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1. Introduction  

The viscoelastic materials are a class of advanced materials that 

have time-dependent properties. These materials can apply 

damping behavior in the structures. The damping is a significant 
dynamic parameter for investigating the vibrations, sound control, 

dynamic stability, positioning accuracy, fatigue endurance, and 

impact resistance. Moreover, many applications such as large 

space structures, engine blades, and high-speed machinery require 

the materials with light-weight and high dynamic performance 

which can be satisfied by viscoelastic materials. As a special case, 
an aircraft wheel and brake assembly have an axle with a circular 

flange which has contact with an annular viscoelastic plate [1]. In 

the medical science, the circular and annular viscoelastic plates are 

used as a contact lens-based in the bioactive agent delivery system 

which are systems for transferring of ophthalmic drugs and other 

bioactive agents to the eye [2]. It is shown that the response of 
polymer structures with the assumption of elastic behavior is 

inconsistent with reality. However, the viscoelastic theory is more 

suitable for describing their behavior [3]. Therefore, surveying the 

behavior of these structures is important in all aspects. In this 

paper, the sensitivity of the vibration response to input mechanical 

load and geometrical data is investigated.1 Robertson [4] 
investigated the forced axisymmetric motion of circular 

viscoelastic plates by applying the integer factorization algorithm 

and considering the rotary inertia and shear effects for a three-

element viscoelastic model. Wang and Tsai [5] combined the 
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Finite Elements (FE) and Newmark methods for quasi-static and 

dynamic analysis of viscoelastic Mindlin plates. They used the 
Maxwell and Standard Linear Solid (SLS) models for viscoelastic 

behavior. Chen [6] solved the quasi-static and dynamic responses 

of a linear viscoelastic beam using the FE method. Abdoun et al. 

[7] investigated the forced harmonic response of viscoelastic 

structures by an asymptotic numerical method. The FE method 

was used for the space discretization and the linear viscoelastic 
properties described by a complex relaxation matrix, which is a 

function of the load frequency. Assie et al. [8] presented a 

computational FE model for the impact response determination of 

viscoelastic frictionless bodies. The constitutive equations were 

expressed in the integral form. Khalfi and Ross [9] studied the 

transient response of a plate with partial constrained viscoelastic 
layer damping. They used the Prony series for viscoelastic core 

properties and Classical plate theory (CPT) assumption for 

formulation. They solved these equations using the fast Fourier 

transform method. Amoushahi and Azari [10] used a linear finite 

strip plate element based on the First-order Shear Deformation 

Theory (FSDT) for analyzing the viscoelastic plates. The 
mechanical properties were considered as a linear Prony series. 

Liang et al. [11] used the Differential Quadrature (DQ) and 

Laplace transform methods for three-dimensional transient 

analysis of Functionally Graded (FG) annular plates rests on a two-

parameter viscoelastic foundation. The results were compared 

with the FE method. Gupta and Kumar [12] investigated the free 
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In this paper, the transient response of a viscoelastic annular plate which has time-dependent 
properties is determined mathematically under dynamic transverse load. The axisymmetric 
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vibrations of a non-homogeneous viscoelastic circular plate with 

linearly varying thickness subjected to a linear temperature 

distribution based on the CPT and Kelvin constitutive model using 

Rayleigh-Ritz’s method. Pawlus [13] presented the dynamic and 

buckling behavior of three-layered, annular plates with a liner 

viscoelastic core. The core was made ofpolyurethane foam which 
was modeled with the SLS constitutive model by considering CPT 

assumption. He used the orthogonality property for the 

circumferential variable, the finite difference for discretization in 

terms of the radial variable and Rung-Kutta’s method to solve the 

obtained initial value problem. Furthermore, the problem was 

analyzed with the ABAQUS FE package. Panigrahi and Das [14] 
investigated the impact behavior of a sandwich plate with a filled 

polymeric foam core using the FE method. The impact load was 

due to a projectile penetration on the plate. Kumar and Panda [15] 

investigated the damping characteristics of a sandwich cylinder 

with a multilayered viscoelastic core by applying the FE 

simulation. Behera and Kumari [16] presented an exact solution 
for a composite rectangular plate using Zig-zag and third-order 

shear deformation theory. They used the Levy series and 

Kantorovich method for determining the natural frequencies.  Arji 

et al. [17] [18] [19] [20] presented extensive studies on the 

nonlinear dynamic and vibration behaviors of viscoelastic nano-

plates according to the CPT formulation. They defined the 
viscoelastic properties for Young’s modulus with the Leaderman 

integral. The nano-plate had a rectangular shape with simply 

supported boundary conditions.  Arji et al. [17] presented an 

analytical solution for nonlinear free and forced vibrations of 

viscoelastic nano-plates according to the couple stress theory. The 

solution was based on the double series method.  Arji et al. [18] 
analyzed the primary and secondary resonances of viscoelastic 

nano-plates using the strain gradienttheory. The governing 

equations were solved using the harmonic balance and Runge-

Kutta methods.  Arji and Fakhrabadi [19] studied the nonlinear 

vibrations of viscoelastic nano-plates using modified couple stress 

theory. They used the Galerkin and Runge-Kutta methods for the 
solution. Arji et al. [20] investigated the nonlinear dynamic 

response of a bilayer rectangular biosensor with the strain gradient 

theory. The effects of viscoelasticity and flexoelectricity were 

considered as well.  They used the multiple scale method for 

solution. Arji et al. [21] studied the nonlinear dynamics of a 

viscoelastic nano-plate using the modified couple stress theory. 
The coupled governing equations were solved with the Galerkin 

and Runge-Kutta methods. 

To investigate the dynamic response of a structure 

theoretically, it is necessary to simulate it with a constitutive 
equation and then solve it. In most articles, the authors use the 

numerical method to solve the governing equation and finding the 
response of viscoelastic circular/annular plates. Those which use 

the analytical solution, usually apply the CPT for formulation. In 
this paper, we consider the following issues: 

 The dynamic response of a viscoelastic annular plate which 
obeys the SLS model under dynamic distributed transverse 

load is presented based on the FSDT by considering transverse 
normal strain effect. 

  The governing equations, which are a system of partial 
differential equations with variable coefficients, are solved 

analytically by using the perturbation technique. 
 The FSDT results are compared with the FE and which has 

obtained from the CPT.  
 A sensitivity analysis is performed and the effect of different 

parameters on the response is studied.  

2. Governing equations  

Consider an isotropic homogeneous annular plate with uniform 

thickness h, inner radius ri, and outer radius ro. The plate geometry 

is defined in a cylindrical coordinate system (r,θ,z). To extract the 

governing equations, the origin of the coordinate system is taken 

at the center of the mid-plane. The in-plane displacement 

components of an arbitrary point of the plate are Ur, Uθ, in the 
radial and circular directions and the out-of-plane component 

designated by Uz. 

 
Figure 1. The geometry of a plate. 

 
The displacement field is defined according to the FSDT 

assumption, in which the displacement components have linear 
variations in the z direction. For the axisymmetric case, we have 

0U r,z,t = u r,t + z.u r,t ; U r,z,tr 0 1

U r,z,t = w r,t + z.w r,tz 0 1

        

     
 (1) 

Where u0,w0 denote the in-plane displacements of the mid-
plane, z is the distance from the mid-plane and u0,u1,w0,w1 are 

unknown functions which depend on the radial coordinate r, and 
time parameter, t. The kinematic relations for small deflections are 

[22] : 
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The constitutive equations for an elastic structure can be 

written as follows [22]: 
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 (3) 

Where G and K are the shear and bulk moduli, respectively. 
The kinetic energy T and the strain energy U are expressed as the 

following: 

 
2 /21 2 2 2

2 0 /2

r ho
T U U U r drd dzr z
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
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
 (4a) 
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
 (4b) 

Where ρis the plate density. The external work due to lateral 

distributed stress, which is applied to the plate surface (z=h/2) is 
as follows: 

2
( , ) ( , , ) /2

0

ro
W Q r t U r z t r drdz z hQ ri


     (4c) 

Q(r,t) is positive upward. By applying Hamilton’s principle, 

the equations of motion and the boundary conditions can be 
determined as:  
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2 0;
1

t
Ldt L T U Wt Q      (4d) 

From Eqs. (4), four equations are derived in terms of stress 

resultants for the elastic plate as the following. 
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The boundary conditions are: 

 ( ) 00 1 0 1
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Where the stress resultants are defined as follows: 
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Ks is the shear correction factor which is assumed as π2/12 

[23].By substituting Eqs. (5c) into Eqs. (5a), the equations of 
motion are extracted for the elastic plate in terms of displacement 

components as follows. 
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In the viscoelastic analysis, it is usual to separate the deviatoric 
and dilatational parts of the stress components. For the deviatoric 

part P1τij=Q1γij, and for dilatation, P2σii=Q2εii. Where P1, Q1, P2, 
Q2 are viscoelastic operators, τij, γij denote the shear stress and 

strain, respectively and σii, εii are the traces of the stress and strain 
tensors. In the elastic case, the shear stress-strain relation is 

τij=2Gεij, so G=Q1/2P1 and the bulk modulus is K=Q2/3P2. We 
assume that the viscoelastic property obeys the SLS model in shear 

and elastic in bulk i.e. K=K0 where K0 is a constant (elastic bulk 
modulus). We consider an SLS model with spring elements G1, G2, 

and damping element η as Fig. 2. The behavior of this model in the 
relaxation and creep has adaptation with the reality and it can 

convert to the Kelvin, Maxwell or elastic elements in special cases 
as follows: 

a) If η→∞ ; an elastic element with equivalent shear modulus Ge 

is obtained where 1/ Ge=1/G1+1/G2.  
b) If η→0; an elastic element with equivalent shear modulus Ge 

= G1 is obtained. 
c) If G2→0; a Maxwell element is achieved. 

d) If G1→∞;  a Kelvin element is yielded. 
 The viscoelastic operators for SLS model can express as [24]: 

 
1 1

( ) ; 1; 2 1 ; 31 2 1 2 0
1 2 1

P D P Q D Q K
G G G


        (7) 

 

 

Figure 2. Standard linear solid model (SLS). 
 

Where τ =η/G2  is the relaxation time and D=∂/∂t is the time 
derivative operator. By substituting G in terms of viscoelastic 

operators into Eqs. (6) and applying the time derivative operator 
on the equations, the governing equations of motion for 

viscoelastic material are derived as the general following form: 
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Where L1 to L4 are differential operators. The explicit 

dimensionless forms of these equations will be reported later. Eqs. 
(8) contain four coupled partial differential equations with variable 

coefficients. There are different numerical and analytical methods 
for the solution of the equations with variable coefficients 

including: 
 The Frobenius series method is the popular method and it was 

used widely in 1980-1990 especially for analysis of structures 
with variable thicknesses e.g. Suzuki et al. [25]. This method has 

long calculations and its convergence may be slow.  
 The numerical methods including DQ, and FE methods. 

 The ring method which converts the plate to some narrow rings 
and solves the equations for each ring analytically and finally 

applies the continuity conditions between the rings. Note that for 
each ring, we have the equations with constant coefficients. The 

appropriated number of rings is important for convergence. This 
solution procedure is cumbersome. 

 The Ritz method. 
 Converting the governing equations to equations with constant 

coefficients with appropriate transformation. This method may 
be used for the problems with one governing equations (CPT) 

such as the Euler-Bernoulli equation. In this paper, the 
perturbation technique in conjunction with a new transformation 

is used to solve the equations. This method can convert the 
governing equations to equations with constant coefficients in 

each order. Besides, the coupling of equations can be reduced 

and one can obtain two systems of equations, each system is 
coupled which has constant coefficients. 

3. Analytical solution  

The perturbation technique is used for the analytical solution. 
Before using this method, it is necessary to convert the equations 

to the dimensionless form. One can define the following 

dimensionless quantities. 

http://www.ask.com/web?q=frobenius+series&qsrc=19&qo=spellCheck&o=0&l=dir
http://www.ask.com/web?q=euler+bernoulli&qsrc=19&qo=spellCheck&o=0&l=dir
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One can substitute Eqs. (9a) into governing equations (8).The 

following dimensionless parameters can be expressed. 
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where r*and t* are dimensionless location and time, 

respectively.u0
*,u1

*,w0
*,w1

* are dimensionless displacement 
components. a, h0 and t0 are the characteristic radius, thickness and 

time, respectively, which are defined as a=ro, h0=h,andt0=a/c. c is 
a quantity with the speed dimension. ε is a small parameter that is 

considered as the perturbation parameter. By using Eqs. (9) and 
defining the transformation X=(r*-1)/ε, the dimensionless form of 

the governing equations (in terms of displacement) can be derived. 
The method of multiple scales is used for the solution. The new 

scale T0=t*, T1=εt* are defined. We have [26]: 
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Substituting Eqs. (9 and 10) into Eqs. (8), the dimensionless 

forms of the governing equations (in terms of displacement 
components) are derived as follows. 
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(11d) 

Where: 

;
4 4* *[ , , ] . ; ;35 0 0 1 13 30

2
[ , , ] [ , , ];33 35

0
2

[ , , ] [ , , ] [ , , ];32 33 352

3 2 2
* *[ ]51 1 03 2 2

0 0 0
2 2* * * *[ , , ]; ; ;35 1 0 0 0 1 13 3

y
g y a b a b y a G a G

T

y y
g y a b a b g y b a

X X T X

g y a b g y a b g y b a
X X

y y
g y G G

T T T

g y G G b G b G

u

 








     



  
  

   

 
 
 

  
  

  

   

* * * *( , , ); ( , , );0 0 0 1 1 1 0 1
* * * *( , , ); ( , , )0 0 0 1 1 1 0 1

u X T T u u X T T

w w X T T w w X T T

 

 

 

(11e) 

f11,f12,f13, f14 are functions of dependent variables which do not 
appear in our selected expansions (Eqs. 12).We seek a 

straightforward expansion for the solution as follows. 

( , , ; ) ( , , ) ( , , );0 0 1 00 0 1 01 0 1
( , , ; ) ( , , ) ( , , );1 0 1 10 0 1 11 0 1
( , , ; ) ( , , ) ( , , );0 0 1 00 0 1 01 0 1
( , , ; ) ( , , ) ( , , )1 0 1 10 0 1 11 0 1

u X T T u X T T u X T T

u X T T u X T T u X T T

w X T T w X T T w X T T

w X T T w X T T w X T T

 

 

 

 

  
 

  
 

  
 

  
 

 (12) 

One can substitute Eqs. (12) into Eqs. (11) and equate the terms 
with the same power of ε to zero. The governing equations with 

order-zero can be extracted as follows.  

* *
: [ , ] 0;1 11 00 10

* * * *
: [ , ] 6 [ , , ] 04 14 00 10 35 1 0

eq L u w

eq L u w g Q G G



 
 (13a) 

* *
: [ , ] 0;2 12 10 00

* * * *
: [ , ] [ , , ] 03 13 10 00 35 1 0

eq L u w

eq L u w g Q G G



 
 (13b) 

Note that Eqs. (6 and 8) are four coupled partial differential 
equations with variable coefficients. By defining the parameter X, 

one can convert the governing equations with variable coefficients 
to a system of equations with constant equations in each order of 

ε. Eqs. (13a and13b) can be solved separately, or there are two non-
homogenous systems of coupled partial differential equations. The 

governing equations with order-one are as the following. 

;
* * * *

: [ , ] ; : [ , ]1 11 01 11 1 4 14 01 11 4
* * * *

2 [ , ]. [ , ] ;1 11 00 10 12 00 10
* * * *
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

 
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

 (14a) 

* * * *
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* * * *
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FF L u w g Q G G X

A u w



 

  

  



 (14b) 
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The solution of the second system (Eqs. 13b) according to the 
eigenfunction expansion method is set as the following: 

( ) ( ) (X)10 0 1 1 0 1 2
1

( ) ( ) (X)00 0 1 2 0 1 3
1

*
u X ,T ,T A T ,T ;m m

m
*

w X ,T ,T A T ,Tm m
m






 




 


 (15a) 

Where φ2m, φ3m are the solutions of the homogenous parts of 

Eqs. (13b) (mode shapes). Khadem et al. [27] explained the 

procedure of finding the mode shapes for different boundary 
conditions. For a simply supported annular plate, the mode shapes 

can be considered as follows. 

= cos( X); = sin( X)m m m2 3
m

; ;m m L
L X X ; X X ; X Xout outin inr r r ro i


     

   
 

 (15b) 

The formulations for the general boundary conditions are 

explained in Appendix A. For simply supported boundary 
conditions, we substitute Eqs. (15a and b) into Eqs. (13b). It is 

yielded: 

1 m 2 m 2

1 1

cos( X) 0 ; sin( X)m m

m m

P P F 

 

 

    (15c) 

 

Where: 
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G G

 
(15d) 

F2 is the non-homogenous part of the second equation which is 

a function of Q*. P1m and P2mare expressions in terms of 
A1m(T0,T1)and A2m(T0,T1).P1m and P2m are obtained from the Fourier 

half-range expansion formula as the following: 

1

2

cos( )1

sin( )2

2

2
m

m

Xout F X dXmXin
Xout F X dXmXin

P ;
L

P
L












 (15e) 

Eqs. (15e) are two coupled ordinary differential equations 
which their homogenous solutions are in the following form: 

6 0( , ) ( ) ;1 0 1 1
1

6 0( , ) ( )2 0 1 1
1

i Tj
A T T a T ejm

j
i Tj

A T T b T ejm
j





 


 


 (15f) 

Where αj(j=1..6) are the eigenvalues of Eqs. (15f). By 

substituting Eqs. (15f) into homogenous part of Eqs. (15e), two 
homogenous algebraic equations can be found. αj’s are the 

eigenvalues and aj(T1), bj(T1)are its eigenvector elements. The 
particular solutions of Eqs. (15e) depend on the non-homogenous 

part of equations. The solution procedure of Eqs. (13a) is the same 
as the mentioned method. In solving equations order-one e.g. Eqs. 

(14b), the solution for the simply supported case is considered as 

the following. 

11 0 1 3 0 1 m

1

01 0 1 4 0 1 m

1

( ) ( )cos( X)

( ) ( )sin( X)
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m

m

*
m

m
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















 (16a) 

By substituting Eqs. (16a, 15a) into Eqs.(14b), we have: 

cos( X) ; sin( X)m m3 2 4 3
1 1

P FF P FFm m
m m

 
 

  
 

 (16b) 

Where: 

2
cos( ) ;3 2

2
sin( )4 3

Xout
P FF X dXmm

L Xin
Xout

P FF X dXmm
L Xin





 

 

 (16c) 

FF2 and FF3 are expressions in terms of exp(iαjT0),sin(αmX) 

and cos(αmX) and P3m and P4m are in terms of A3m(T0,T1) and 
A4m(T0,T1).The non-homogenous part of Eqs. (16c) which includes 

exp(iαjT0) ,(j=1..6) are secular terms. Before solving Eqs. (16c), it 
is necessary to remove the secular terms. To this purpose, we use 

the solvability condition [26]. The secular terms of the particular 

solutions of Eqs. (16c) are considered as the following. 

 

 

0

0

exp(

exp(

6
( , ) ;

3 0 1 11
6

( , )
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)
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j
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i T
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



 


 
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 (17) 

 
By substituting Eqs. (17) into Eqs. (16c) and setting the terms 

with coefficients exp(iαjT0) (j=1..6)   to zero, we find a system of 
first-order ordinary differential equations for determining aj(T1). 

The constants of the solution are calculated by considering the zero 
initial conditions. 

4. Classical plate theory  

For CPT, the equation of motion for the elastic circular/annular 
plate in the polar coordinate system can be  written as [28]: 

2
4 0 ( , );

0 0 2

3
12

( ) ;
0 2

12(1 )

w
D w h Q r t
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Eh
r D

r r r






  



 
  

  

 (18a) 

 
Moreover, we have: 

9 3 2
;

3 6 2

KG K G
E

K G K G



 

 
 (18b) 

By substituting G=Q1/2P1 and K= K0 into Eqs. (18b), the flexural 
rigidity D0 is obtained for the viscoelastic plate. For a plate which is 
viscoelastic in shear and elastic in bulk and using Eq. (7) for the SLS 
model, the governing equation for a viscoelastic plate according to 

CPT is determined. By using Eqs. (18), the governing equation is 
converted to a dimensionless equation as the following: 
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 (19a) 

Where: 
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By applying the perturbation technique as explained before, the 
response can be determined. 

5. Numerical analysis  

Ansys12 FE package has been used for the numerical analysis. 
The selected elements are PLANE 182 and SOLID 186 that have 

viscoelastic feature-capability [29]. The boundary conditions are 
assumed simply supported at both edges. To achieve convergence, 

the number of elements and the time step were selected by trial and 

error. We used the frequency analysis for different mesh sizes and 
time history response of the middle radius for time step selection. 

The time step was chosen 0.002s. The geometrical and material 
properties of the plate have been listed in Table 1. The selected 

material is a kind of silicone polymer which is used for contact 
lens-based bioactive agent delivery system and its viscoelastic 

properties in shear (G1, G2,η)  has been reported by [2]. The 
transverse load is a pulse load and it acts for 1 second as the 

Q(r,t)=q0(1-H(t-1)) where  q0=5 N/m2 and H(t) stands for the 
Heaviside step function. 

 
Table 1. Geometrical and material properties

 Outer radius (m) ro=0.15
 

Inner radius (m) ri=4.5e-2 

Thickness (m) h=7.5e-3 

Poisson’s ratio ν=0.25 

Viscoelastic modulus  (Pa) G1=5.5e5, G2=9e5
 

Viscosity coefficient (Pa.s) η=7.6e4
 

Bulk module (Pa) K0=9.16e5 

Density (kg/m3) ρ=1500
 

6. Results  

The presented formulation is used to program in the 
mathematical environment Maple 15. By using this formulation, 

one can find the response easily and fast for different load profiles. 
It is noted that in the presented graphs, Uz*= Uz/h0. 

6.1. Comparison of results 

The FSDT, CPT, and FE results for the transverse response of 
the middle surface at mid-radius r=(ri+ro)/2 and a point near the 

outer edge (r*=0.933) have been shown in Figs. 3, 4. The CPT has 
a time delay in response with respect to the FSDT and FE. The 

FSDT response is closer to the FE than the CPT (except that at the 
start of loading) and the oscillation frequency of the FSDT is in a 

good agreement with the FE with respect to the CPT. The obtained 
amplitude of displacement using the FSDT is smaller than FE and 

CPT results. Moreover, the difference between CPT and both the 

FE and FSDT increases near the boundary. 

 
Figure 3. Transverse response at mid-radius r=(ri+ro)/2. 

 

One of the advantages of the FSDT is its ability to calculate 
the radial response. Fig. 5 shows the radial response of the plate at 

r*=0.767 and z=h/2 by the FSDT and FE. The radial deflection of 
the FSDT is smaller than the FE.  

 
6.2. Sensitivity analysis 

The effect of modulus G1 on the transverse response has been 

shown in Fig. 6. Increasing G1 decreases the average deflection 
and increases the oscillation frequency which is due to an increase 

in the stiffness of the plate. 

6.3. Load profile 

The presented results were related to a pulse load with constant 
amplitude. By changing the load profile, the particular solution of 

Eqs. (13 and14) will be affected. For instance, one can calculate 

the results for a load as Q(X,t)=q0Q1(X)*(1-H(t-1)). The selected 

functions for Q1(X) have been listed in Table 2 in addition to their 

graphs which are plotted in Fig. 9. The average values of Q1(X) in 

all cases are the same or the selected profiles have the same static 
equivalent. 

Fig. 10 shows that although the different profiles have the same 

static equivalent, they do not produce the same deflection. The 
parabolic and constant profiles lead to maximum and minimum 

displacements, respectively. 
 

 

 
Figure 4. Transverse response near outer radius (r*=0.933). 
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Figure 5. Radial response at r*=0.767 and z=h/2. 

 
Figure 6. Effect of G1 on the transverse response (FSDT). 

 
The influence of viscosity on the transverse response has been 

shown in Fig. 7. By increasing the viscosity coefficient, the 
amplitude of transverse deflection decreases as expected, but the 

mean deflection has no significant change. The transverse 
response of an elastic plate can be obtained by setting τ→0 in Eqs. 

(9b and 11). Fig. 8 shows the oscillations of the FSDT plate at 
r=(ri+ro)/2. It is observed that the vibrations are around the static 

deflection and as the load is removed, it oscillates around the zero 
point or it has free vibrations. 

 

 

 
Figure 7. Effect of viscosity coefficient on transverse response at 

r=(ri+ro)/2  (FSDT). 

 
Figure 8. Transverse response of elastic plate by FSDT and 

CPT. 

 
 

 
Table 2. Definition of different load profiles. 

Load Function Q1(X),   q0=5 N/m2 

Linear (3X/7+8)/ q0 

Triangular 
((2-0.8571.X)(1-H(-X-7))+(14+0.8571.X) 

*(H(-X-7)-H(-X-14)))/ q0 

Parabolic  (-9X2/98-9X/7+2)/ q0 

Sine 3.0551(1-sin(πX/14))/ q0 

 

 

 

6.4. Shear deformation  

In the CPT, we haveu1= - ∂w0/∂r (in Eq. 1). These quantities 
have been reported in Table 3 at the location r*=0.4 and time t=2 

sec of a plate with characteristics that have been listed in Table 1.  

It is seen that the percentage difference between these quantities 
increases by decreasing the thickness in a viscoelastic plate or the 

effect of shear deformation is prominent for thick viscoelastic 
plates. 

 
 

 

 
Figure 9. Different load profiles. 

0

0.001

0.002

0.003

0 0.1 0.2 0.3 0.4 0.5

Ur*

t (s)

FSDT

FE

0

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4 0.5

Uz*

t (s)

G1=0.30 MPa

G1=0.55 MPa

G1=0.70 MPa

0

0.01

0.02

0.03

0.04

0 0.2 0.4

Uz*

t (s)

η=7.6e2 Pa.s

η=7.6e3 Pa.s

η=7.6e4 Pa.s

-0.04

-0.02

0

0.02

0.04

0.06

0 0.5 1 1.5 2 2.5

Uz*

t (s)

FSDT

CPT

2

3

4

5

6

7

8

0.3 0.5 0.7 0.9

Q1

r*

constant

Linear

Triangular

Parabolic

Sin



Journal of Computational Applied Mechanics, Vol. 51, No. 1, June 2020 

 

105 

 

 
Figure 10. Transverse displacement for different load profiles (t=0.5 

s). 

Table 3. Effect of shear deformation (t=0.5s) 

ro/h - ∂w0/∂r (r*=0.4) u1 (r
*=0.4) Diff(%) 

10 6.160e-4 5.700e-4 8.07 

15 1.685e-3 1.620e-3 4.01 

20 2.881e-3 2.810e-3 2.53 

30 9.546e-3 9.410e-3 1.44 

40 5.068e-2 5.042e-2 0.52 

 

 

7. Conclusion 

In this paper, an analytical procedure was presented for the 
response determination of viscoelastic annular plates under 

transverse excitation. The formulation was based on the FSDT and 
the results were compared with the CPT and FE. Some of the 

results are as the following: 

 The introduced method is able to convert a system of partial 
differential equations with variable coefficients to systems of 

equations with constant coefficients.  

 The present solution saves the time of computation 

considerably. 

 The CPT has a time delay in response with respect to the FSDT 

and FE. 

  The FSDT response is closer to the FE than the CPT (except 

at the beginning of applying load).  

 The frequency of oscillation for the FSDT is in a good 
agreement with the FE rather than the CPT. 

  The calculated amplitude of displacement using the FSDT is 
smaller than FE and CPT results. 

 Increasing G1not only decreases the average deflection but also 
increases the oscillation frequency which can be due to 

increasing the stiffness of the plate. 

 By increasing the viscosity coefficient, the transverse 

deflection decreases as expected, but the mean deflection has 
no noticeable change. 

 The parabolic and constant profiles result in the maximum and 
minimum displacements, respectively.   

 The effect of shear deformation is significant in thick  
viscoelastic plates. 
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Appendix A. 
For general boundary conditions, we substitute  Eqs. (15a,b) 

into Eqs. (13b). It is yielded: 
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With the inner product of Eq. (A1) in φ2n and Eq. (A2) in φ3n 

we have: 
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Due to the orthogonality of the mode shapes, the non-zero 
solution can be found just for m=n. The inner product is defined 

as follows. 

( ( ), ( )) ( ). ( ).
Xop X q X p X q X dXXi

   (A5) 

 

Eqs. (A3,A4) are two coupled ordinary linear differential 
equations with constant coefficients. The same procedure can be 

applied for equations order-one. The obtained ordinary differential 
equations may be solved by the method explained in the text. 
 


