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1. Introduction 

Functionally graded materials (FGMs) have been made to 

improve the behavior of structure towards high temperature while 

increasing the thermal resistance of the structure. These materials 

which are heterogeneous have better properties due to gradual 

changes in the distribution of properties compared to conventional 
composite materials, and their stresses and its changes in these 

materials form a continuous part that increases the strength of 

these materials compared to other common materials. Since these 

materials are often made of metal-ceramic composites, and their 

properties change from ceramic phase to metal continuously from 

one surface to another they can withstand high temperatures and 
are one of the most widely used materials for use under thermal 

loading and are widely used in high temperature environments [1-

5]. 

Zimmerman and Lutz [6] obtained the exact solution of 

functionally graded (FG) cylinders which were subjected uniform 

heat under plane strain conditions. In this research, the radial and 
circumferential stresses were investigated and the thermal 

expansion coefficient for the FG cylinder was calculated. The 

distribution of temperature and thermal stresses of FG cylinders 

that were transient cooling on their inner surface was presented by 

Awaji and Sivakumar [7]. The results related to the thermal 
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stresses and transient temperature were evaluated and drawn in the 

cooling state of the inner layer of the cylinder. El-Naggar et al. [8] 

obtained a solution of transient thermal stresses in heterogeneous 

and anisotropic (orthotropic) rotary cylinders using numerical 
method. The semi-analytic solution of thermo-elasticity of FG 

finite length cylinders was presented by using the multi-layered 

method by [9-10]. Using a multi-layer method, they converted the 

FG cylinder into homogeneous cylinders that were in contact with 

each other, and then, by applying the conditions of continuity at 

the contact surface of the cylinders, they solved their thermo-
elasticity. A one-dimensional thermo-elastic transient analysis of 

FG cylinders was carried out using the Laplace transform [11-12]. 

Bahtui and Eslami [13] obtained the coupled thermo-elasticity 

analysis of FG cylinders with finite length. They extracted the final 

coupled thermo-elasticity solution of FG cylinders under thermal 

shock. An asymmetric thermo-elastic analysis of long cylinders 
made of FGM was investigated by considering the heat transfer as 

one-dimensional (in the direction of cylinder thickness) and two-

dimensional (in radial and circumferential directions) by [14] and 

[15], respectively. The results of the displacements, stresses and 

temperature were compared and evaluated. A one-dimensional 

stable and transient thermo-elastic analysis of FG cylinders was 
presented using Fredholm integral method by Peng and Li [16], 

and using an inverse algorithm based on conjugate gradient 
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method and the discrepancy principle by Chang et al. [17], 

respectively. A thermostatic analysis of FG cylinders which were 

under uniform internal heat generation was conducted by Aziz and 

Torabi [18]. Xin et al. [19] presented a one-dimensional thermo-

elasticity solution based on the volume fraction of constituents for 

FG cylinders under thermal and mechanical loading. In this study, 
the effects of volume fraction, thermal expansion coefficients and 

the ratio of two thermal expansion coefficients on displacement 

and stresses were systematically studied. Ghannd and Parhizkar 

Yaghoobi [20-21] presented the two-dimensional analysis (radial 

and axial direction of the cylinder) of thermo-elastic for 

homogeneous and FG cylinders under different boundary 
conditions (different mechanical and thermal conditions of the two 

ends of the cylinder). 

Daneshmehr et al. [22] investigated the size-dependent free 

vibration of FGM Nano plates based on the nonlocal elasticity 

theory with high order theories. Using the higher order shear 

deformation theory (HSDT) and applying the principle of 
minimum potential energy, governing equations are obtained. In 

this research, the impacts of different parameters on the size-

dependent frequency were discussed. The bending analysis and 

free vibration analysis of bi-directional Euler–Bernoulli nano-

beams was performed by Zamani Nejad and Hadi [23-24]. Based 

on the Eringen’s nonlocal elasticity theory, the equilibrium 
equation is derived and the generalized differential quadrature 

method (GDQM) is used to solve the governing equation. The 

effects of material length scale parameter and inhomogeneity 

constant on the bending analysis are studied. Moreover, the 

buckling analysis of arbitrary two-directional Euler–Bernoulli 

FGM nano-beams based on the nonlocal elasticity theory was done 
by Zamani Nejad et al. [25]. The influence of importance 

parameters on the buckling behavior of nano beams was 

investigated.  

The FGM concept wasn’t limited to application for 

conventional materials. There are many applications where the 

FGM concept is composed with smart materials or piezoelectric 
[26]. That explains why there are various types of methods 

currently available for analysis functionally graded piezoelectric 

material (FGPM), which mainly focus elasticity theories, shear 

deformation theory, simplified theories and mixed theories [26-

32]. For example, the electro-thermo-elastic analysis of thick wall 

FGPM cylinders using the plane elasticity theory (PET) [27-29] 
and the asymmetric electro-thermo-elastic analysis of long 

piezoelectric FG cylinders [30-32] represent multiple physical 

analyses carried out on FGPM cylinders. 

Zamani Nejad et al. [33] analyzed the free vibration behavior 

of arbitrary bi-directional Euler–Bernoulli nano-beams based on 

consistent couple-stress. The governing equation was extracted 
using energy method and solved by GDQM. The effects of various 

parameters on natural frequency were presented. Buckling and free 

vibration analysis of three-directional functionally graded material 

(TDFGM) Euler–Bernoulli nano-beam were done by Hadi et al. 

[34-35]. Except for Poisson’s ratio, the material properties are 

assumed to be graded in all three directions, which may vary 
according to an arbitrary function. The governing equations were 

solved by employing GDQM and the parameters’ effects were 

studied. Approximate analytical solutions to the bending analysis 

of the bi-directional FGM nano-beam are derived by using the 

Rayleigh-Ritz method [36]. The impact of changes to some 

important parameters on the values of deflection of nano-beam are 
studied. Ghaffari et al. [37] investigated the complete mechanical 

behavior analysis of FG Nano beam under non-uniform loading. 

The governing equations are derived by using the energy method 

and solved as a classical eigenvalue problem. The impact of size, 

non-homogeneity and non-uniform loads on bending, buckling 

and vibration behaviors is discussed. 

Zarehzadeh et al. [38] performed a free torsional vibration 

analysis of FG nano-rod under magnetic field supported by a a 

generalized torsional foundation based on the nonlocal elasticity 
theory. The torque effect of an axial magnetic field on an FG nano-

rod has been defined using Maxwell’s relation and the governing 

equation was extracted by the Hamilton’s principle. The problem 

was solved by GDQM and the results showed that an FG nano-rod 

model based on the nonlocal elasticity theory behaves more softly 

and has a smaller natural frequency. A static torsional analysis of 
bi-directional FG microtube based on the couple stress theory 

under magnetic field was presented by Barati et al. [39]. The 

Navier equation and boundary conditions of problem were derived 

by the minimum potential energy. The equations were solved by 

employing GDQM. The small-scale effect and heterogeneity 

constants on the static torsion were discussed. Dehshahri et al. [40] 
investigated free vibrations analysis of arbitrary three-

dimensionally FGM nanoplates based on the modified strain 

gradient theory. The motion equations and boundary conditions of 

nanoplate are obtained using the Hamilton's principle and they 

were solved by GDQM. The effects of important parameters were 

studied. Barati et al. [41] analyzed the free vibration of bi-
directional FG nanobeams subjected to magnetic field based on the 

nonlocal elasticity theory. The governing equation was obtained 

using energy method and solved by employing GDQM. The 

effects of the main parameters on vibrational behavior were 

investigated. Noroozi et al. [42] performed a free torsional 

vibration analysis of bi-directional FG nano-cone based on 
nonlocal strain gradient elasticity. The Navier equation and 

boundary conditions of the size-dependent nano-cone were 

derived by Hamilton’s principle. The problem was solved by 

GDQM and the effects of some parameters, such as inhomogeneity 

constant, cross-sectional area parameter and small-scale 

parameters, were studied. 

To the best of the researchers’ knowledge, in the literature, no 

study has so far been carried out about the analytical solution of 

temperature distribution and thermal strain analysis in the 

cylinders with varying thickness and temperature-dependent 

material properties. As stated before, FGMs are commonly loaded 

with heat and work at high temperatures that are needed for 
analysis. Therefore, the current research can be considered as 

innovative and novel. In the present study, the heat conduction 

equation has been solved in cylinders with variable thickness, 

which are under thermal loading or thermal flux at their surfaces. 

The application of this research can be found in the analysis of 

cylinder structures with variable thickness whose surfaces are 
heated or cooled by fluids. Cooling towers or cooling blades are 

cases in point.. In this research, for the first time, using first-order 

temperature theory (FTT) and applying the virtual work method, 

the governing equations of FG cylinders with varying thickness 

that are subject to heat fluxes in their inner and outer layers are 

extracted with temperature-dependent properties. The governing 
equations are a set of nonlinear differential equations with variable 

coefficients whose solution is provided by the analytical method 

of matched asymptotic expansion of the perturbation technique. 

The proposed solution is highly accurate and its convergence is 

very fast. In this study, the effects of heterogeneity and 

temperature-dependency properties of cylinder with varying 
thickness are studied. The, research findings can be used to find 

optimum designed pressure vessels operating in high temperature 

circumstances. Also, the results of the present study are compared 
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with the results of the previous study, and a good agreement is 

observed. 

2. Governing equations 

Considering cylinder with varying thickness which has 

axisymmetric feature in terms of all features, one can ignore 

changes in the circumferential direction; therefore, the temperature 
distribution function in the cylinder is only a function of radius r 

and axis x. Moreover, it should be noted that in the proposed 

method, the surfaces of the cylinder are loaded under thermal flux. 

Therefore, when the fluid is in contact with the cylinder surfaces, 

it should not change the phase (not boiling or condensing). 

Therefore, for the temperature field, we have as follows: 

( , )T T r x                                                                              (1) 

T is the temperature in the cylinder with varying thickness 

where T(r, x) is a function of radius and axis of the cylinder. 

A cylinder with varying thickness is made of FGM in this 
research is modeled as a power function such as [43-46], and the 

heterogeneity modeling of properties is studied using equation 2. 

( ) ( ) ;Pr Prn n

i i

i i

r r
Pr r Pr Pr r r

r r
                                          (2) 

In equation 2, ri is the inner radius of the cylinder and Pri 
indicates the properties of material in the inner layer of the 

cylinder, which could be mechanical and thermal properties such 

as the elasticity module, density, thermal expansion coefficient, 

thermal conductivity coefficient, etc. nPr in Eq. 2 is the 

heterogeneity constant; and the heterogeneity constant could be a 

positive or negative real number. Meantime, nPr = 0 shows 
homogenous materials. 

Furthermore, the material properties in the inner layer of the 

FGM cylinder, which may be temperature-dependent, are 

expressed as a polynomial function of temperature (T) [47]. 

 2 3

0 1 2 3( )i i i i iPr T Pr P P T P T P T                                    (3) 

Where Pr and Pji (j=0, 1, 2, 3) are material constants and 

subscript i represents a constituent of FGM. 

In order to use the FTT, based on figure 1 the distance of each 

point from the cylinder with varying thickness to its symmetry axis 

r is expressed as its distance to the middle-layer of cylinder z plus 
middle-layer distance to the symmetry axis of cylinder R [20-21]. 

Based on what was said, we have: 

( ) ( )

( )

( )
( )

2 2 2

( ) ( )

b a
o a i

C

o i b a a
i

C

b a
o i a
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L
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R x x r

L

h h
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L
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
  

 
   


   

                                       (4) 

and for the variation range of z and x, we have: 

( ) ( )
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                                                               (5) 
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Figure 1. Cross-section of FGM cylinder with varying thickness subjected to 

heat fluxes at inner surface and outer surface. 

The temperature field for cylinder with varying thickness using 
the FTT is expressed as follows [20-21]: 

2 2

2

0 0

0 1 0 1

( , ) ( , )
( , ) (0, )

2!

( ) ( )

z z

T z x z T z x
T T z x T x z

z z

T x z T x T z T

 

 
   

 

      

         (6) 

Considering FTT in the Eq. 6, T0 and T1 are the zero-order and 

first-order components of temperature respectively, which are only 

a function of axial direction x. Considering TR as the reference 

temperature, for temperature changes from the reference 
temperature Θ(z, x) , we have: 

0 1 0 1( , ) ( ) ( )Rz x T T x z x z                         (7) 

Where Θ0 and Θ1 are the zero-order and first-order components 

of temperature change from the reference temperature. These 
functions are only a function of axial direction x. Using gradients 

relations (relation between temperature and thermal field) in the 

cylinder coordination [21, 48] and using Eq. 7, the thermal field-

temperature changes relationships are derived. 

1

0 1

( , )
( )

0

( , ) d ( ) d ( )

d d

z

x

x z
e x

z

e

x z x x
e z

x x x




   





  
    



                                  (8) 

ez, eθ and ex are thermal field components in the radial, 

circumferential, and axial directions. Also, the thermal strain [21] 

and heat flux [48] in the FGM cylinder with varying thickness are 

calculated as follows: 

; , ,t

i i z x                                                                     (9) 
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0
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                                                                (10) 

Where 𝜀𝑖
𝑇 and hi are the thermal strain and heat flux components 

in the radial (z), circumferential (θ), and axial (x) direction. Also, 

k is the thermal conduction coefficient and α is the thermal 
expansion coefficient in the said equation. 

The material properties are described in a power function based 

on Eq. 2 and temperature-dependent based on Eq. 3, therefore we 

have [43-47]: 

 

 
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                             (11) 

The heterogeneity of properties in the FGM cylinder with 

varying thickness is a function of the two variables of (z) and (x). 

ki(T) is the value of thermal conductivity coefficient, αi(T) is the 

coefficient of thermal expansion in the inner layer of the cylinder 
with varying thickness and n is the heterogeneity constant. Also, 

figure 2 shows the inner and outer surfaces of FG cylinder is 

subjected to heat flux Hi and Ho, respectively. 

The thermal results are defined as follows [20-21]: 
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                                           (12) 

Based on the principle of virtual work, the variations of the 

structure potential energy are equal to work variations due to 
external forces W U  [20-21] where U is the thermal potential 

energy of the whole body and W is the total work due to the applied 

heat flux in the inner and outer surfaces of the cylinder. The 

thermal potential energy of the entire body and the work resulting 

from these heat fluxes are calculated as follows: 

 1
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By inserting Eqs. 7-8 in Eq. 15, using the virtual work principle 

and performing mathematical operation and simplification, the 
governing equations are obtained as follows: 
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For simplifying, the first equation of system Eq. 16 is integrated 

and we have: 
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Where K1 is the constant of integrating operation from the first 

equation of system Eq. 16. This equation could be shown in the 

short form as follows: 
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    (19) 

By inserting Eqs. 7-12 in Eq. 19, the equation system is 

obtained in terms of zero-order and first-order components of the 

temperature variation (Θ0 and Θ1). This equation system, which is 
a nonlinear ordinary differential equation with variable 

coefficients, is in the general form as follows by assuming n=1, 

and its dimensionless form will be reported. 
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Where L1 and L2 are differential operators. 

3. Analytical Solution 

 
In order to solve the governing Eq. 20, in this study, the 

matched asymptotic expansion method of perturbation technique 

is used. For this purpose, it is necessary first to make the governing 

equation system dimensionless. The governing equations system 
is made dimensionless by using the parameters defined below. 
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Where h0 is the index thickness and ε is a small parameter. The 

presence of the star sign on the parameters indicates dimensionless 

quantities. In this research, ε is selected as a perturbation parameter 

and ε1 is magnitude of the perturbation parameter. Using the 

dimensionless parameters (21), a dimensionless form of the Eq. 20 
is obtained. 

In order to reduce the writing volume of dimensionless 

governing equations, the heterogeneity constant is assumed to 

equal one and reference temperature is zero (n =0 & TR=0). 

Therefore, the system of governing equations, made dimensionless 

with n =0 & TR=0, is obtained as follows: 
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Differential Eqs 22a-22b are second-order differential 

equations whose order is reduced by twice by equaling 
perturbation term to zero ( 0)   and become an algebraic 

equation. Based on the theory of perturbations, it shows that there 

are two boundary layers in the two cylinder’s heads. In other 

words, solving the problem involves two sections; one is the outer 

solution in regions located far from the boundaries, and the other 

is the inner solution in the boundaries or the shell’s two head 
regions [49-50]. 

As noted earlier, in order to facilitate and reduce the written 

volume of dimensionless equations, a heterogeneity constant and 

reference temperature equal to zero were taken into consideration 

(n =0 & TR=0). For other heterogeneity constant and reference 

temperature values, the solution procedure is the same and the 
dimensionless equations should be derived based on the 

heterogeneity constant and reference temperature values. Then, 

the process of outer and inner solution is studied in light of 

dimensionless governing equations with heterogeneity constant 

and reference temperature equaling zero (Eqs. 22a-22b). 

3.1. Outer Solution   

The outer solution is considered as a uniform series of 
perturbation term (  ). By substituting this uniform series in Eqs. 

22a-22b, and considering the dominant sentences, this series (inner 

solution) is expressed as follows: 
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                                          (23) 

By substituting Eq. 22 with Eq. 23 and considering the 

coefficients of 0 and 1  , the algebraic equations relating to the 

zero-order and first-order outer solution can be achieved as 
follows: 
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Eqs. 24a-24b are the linear algebraic equations relating to zero-

order and first-order outer solutions respectively, which are easily 

solved to determine the zero-order outer solution (Y0) and first-

order outer solution (Y1). 

3.2 Inner Solution in the cylinder’s lower boundary (x*=0) 

Based on the matched asymptotic expansion perturbation 

technique for the solution in the boundary regions, the fast variable 

should be used. For the inner solution in the boundary regions near 

the bottom of cylinder, η= x*/ε is selected as the fast variable and 

the Taylor expansion is written for loading, thickness, middle-
layer radius in the lower boundary regions (x*=0) . Therefore, we 

have: 
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The inner solution is assumed as follows: 
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By substituting Eq. 22 with Eqs. 25-26 and taking into 

considering the coefficients of ε0 and ε1, the differential equation 

system related to the zero-order and first-order inner solution are 

achieved for the lower boundary. 
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Where [D2i]2×2, [D1i]2×2, and [D0i]2×2 are the coefficients 

matrices, {F0i} and {F1i}are the vectors (nonhomogeneous part 
of differential equation system). Non-zero components of these 

matrices and vectors are as follows: 
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The general solution of Eqs. 27a-27b is {Y}={Vi} ie


 where λi 

is the eigenvalue and {Vi} is its eigenvector [21]. To achieve 
eigenvalues, we substitute the general solution in the homogenous 

equations of 27a and 27b. Considering that the homogenous part 

of Eqs. 27a-27b is identical the general solution of both equations 

of 27a and 27b is the same and we have: 

    2

2 2
{ } {0}; [ 2 ] [ 1 ] [ 0 ]i i iC V C D i D i D i 
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In order to find the value of λi, Eq. 29 should have a non-evident 

answer ({Vi} ≠ {0}). Therefore, by equaling the coefficients 

determinant to zero (det[C]=0), the characteristic equation is 

achieved, whose solution would produce the eigenvalues or the 
value of λi. This characteristic equation is an algebraic second-

order equation whose solution would help determine two values 

for the eigenvalues. The corresponding vector for each eigenvalue 

is also calculated. Since the inner solution value should have a 

limited value in the region far from the lower boundary (positive 

infinity), the root should be chosen so that their real part would be 
negative and their value would be limited in infinity. So, an 

eigenvalue (having negative real value) and its corresponding 

vector are chosen and for the general solution, we have: 
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1 1{ }gY C V e
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                                                                 (30) 

The particular solution of Eqs. 27a and 27b considering their 

non-homogenous part is determined as {F0i} and {F1i}, 

respectively. Considering that the non-homogenous part of Eq. 27a 

is a constant value, the particular solution for Eq. 27a is assumed 
as {Y}p0={K0} and the vector {K0} is determined by inserting the 

solution in Eq. 27a. The solution of Eq. 27a is achieved as 

{Y}={Y}g+{Y}p0 where the constant C1 in the solution is 

determined by applying boundary conditions relating to the last 

vector term {Y} in x*=0. 

The non-homogenous part of Eq. 27b has two parts; one part 
includes polynomial terms and the other part includes exponential 

terms. Therefore, considering the non-homogenous part of Eq. 

27b, the particular solution is assumed to have two parts. The 

polynomial part of the particular solution is {Y}p11={K1}η+{K0}. 

{K0} and {K1} are the constant vectors which are determined by 

substituting in Eq. 27b based on the polynomial term of non-
homogenous part. Since the exponential terms of the non-

homogenous part of Eq. 27b also includes the general solution, the 

exponential part of the particular solution is 

{Y}p12=({V2}η2+{V1}η+{V0}) 1e
 +∑{Uj}

je
 

 where {V0} , {V1}, 

{V2} and {Uj} are the constant vectors that they are determined by 

substituting in Eq. 27b based the exponential terms of non-
homogenous part. The solution of Eq. 27b is 

{Y}={Y}g+{Y}p11+{Y}p12 in which the constant is achieved by 

applying the boundary condition related to the last vector term of 

{Y} in x*=0. 

3.3 Inner Solution in cylinder’s upper boundary (x*=1) 

Based on what was said in the last section, a fast variable is also 
used in the upper limit. For the inner solution in the boundary 

conditions near the top of cylinder, ζ=(x*-1)/ε is used as the fast 

variable and the Taylor expansion for loading, thickness, middle-

layer radius in the upper boundary regions (x*=1) are written. 

Therefore, we have: 
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The inner solution is assumed as follows: 
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                                       (32) 

By substituting Eq. 22 with Eqs. 31-32 and taking into 

considering the coefficients of ε0 and ε1, the differential equation 
system related to the zero-order and first-order inner solution are 

achieved for the upper boundary. 
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Where [D2I]2×2, [D1I]2×2, and [D0I]2×2 are the coefficient 

matrices,  0F I  and  1F I  are the vectors (nonhomogeneous 

part of differential equation system). The non-zero components of 
these vectors and matrices are as follows: 
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The solution for Eqs. 33a-33b is similar to that of Eqs. 27a-27b. 

In the solution process of Eqs. 33a-33b since the answer in the 

regions far from the upper boundary (negative infinity) should 

have a limited value, the eigenvalues with a positive real part were 

chosen. 

3.3 Composite Solution 

Based on the matched expansion asymptotic perturbation 

technique, the composite solution Ycomposite is the sum of inner and 

outer solutions minus overlapping regions. Therefore, for the 

composite solution, we have: 

( ) ( )inner Inner

composite outer inner Inner outer outerY Y Y Y Y Y               (36) 

(Youter)
inner and (Youter)

Inner are the common (same) parts of inner 

and outer solution in the boundary regions (near both heads of 

cylinder), which are obtained by Van Dyke matching principal 

[50]. By integrating the first component of composite solution, Θ0* 

function is achieved (Θ0*= (1/ε) ∫ ς* dx*+K2). By applying the 
boundary condition of Θ0* in both heads of the cylinder, the K1 

and K2 constants are determined. 

4.  Results and Discussion 

For a numerical study, an FG cylinder with varying thickness is 

considered with geometric specifications are ri =40 mm, ha =20 

mm, hb =10 mm, h0 =10 mm, and the length equal to 800mm. The 
inner layer of this FG cylinder is SUS304 and its properties in the 

positive reference temperature TR=25oC is based on table 1 [47]. 

 

Table 1. Material property of inner layer of the FGM hollow cylinder 

  Temperature dependency 

Properties of SUS304 P0i P1i (1/°K) P2i (1/°K2) P3i (1/°K3) 

k (W/(m °K)) 15.379 1 -1.264×10-3 2.092×10-6 -7.223×10-10 

α (10-6/°K) 12.33×10-6 1 8.086×10-4 0 0 

The inner surface of FGM cylinder is heated by a heat flux 

equal 160 (W/m2), and the outer surface of FGM cylinder is cooled 

by a heat flux equal 110 (W/m2). In both heads of cylinder the 

constant temperature T=25oC is considered Moreover, in order to 

study the heterogeneity constant, n for values of 2, 1, 0, -1, and -2 
is studied. 

 
Figure 2. The zero-order components of temperature change for zero-order 

and first-order solution of perturbation term (n=1). 

 
Figure 3. The first-order components of temperature change for zero-order 

and first-order solution of perturbation term (n=1). 

Figures 2 and 3 shows Θ0* and Θ1* functions for zero-order 

and first-order solution of the perturbation term for Eq. 36. As it is 

seen the matched asymptotic expansion perturbation technique 

converges quickly and the first-order solution achieved from this 

method does not cause any significant modification to the 

functions. 
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Figure 4. Distribution of temperature in the middle length of FGM cylinder 

with constant thickness (n=1). 

In order to validate the results, the thickness of cylinder is 

constant at 20 mm. Moreover, it is assumed that material properties 

are temperature independent (Pji = 0, j= 1, 2, 3). Fig.4 shows the 

distribution of temperature change in the FG cylinder. The results 

are predicted based on two analytical methods (present research 

and PET [28, 51-53]) and FEM. 

 
Figure 5. Dimensionless temperature distribution in FG cylinders (n=1) with 

variable thickness (temperature-dependency). 

Figures 5 and 6 shows the temperature distribution in the FG 

cylinders with varying thickness for temperature-dependent and 

temperature-independent materials properties. Although the value 
of thermal loading in the inner and outer layers of FG cylinder is 

constant, considering the temperature-dependency of material 

slightly change the value of temperature distribution in the 

cylinder. The maximum temperature in the cylinder with 

properties temperature-dependent has been about 14 % more than 

the temperature of both heads of cylinder, resulting from 
temperature-dependency of material. It is worth noting, for 

considering the material properties is temperature-independent, it 

was assumed the P1k, P2k, and P3k equal zero. In fact, in the low-

temperature range, there is no need for nonlinear thermal analysis 

or consider the material properties are temperature-dependent 

since the effect of its slightly changes the result in structure. 

 
Figure 6. Dimensionless temperature distribution in FG cylinders with 

variable thickness (temperature-independency). 

 
Figure 7. Dimensionless temperature distribution in FG cylinders (n=1) with 

variable thickness. 

Figure 7 shows the heat flux distribution in FG cylinders for 

temperature-dependent materials properties (red arrow) and 

temperature-independent materials properties (blue arrow). As it 

is seen the direction of heat flux in the cylinders is independent 

from material temperature-dependency. In other words, linear 

thermal analyze or consider the material properties are 
temperature-independent can help to understand the path of heat 

flow in the FG cylinder that is a lot help, especially when the 

cylinder has contact with other components that affected by heat. 

Figures 8 and 9 shows the thermal strain distribution in FG 

cylinders for temperature-dependent and temperature-independent 

materials properties. Although the value of thermal loading is 
constant, considering the temperature-dependency of material 

properties would slightly change the value of maximum thermal 

strain. Unlike the temperature field whose maximum value occurs 

in the inner layer, the maximum thermal strain occurred in the 

outer layer. Actually, the thermal expansion coefficient of the 

outer layer effect is much dominant than the maximum 
temperature in the inner layer. 
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Figure 8. Thermal strain distribution in FG cylinders (n=1) with variable 

thickness (temperature-dependency). 

 
Figure 9. Thermal strain distribution in FG cylinders (n=1) with variable 

thickness (temperature-independency). 

 

Figure 10. Axial component of heat flux in FG cylinder (n=1). 

Figure 10 shows the axial component of heat flux in different 

layers of the FGM cylinder (n=1). Although, the direction of heat 

flux in the cylinders is same for linear and nonlinear thermal 

analyze the cylinder (figure 7) but the value of heat flux in 

nonlinear analysis is less than linear analysis. 

 
Figure 11. Temperature distribution in inner layer of FG cylinders. 

 
Figure 12. Distribution of heat flux in middle layer of FG cylinders. 

Figure 11 shows the effect of heterogeneity on the temperature 

distribution in the inner layer of FG cylinders with varying 
thickness and temperature-dependent materials properties. As it is 

seen, any increase in the heterogeneity constant would lead to a 

decrease in the maximum value of temperature in the inner layer. 
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Figure 13. Distribution of heat flux inside the FG cylinders with variable 

thickness (temperature-dependency). 

Figure 12 shows the total heat flux value distribution which has 

been calculated based on Eq. 37 in the middle layer of FG 

cylinders. Variations of heterogeneity constant do not lead to 

evident changes in the total heat flux value. Therefore the effect of 

heterogeneity constant on the total heat flux value can be ignored. 

The maximum value of total heat flux occurs in the boundary 
regions. It increases with any increase in the heterogeneity 

constant. Figure 13 shows the heat flux distribution in FG 

cylinders with varying thickness. As it is seen, variations of 

heterogeneity constant lead to a change only in the value (size) of 

heat flux vectors and have no effect on the heat flux vectors 

direction. Also, any increase in the heterogeneity constant could 
lead to an increase, decrease or no change in the heat flux value. 

2 2

total z xh h h                                                                   (37) 

 
Figure 14. Distribution of thermal strain in outer layer of FG cylinders with 

variable thickness (temperature-dependency). 

Figure 14 shows the thermal strain distribution in the outer 

layer of cylinders with varying thickness and temperature-

dependent materials properties. The effect of heterogeneity 
constant on the thermal strain is demonstrative and any increase in 

the heterogeneity constant would increase the thermal strain value. 

Moreover, with any increase in the heterogeneity constant, the 

location of maximum thermal strain changes and approaches the 

lower head of cylinder. 

5. Conclusion 

In this study, the governing equations for FG cylinders with 

varying thickness and temperature-dependent materials properties 

which subjected to heat fluxes in the inner and outer layers were 

derived and a two-dimensional analytical solution was presented. 

A numerical study was performed for a cylinder with varying 

thickness with two heads with constant temperature and the effects 
of heterogeneity and the temperature-dependency properties were 

studied and evaluated. Furthermore, the results of this study were 

compared with previous study and FEM, and a good agreement 

was found between the results. The results of this study are 

summarized as follows. 

1- The current research presents a two-dimensional analytic 
series solution for nonlinear heat conduction equation and thermal 

strain (considering the temperature-dependency of material 

properties), thereby requiring no special boundary conditions in 

both cylinder heads with respect to other series solutions, and they 

converge fast. It is clear that this solution can be used as an 

objective function to optimize and achieve optimal values such as 

thickness change profile and heterogeneity constant. 

2. The investigation and evaluation of the results of nonlinear 

thermal analysis of cylinders with varying thickness shows that 

considering the temperature-dependency of material, in the low-

temperature range slightly change the value of temperature and 

thermal strain distribution in the cylinder but heat flux directions 

in the body don’t change. Therefore, if the purpose is to understand 
the behavior of heat flow in the cylinder, linear thermal analysis is 

adequate but to realize the temperature and thermal strain 

distribution, considering the temperature-dependency of material 

properties is necessary and nonlinear analysis should be done. 

3. The study of results shows that in the FG cylinders with 

varying thickness, necessarily the maximum thermal strain is not 
necessarily located in the maximum temperature location. It may 

be in other locations, depending on how properties like thermal 

expansion coefficient are distributed in cylinder. 

4. The results show that the heterogeneity constant has 

demonstrative effects on the temperature field and the thermal 

strain created inside the cylinder with varying thickness. As the 
heterogeneity constant increases, the temperature field decreases 

in the cylinder, but the thermal strain increases in the cylinder. 

5. The results show that variations of heterogeneity constants 

do not significantly change the amount of heat flux inside the FG 

cylinders and do not change the direction of the heat flux vector 

either.  
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