partial t} + v_2 \frac{\partial^2 w}{\partial y^2} \right)
+ \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + v_1 \frac{\partial^2 w}{\partial x \partial y} + v_2 \frac{\partial^2 w}{\partial y \partial x} \right).
\]
(20)

However, the external work of the nanofluid flow can be written as
\[
W = \int (F_{net}) w dA = \int \left[-\rho \left(\frac{\partial^2 w}{\partial t^2} + 2v_1 \frac{\partial^2 w}{\partial x \partial t} + v_2 \frac{\partial^2 w}{\partial y^2} \right)
+ \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + v_1 \frac{\partial^2 w}{\partial x \partial y} + v_2 \frac{\partial^2 w}{\partial y \partial x} \right) \right] dA.
\]
(21)

The influenceive density and viscosity of the nanofluid based on mixture rule are [34]
\[
\rho_f = (1-\phi) \rho_f + \phi \rho_p,
\]
(22)
\[
\mu = (1 + 39.11\phi + 533.9\phi^2) \mu_f,
\]
(23)
where \(\phi\) is the nanoparticles volume fraction; \(\rho_p\) is the density of nanoparticles; \(\mu_f\) is the viscosity of water which can be given as
\[
\mu_f = 2.414 \times 10^5 \times 10^{-17} T^{1/3},
\]
where \(T\) is in Kelvin and is room temperature. Applying Hamilton’s principal rule we have
\[
\int_0^{T} \left(\delta U - \delta K - \delta W \right) dt = 0,
\]
(25)

the motion equations can be derived as
\[
\delta u: \quad \frac{\partial N_u}{\partial x} + \frac{\partial M_{ux}}{\partial \theta} + R_u = I_u \frac{\partial^2 u}{\partial t^2} + I \frac{\partial^2 \psi_u}{\partial t^2},
\]
(26)
\[
\delta v: \quad \frac{\partial N_v}{\partial x} + \frac{\partial M_{vx}}{\partial \theta} + Q_v = I_u \frac{\partial^2 v}{\partial t^2} + I \frac{\partial^2 \psi_v}{\partial t^2},
\]
(27)
\[
\delta w: \quad \frac{\partial N_w}{\partial x} + \frac{\partial M_{wx}}{\partial \theta} = I_u \frac{\partial^2 w}{\partial t^2} + I \frac{\partial^2 \psi_w}{\partial t^2},
\]
(28)
\[
\delta \psi_u: \quad \frac{\partial M_{ux}^2}{\partial x} + \frac{\partial M_{xx}^2}{\partial \theta} = I_u \frac{\partial^2 \psi_u}{\partial t^2} + I \frac{\partial^2 \psi_x}{\partial t^2},
\]
(29)
\[
\delta \psi_v: \quad \frac{\partial M_{vx}^2}{\partial x} + \frac{\partial M_{xx}^2}{\partial \theta} = I_u \frac{\partial^2 \psi_v}{\partial t^2} + I \frac{\partial^2 \psi_x}{\partial t^2},
\]
\[
\delta \psi_w: \quad \frac{\partial M_{wx}^2}{\partial x} + \frac{\partial M_{xx}^2}{\partial \theta} = I_u \frac{\partial^2 \psi_w}{\partial t^2} + I \frac{\partial^2 \psi_x}{\partial t^2},
\]
\[
\delta \psi_x: \quad \frac{\partial M_{xx}^2}{\partial x} + \frac{\partial M_{xx}^2}{\partial \theta} = I_u \frac{\partial^2 \psi_x}{\partial t^2} + I \frac{\partial^2 \psi_x}{\partial t^2},
\]
(30)

3. Solution method

Utilizing DQM, the differential motion equations can be transformed into algebraic ones by the below relations [35]
\[
\frac{d^2 F(x,\theta)}{dx^2} = \sum_{i=1}^{N_x} A^{(i)} F(x_i,\theta_i),
\]
(31)
\[
\frac{d^2 F(x,\theta)}{d\theta^2} = \sum_{i=1}^{N_x} B^{(i)} F(x_i,\theta_i),
\]
(32)
\[
\frac{d^2 F(x,\theta)}{dx^2 d\theta} = \sum_{i=1}^{N_x} C^{(i)} F(x_i,\theta_i),
\]
(33)
where \(A^{(i)}\) and \(B^{(i)}\) are the weighting coefficients which are
\[
A^{(i)} = \left(\frac{x_i - x_j}{M(x_i)} \right), \quad for \quad \begin{cases} i \neq j, & i, j = 1, 2, ..., N_x \end{cases},
\]
(34)
\[
P(\theta) = \prod_{i=1}^{N_x} (\theta - \theta_i), \quad for \quad \begin{cases} i \neq j, & i, j = 1, 2, ..., N_x \end{cases},
\]
(35)
\[
B^{(i)} = \left[P(\theta_i), P(\theta_i) \right],
\]
(36)
\[
M(x) = \prod_{i=1}^{N_x} (x_i - x_j),
\]
(37)
\[
\theta = \frac{2\pi}{N_x}, \quad i = 1, ..., N_x
\]
(38)
\[
\theta = \frac{2\pi}{N_x}, \quad i = 1, ..., N_x
\]
(39)

In addition, \(N_x\) and \(N_\theta\) are the grid points number in \(x\) and \(\theta\) directions respectively, which can be defined by Chebyshev polynomials as
\[
x_i = \frac{L}{2} \left[1 - \cos \left(\frac{i-1}{N_x-1} \pi \right) \right], \quad i = 1, ..., N_x
\]
(40)
\[
\theta_i = \frac{2\pi}{N_\theta} \left[1 - \cos \left(\frac{i-1}{N_\theta-1} \pi \right) \right], \quad i = 1, ..., N_\theta
\]

However, applying DQM, we have the following coupled motion equations
\[
[M] \frac{d^2 \vec{Y}}{dt^2} + [C] \frac{d \vec{Y}}{dt} + [K] \frac{\vec{Y}}{Y} = \begin{cases} 0 & \text{for } i, j = 1, 2, ..., N_x \end{cases},
\]
(40)

where \([K]\) and \([K_M]\) are the linear and nonlinear stiffness matrixes, respectively; \([C]\) is the damp matrix; \([M]\) is the mass matrix; \(\{Y\}\) is the displacement vector subscript \(b\) and \(d\) represent boundary and domain points. Finally, using eigenvalue problem, the frequency and instable fluid velocity of the structure can be derived.

4. Numerical result and dissection

A pipe with thickness to radius ratio and length to radius ratio of the pipe are \(h/R=0.02\) and \(L/R=4\), respectively is
assumed made from Poly methyl methacrylate (PMMA) with Poisson’s ratios and Young moduli of $\nu = 0.34$ and $E = 2.5\text{GPa}$, respectively. The inside fluid is water mixed by SiO$_2$, Al$_2$O$_3$, CuO and TiO$_2$ nanoparticles with the thermo-physical properties listed in Table 1 [36-40].

Table 1: Thermo-physical properties of water and nanoparticles [36-40]

<table>
<thead>
<tr>
<th>Material</th>
<th>k (W/mK)</th>
<th>c_p (J/kg K)</th>
<th>ρ (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.61</td>
<td>4179</td>
<td>997.1</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>25</td>
<td>765</td>
<td>3970</td>
</tr>
<tr>
<td>CuO</td>
<td>69</td>
<td>535.6</td>
<td>6350</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>36</td>
<td>765</td>
<td>3970</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>13.7</td>
<td>683</td>
<td>4170</td>
</tr>
</tbody>
</table>

For validation of our results, the nanofluid is neglected and frequency of classical cylindrical shells is obtained based on DQM. The pipe parameters of the classical theory assumed as $h/R = 0.01$, $L/R = 20$, $E = 210\text{GPa}$, $\nu = 0.3$, $\rho = 7850$ Kg/m3. A shown in Table 2, the obtained outcomes are in a good agreement to those expressed in Qu et al. [40] and Zeinali Heris et al. [40], showing validation of this article.

Table 2: Validation of present work

<table>
<thead>
<tr>
<th>n</th>
<th>Qu et al. [40]</th>
<th>Zeinali Heris et al. [40]</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.016103</td>
<td>0.016101</td>
<td>0.016234</td>
</tr>
<tr>
<td>2</td>
<td>0.009382</td>
<td>0.011225</td>
<td>0.011714</td>
</tr>
<tr>
<td>3</td>
<td>0.022105</td>
<td>0.022310</td>
<td>0.024903</td>
</tr>
<tr>
<td>4</td>
<td>0.042095</td>
<td>0.042139</td>
<td>0.044935</td>
</tr>
<tr>
<td>5</td>
<td>0.068008</td>
<td>0.068024</td>
<td>0.070857</td>
</tr>
<tr>
<td>6</td>
<td>0.099730</td>
<td>0.099738</td>
<td>0.102591</td>
</tr>
<tr>
<td>7</td>
<td>0.137239</td>
<td>0.137240</td>
<td>0.140108</td>
</tr>
<tr>
<td>8</td>
<td>0.180528</td>
<td>0.180530</td>
<td>0.183402</td>
</tr>
<tr>
<td>9</td>
<td>0.229594</td>
<td>0.229596</td>
<td>0.232472</td>
</tr>
<tr>
<td>10</td>
<td>0.284436</td>
<td>0.284439</td>
<td>0.287318</td>
</tr>
</tbody>
</table>

Figs. 2 and 3 show the volume fraction of nanoparticles in fluid on the frequency ($\text{Im}(\Omega)$) and damping ($\text{Re}(\Omega)$) of structure ($\Omega = \sqrt{C_{ij}/\rho_0 \omega}$) versus fluid velocity, respectively. It can be found that the frequency reduces with enhancing fluid velocity, while the damping is zero. These show that the structure is stable. When the frequency reaches to zero, instable fluid velocity has appendix. In this state, the damping has two answers of positive and negative which makes the structure unstable. Furthermore, enhancing nanoparticles volume fraction leads to increase in the instable fluid velocity.

The influence of diameter of nanoparticles is indicated in Fig. 4 and 5 on the non-dimensional frequency and damping of the pipe. It is found that with enhancing the diameter of nanoparticles, the frequency and instable fluid velocity are decreased. It is because with enhancing the diameter of nanoparticles, the thermo-physical properties of nanoparticles decrease.
In realizing the influence of nanoparticles type, Figs. 6 and 7 show how non-dimensional frequency and damping of the pipe changes versus the fluid velocity. It is found that from Fig. 4, the frequency and instable fluid velocity for the SiO$_2$ nanoparticles are maximum in comparison with other types of nanoparticles. It is due to good thermo-physical properties of SiO$_2$ nanoparticles with respect to Al$_2$O$_3$, CuO and TiO$_2$ nanoparticles.

Figures 8 and 9 illustrate the influence of length to radius ratio on the structure frequency and damping versus fluid velocity, respectively. The results indicate that with enhancing length to radius ratio, the frequency and instable fluid velocity are decreased. It is since with enhancing length to radius ratio, the stiffness of structure is reduced.

5. Conclusion
Instable fluid velocity in pipe conveying nanofluid was investigated in this study based on mathematical model. The nanofluid was mixed by SiO$_2$, Al$_2$O$_3$, CuO and TiO$_2$ nanoparticles based on mixture rule. The pipe was modelled by FSDT and the final equations were derived by Hamilton's principle. DQM was applied for calculating the instable fluid velocity. The effects of length to radius ratio of pipe, volume fraction, diameter and type of nanoparticles were shown on the instable fluid velocity. Results show that enhancing volume fraction of nanoparticles in fluid leads to increase in the instable fluid velocity. It can be seen that with enhancing the diameter of nanoparticles, the frequency and instable fluid velocity were decreased. In addition, the frequency and instable fluid velocity for the SiO$_2$ nanoparticles were maximum with respect to other type of nanoparticles. Furthermore, with enhancing length to radius ratio, the frequency and instable fluid velocity were decreased.

Sheikhdad G.A., Teimouri H., Mahmoodi M., 2013, Numerical study of mixed convection of nanofluid in a...

