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In this paper, the flexural response of functionally graded plates with porosities is
investigated using a novel higher order shear deformation theory, which considers
the influence of thickness stretching. This theory fulfills the nullity conditions at
the top and bottom of the plate for the transverse shear stresses, thus avoids the
need of a shear correction factor. The effective material properties are computed
through the rule of mixtures. The principle of virtual displacements is employed to
derive the equilibrium equations. The Navier’s method is adopted to obtain the
solutions in closed form for simply supported boundary conditions. The accuracy
and consistency of the developed theory are established with numerical results of
perfect and porous functionally graded plates available in the open literature. The
dimensionless transverse displacements and stresses have been reported. The effect
of even, uneven and logarithmically-uneven porosity distributions with different
porosity volume fraction, gradation index, side-to thickness ratios and aspect ratios
are studied. The numerical results show that, the increase of volume fraction of
porosity increases the dimensionless transverse deflections and axial stresses, and
decreases the transverse shear stresses. No variation of transverse shear stresses
observed for a completely ceramic and metallic plate for all kinds of porosity
models. The provided numerical results can be used to evaluate various plate theories
and also to compare the results of other analytical methods and finite element methods.

1. Introduction

investigate the flexural response of functionally graded plates
(FGPs) with distributed porosities.

The combined materials usage is increasing gradually due to
the inability of conventional engineering materials to meet the
desired properties needed by the aerospace and many of other
industries. The desired properties for aircraft, space vehicles,
shipbuilding, automotive, civil, chemical, biomedical, energy
sources, optical and mechanical engineering applications, can be
achieved by employing the functionally graded materials (FGMs).
These desired properties are attained by grading the physical
properties in the thickness/length direction from one side to
another side of the plate. However, in the sintering process while
producing FGMs, micro voids and porosities may occur in the
material. This is owing to the metal phase coagulated at very high
temperature and ceramic phase is at a relatively low temperature.
The presence of pores will exotically weaken the strength of the
material [1]. So, it is essential to study the porosity effect in
designing the FGM components. The plates are the key elements
in structural systems made of FGMs. So, it is important to

In the last few decades, the investigators contributed a lot in
investigating the mechanical behavior of perfect FGPs without
considering the porosity. The open literature reveals that, many
researchers have paid their attention to discuss the vibration and
buckling responses of FGPs with porosities. A nice literature
review of the above mentioned works may be found in the papers
of Zenkour [8] and Merdaci [11]. Mohammadi et al. [2] analyzed
the vibration of thin sector plates resting on a Pasternak elastic
foundation with different sector angles and elastic parameters
using the new version of the differential quadrature method.
Mohammadi et al [3], also investigated the circular and annular
graphene sheet embedded in a Visco-Pasternak foundation under
vibration by coupling with the temperature change and under in-
plane pre-load. Safarabadi et al. [4] studied the surface effects on
the vibration behavior of rotating nanobeam by Gurtin-Murdoch
model. Baghani et al. [5] studied the dynamic and stability
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behavior of nano-beam under the effect of magnetic field, surface
energy and compressive axial load using the nonlocal elasticity
theory and the Gurtin Murdoch model. Goodarzi et al. [6],
investigated the vibration analysis of FG circular and annualar
nano-plate embedded in a Visco-Pasternak foundation by varying
the temperature.

Akbas [7] investigated the influence of porosity and gradation
index on the free vibration and bending behavior of FGPs with all
sides are simply supported (S-S-S-S). The flexural behavior of
FGPs with single layer and sandwich plate with porosities was
investigated by Zenkour [8]. Nguyen et al. [9], studied the
nonlinear response of FG plates using C° type higher order theory.
The bending, buckling and natural frequency analyses of hano FG
porous plates buildup with graphene platelets were investigated by
Li et al. [10]. Merdaci [11] analyzed the flexural response of
rectangular FG plates with porosities by a higher order theory with
four unknowns. Demirhan and Taskin [12] used state-space
approach to provide benchmark results for bending and free
vibration of FG rectangular plates with porosity. In this paper the
inplane and transverse displacements are separated into bending
& shear components.

Kim et al. [13-14] presented the numerical results for bending,
vibration & buckling of FG porous micro plates. These plate
theories were not satisfied the nullity conditions. The effect of
porosity, exponent index and length scale factor of the material
were examined. Yang et al. [15] compared the bending and the
buckling response of different form of porous FG plates with a
traditional sandwich plate. The solutions were obtained by using
Ritz method in combination with Chebyschev polynomials. The
bending behavior of functionally graded sandwich plates with
even, uneven, logarithmically uneven and linear-uneven
porosities were investigated by Daikh et al. [16]. Merdaci and
Belghoul [17] investigated the deflections and stresses in FG
porous plates using sinusoidal shear deformation theory. The
authors considered the even distribution of porosity in FG plate.
Amir Farzam and Behrooz Hassani [18] analyzed the static
response of FG micro plates with porosities by employing
Isogeometric analysis and modified couple stress theory.

In this paper, an analytical solution is developed to investigate
the flexural behavior of porous FGPs using a hyperbolic
trigonometric quasi 3-D higher order theory with different forms
of porosities considering the transverse extensibility in the
thickness direction. The present theory uses the novel shear strain
function that assesses the boundary conditions without restrictions
on the top and bottom of the FGPs, thus avoids the need of a shear
correction factor. The physical properties across the thickness of
the FG porous plates are assumed to vary according to a power
law while the Poisson’s ratio keeps on constant. Navier solution is
obtained in closed form for simply supported FGPs subjected to
bi-sinusoidal load. The numerical results are compared with 3-D
exact solutions and with other higher order theories. The influence
of thickness ratios, aspect ratios, gradation index, and porosity
distribution and also the volume fraction of porosity on the
displacements and stresses are discussed in detail.

2. Problem formulation

Figure 1 represents a FG plate with physical dimensions, which
contains the ceramic material at the top and the metallic material
at the bottom. The FG plate also has porosities, which can be
distributed evenly, unevenly or logarithmically-uneven through
the plate thickness.
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Figure.1. FG plate with three types of porosity distributions

The FG plate is subjected to bi-sinusoidal load q (X, y). The
effective physical properties in the thickness direction of the FG
plates for three kinds of porosity distributions within the ceramic
and metal phases can be given as [19]

Even porosity model:

1

z p
P@)= (P =P)(+]) +P 5P+ Py) (1a)
Uneven porosity model:
z p z
P()= (=P (2+3) +P, =P+ P)(1-22)  (1b)
Logarithmically-uneven porosity model
z 1\?
P(2) = (P, — P,) (E + E) + P,
—Log (1+5) (P + P,) (1-22)) (L0)

Where, P,, P, are the properties at the top and bottom of the
plate respectively, including the modulus of elasticity, poisons
ratio and density, p is the gradation index, thickness is h and ¢ is
the volume fraction of porosity. { = 0 represents the perfect FG
plate.

Figure 2 depicts the variation of effective Young’s Modulus of
Al/AlLO3 prefect and FG plates with three types of porosity
models. In this, the effective modulus of elasticity is assessed
using the rule of mixtures with volume fraction of porosity, ¢ =0,
0.1, 0.2 and 0.3 & gradation index, p=0.5, 1 & 5. It can be
observed that the modulus of elasticity of the FG plate without
porosity has the highest in magnitude, whereas the FG plate for
even-porosity volume fraction ¢ = 0.3 has the lowest in
magnitude for all the values of p. Moreover, at all the porosity
volume fractions, the effective modulus of elasticity of perfect FG
and FG plate for uneven and logarithmically-uneven distribution
matches at the top and bottom of the plate, whereas uneven
porosity match with even porosity in the mid surface of the FG
plate.

2.1. Basic assumptions

The normal and transverse shear deformations contribute
significantly in accurately estimating the structural response of FG
plates. Hence the present theory considers the influence of normal
and transverse shear deformations.

The displacement in the x-direction is u and y-direction is v
comprises extension, bending and shear components.
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u(x,y) = uxy) +up(x,y) + us(x, y) (22)
v(x,y) = v(xy) +vp(x,y) + vs(x,y) (2b)
Where

Up(X,y) = —ZWpy (2¢)
Vp(X,y) = —ZWpy (2d)
U (5,) = ~P(@Dws , & (2¢)
Vs = _lp(z)ws'y (Zf)
Y(z) =z—¢(2) (29)
¢(z) = zCosh (%) -z [Cosh G) + G) Sinh G)] (2h)

Eq. (2h) represents the novel shear strain function that satisfies
the nullity conditions of the transverse shear stress at the upper
and lower side of the plate. Thus, this theory doesn’t require the
shear correction factor. The comma followed by the subscripts
represents differentiation with respect to the subscripts throughout
the paper.

The transverse displacement w contains the bending (wy), shear
(ws) and through the thickness stretching (w:). The bending and
shear components are functions of x and y coordinates and the
thickness stretching component a is a function of x, y and z.
W =wy(x,y) +ws(x,¥) + ¢(2) .$(x,y,2) (2)
&(x,y, z) takes account of influence of normal stress.

The present theory involves only five unknown parameters.
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Figure.2.Variation of Modulus of Elasticity of perfect and FG plate with
different porosity distributions, (=0, 0.1, 0.2 & 0.3: (a) p=0.5;(b) p=1;(c) p=5
2.2. Strain displacement relations

The necessary equations are derived by assuming the strains
are small. The strain displacement relations associated with the
displacement model of Egs. (2a-i), can be applied for thick to thin
plates are as follows.

€11 = Uy — ZWp xx — P(Z) Wy xx (32)
€220 = Vy —ZWpyy — lp(Z)Ws,yy (3b)
€33 = 6(2) 2 § (30
€12 = (u,y +v,)— 2ZWp xy — le(z)ws,xy (3d)
€13 = 6(2) ;(Wsx +§x) (3e)

€23 = 6(2) ,(Wsy +¢5) (3

2.3. Stress-strain relations

The Linear stress-strain relations are given as:

S11 = Q1611 + Q12(€22 + €33) (4a)
Sa2 = Q11622 + Q12(€11 + €33) (4b)
S33 = Q11633 + Q12(€11 + €22) (4c)
(512,813, 523) = Qe6(€12, €13, €23) (4d)

In which, s = {511, 522,533 ,S12, 513, Sp3 1 and € =
{€11, €22, €33, €12, €13, €23} are the stresses and strains with regard
to the plate coordinating system and

_ E@Q-p)

G = Ganan (4e)
_ UE(z)

Quz = (1-2)(1+4) (41
_ E®

Qo6 = 2040 (49)

2.4. Equilibrium Equations of motion

The static equilibrium equations can be obtained by
considering the virtual work and expressed in analytic form as

f ] ][511511 Tt S22€22 + S33€33 + S12€612 T S13€713
xJyJz

+ 5,5€6,3] dxdydz
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= J. L aléw, + 8ws + ¢(2) ,|"/*¢] dxdy=0 )
or
fx fy[Nl Suy = Mydwy = P16W;  + Np6vy, — Mydwy, | —

P,6w; ,, + 536§ + No (uy, + 6v,) — 2Mebw,, ., —
2Pg8W; ,, + Qua(OWs , + 88, ) + Qas (0w, , + 68, ) —
(8w, + 6wy + 6(2) .7, €)1dxdy=0 (6)

In which Ni, Mi, Pi, Si, Qi denotes the forces and moment
results which can be defined as follows

(N, M;,P,) = _’1,52 Si(Lz (@) dz, (i,j =1,2,6) (7a)
S3 = f_h,{jz S336(2) zzdz (7b)
Qs = ["7,5j2.6(2) .dz (7¢)

The equations of equilibrium are obtained from Eq. (6) by
applying the integration by parts to the displacement gradients and
putting the coefficients of du,dv, Sw,, w, and §¢ to zero,
independently. So, according to this theory, we have

bu=N;, +Ns,=0 (8a)
v=N, ,+Ns =0 (8b)
Swy, = M.+ Mz'yy + 2M6,xy =—q (8c)
Swy =Py + Py + 2P, +Qus, + Qo =—q (8d)
6 =03, +0Q23,—53=0 (8e)

By putting Eq. (4a-g) into the Eq. (7a-c), and further
substitution of the resulting equations into Eq. (8a-e) gives the
system of equations in an abbreviated form as:

[0]5x5[A] 5x1=[F] sx1 ©)

Where [0©] contains stiffness terms and {A} =
{u, v, w,,ws, & }* denotes the unknown amplitudes and {F} =
{0,0, —q, —q, 0} is the force matrix.

3. Analytical Solutions

In what follows, the solution for the Eq. (9) is obtained by
prescribing the simply supported conditions at all the side edges:

N;, My, Py, v,wy, wg, W, »Ws y,f =0atx=0, a
Ny, My, Py, u, wy, we,wy, W ,§ =0 aty =0, b. (10)

In accordance with Navier’s solution, the external transverse
bi-sinusoidal load can be expressed as:

q(x,y) = qsin(px)sin(¢py), (k,1=1,2,.....0) (11)
Where ¢ = %" O = %" , k and | are the mode numbers. For
uniformly distributed, gkl can be defined as:
16q
o = {mz , for odd kand1 12)
0, otherwise

In accordance with Navier’s method, the assumed expressions
for solutions that satisfy the SS conditions at all the side edges
are as follows

u(x,y) = ugcos(px)sin(py) (132)

v(x,y) = vigsin(gx)cos(¢y) (13b)

[Wb(x,y),ws(x,y),f(x,y) ] =

Wit Wei, §ralsin(ox)sin(¢y), (k,1=1,2,.....) (13¢)
Where uy;, Vi, Wi, Wik, €10 @re the  unknowns to  be

determined.

Substitution of Egs. (13a-c) into Eqgs.(8a-e), the following
system of equations in first order are obtained.

[0]5xs[A]sx1 = [E]sn _ _
The elements of [O]sys, [A]sxq and [F]sx, are given as.
0:1 = —(4119” + Ags9?)

(14)
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012 = —(Aiz + Age) P

0,53 = 311903 + (By; + 2366)§0¢2
O = 3151903 + (B, + ZBgs)QO(PZ
014 = Eyy9

0y, = _(A66§02 +A11¢2)

0,3 = B11¢3 + (Byp + 2366)¢§02
0,4 = BY1¢® + (B, + 2Bis) po®

05 = Ep¢

033 = —Dy1(¢* + ¢*) — (2D, + 4Dge) 9 P*

034 = —Di1(¢* + ¢*) — (2DF, + 4De) p* Pp*

O35 = _Glz((Pz + ¢2)

044 = —Fi1(@* + ¢*) — (2F;; + 4F ;)9 P* — Les (9* + ¢?)
045 = —J12(0® + $?) — Les (9* + ¢?)

055 = —Lgs (0* + $*) — Ky
Where (4B, Dy |BS| D3 | Fij || Gos i Koy L) =
[ (12122 1@z (D) [ (2)?[5(2) 12|26 (2) 22| (2)6(2) 22| 6(2) 2" 5 (2) . ) dz
~h/z (i,j=1,2,6)
— t
{é} = {ukL'VkL'kapWskpfkl }
{F} ={0,0, —qi1, — 11, 0}

4. Results and Discussion

The flexural response of simply supported perfect and porous
FG rectangular plates subjected to transverse bi-sinusoidal load is
investigated. In the present paper, ceramic-metal FG plates are
considered, and their material properties are:

Metal (Aluminium, Al): Modulus of Elasticity (Em)= 70 GPa,
Ceramic (Alumina, Al,O3): Modulus of Elasticity (Ec)= 380 GPa
and Poisson’s ratio (1) is assumed as 0.3.

The displacements and stresses assessed here are reported
using the following dimensionless forms:

w=w(s2, )% (15a)
Sn=su(t37)2 (15b)
S0 =52 (25.7) (15¢)
S33 = S33 (g,g,z) q:;z (15d)
Si3 = S13 (O,E,Z)qk% (15e)

To validate the present theory, dimensionless center deflections
and stresses of exponentially graded plates are compared with: (i)
3-D exact solutions of the perfect plate [20]; (ii) Novel higher
order theory, which includes new trigonometric shear strain shape
function developed by Mantari et al. [21] and (iii) A Quasi-3D
refined theory developed by Zenkour [8] for single layer and
sandwich plates with porosities.

It should be noted that 3-D elasticity solutions [20] and
solutions of the higher order theory [21] were obtained on the
basis of trigonometric variation of both in-plane and transverse
displacements along the thickness, whereas solutions of a Quasi-
3D higher order theory [8] were obtained on the basis of
polynomial type shear strain shape function with six unknowns.

Table 1 consists results of dimensionless transverse center
deflection W with and without inclusion of the porosity volume
fraction; normal stress Sy, and transverse shear stress Si3 (without
inclusion of porosity volume fraction) of exponentially graded
plates for different thickness ratios (a/h) and exponents p.

From the Table 1; it is observed that the present results without
considering the porosity are agreeing well with the 3-D elasticity
solutions and the results provided by Mantari et al. [21] and
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Zenkour [8]. This point to the use of new shear strain shape
function given in Eq. (2h) has an utmost effect on the accuracy of
the results.

The additional results of dimensionless transverse center
deflections, and stresses in FG square plates with even, uneven
and Logarithmically-uneven porosity models are reported in
Tables 2-6 for perfect and porous FG plates.

From Tables 2-6, it should be noted that, the increase of volume
fraction of porosity increases the dimensionless transverse
deflection and axial stress & decreases the transverse shear
stresses. The reason for this is an increase in the volume fraction
of porosity ({) results in a decrease in the Young’s modulus of the
plate. The dimensionless deflections decrease with the increase of

a/h, and increases with increase of p. The stresses increase as b/a
ratio increase. We can say that the thickness ratio a/h, aspect ratio
b/a, gradation index and porosity volume fraction have a
considerable influence on the deflections and stresses for three
types of distributions.

It is also noticed from Table 6 that no variation of transverse
shear stresses for a completely ceramic and metallic plate for all
kinds of porosity models. The reason is that the plate is completely
homogeneous in all the cases. The effect of shear component is to
decrease the deflections with increase of side-to-thickness ratios.
It is because; the shear deformation is more noticeable in thick
plates.

Table 1: Comparison study of dimensionless center deflections, axial and transverse shear stress of perfect and porous FG plate
subjected to sinusoidal load for various exponents and aspect ratios.

a/h p=0.1 p=0.3 p=0.5 p=0.7 p=1.0 p=1.5
W 2 3-D [15] 0.57693 0.52473 0.47664 0.4324 0.37269 0.28904
Mantari et al[16] 0.57789 0.5224 0.47179 0.42567 0.36485 0.27939
Zenkour(5=0)[3] 0.5751 0.5199 0.4695 0.4236 0.3624 0.2781
Present 0.5782 0.5227 0.4721 0.4259 0.3644 0.2795
Zenkour (£=0.1) [3] 0.7182 0.6493 0.5864 0.5291 0.4526 0.3473
Present (6=0.1) 0.7221 0.6528 0.5895 0.5319 0.455 0.3491
4 3-D [15] 0.349 0.31677 0.28747 0.26083 0.22534 0.18054
Mantari et al[16] 0.3486 0.31519 0.28477 0.2571 0.22028 0.1697
Zenkour(£=0) [3] 0.3481 0.3148 0.2844 0.2568 0.22 0.1695
Present 0.3486 0.3152 0.2848 0.2571 0.2203 0.16972
Sa» 2 3-D [15] 0.31032 0.32923 0.34953 0.37127 0.40675 0.47405
Mantari et al[16] 0.29244 0.31468 0.33826 0.36325 0.40405 0.47848
Present 0.292164 0.314372 0.337924 0.362878 0.403065 0.477919
4 3-D [15] 0.22472 0.23995 0.25621 0.27356 0.30177 0.35885
Mantari et al[16] 0.22372 0.23907 0.25544 0.27291 0.30137 0.35555
Present 0.222852 0.238118 0.254404 0.271791 0.300126 0.354105
Si3 10 Mantari et al[16] 0.238 0.2376 0.2368 0.2356 0.233 0.2268
Present 0.237453 0.237042 0.236223 0.234999 0.232423 0.226237

Table 2: Effect of volume fraction exponent, porosity distribution, porosity volume fraction and side to thickness ratio on
Dimensionless center defection in FG plate

ath=2 a’h=4 a’h=10
¢ Even Uneven  Logarithmically Uneven Even Uneven  Logarithmically Uneven  Even Uneven Logarithmically Uneven
0 0.6079  0.6079 0.6079 0.3665  0.3665 0.3665 0.2942 0.2942 0.2942
0.1 0.6462  0.6266 0.6262 0.3896  0.3745 0.3743 0.3128 0.2991 0.2989
0.2 0.6896  0.6467 0.6448 0.4157  0.3829 0.3821 0.3338 0.3041 0.3036
0.3 0.7393  0.6684 0.6638 0.4457  0.3918 0.39 0.3578 0.3092 0.3082
0 1.0994  1.0994 1.0994 0.6916  0.6916 0.6916 0.5695 0.5695 0.5695
0.1 1.245 1.1625 1.1608 0.792 0.7237 0.7228 0.6563 0.5925 0.5919
0.2 1.442 1.2344 1.2273 0.9323  0.7598 0.7562 0.7797 0.618 0.6155
0.3 1.73 1.3174 1.2994 1.1474  0.8008 0.792 0.9731 0.6467 0.6406
0 14725 14725 1.4725 0.8947  0.8947 0.8947 0.7225 0.7225 0.7225
0.1 1.7575  1.5972 1.5939 1.087 0.957 0.9554 0.8871 0.7664 0.7653
0.2 22142 1.7489 1.7333 14186  1.0321 1.0244 1.1815 0.819 0.8136
0.3 3.1694  1.9381 1.8956 22084  1.1249 1.1042 1.9217 0.8834 0.869
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5 0 21224 21224 2.1224 11597  1.1597 1.1597 0.8741  0.8741 0.8741
0.1 2.7553  2.4299 2.4212 15032  1.2833 1.2799 11319  0.9434 0.9415
0.2 40171  2.866 2.8174 22426 14521 1.4336 17166  1.0331 1.0235
0.3 9.3463  3.5402 3.3734 6.7116  1.7023 1.6414 5931  1.1567 1.1276
10 0 25286 25286 2.5286 1.3355  1.3355 1.3355 0.9815  0.9815 0.9815
0.1 3.4679  3.0000 2.9861 17831  1.5047 1.4998 1.2838  1.0616 1.0594
0.2 56813  3.7539 3.6641 2.8284  1.7597 1.7301 1.9836  1.1686 1.1569
0.3 20.9018  5.1882 4.796 12.6446  2.2146 2.0929 101713 1.3292 1.2893
w 0 33003  3.3003 3.3003 1.9896  1.9896 1.9896 15973 15973 1.5973
0.1 48636  3.9581 3.9384 29321  2.2587 2.251 23539  1.7522 1.748
0.2 9.2408  5.0546 4.9204 5571  2.6606 2.6138 4.4724 1.95 1.9289
0.3 92.4079  7.3876 6.7098 55.7098  3.4109 3.2022 447236 2.2323 2.1628
Table 3: Effect of volume fraction exponent, porosity distribution and porosity volume fraction on dimensionless axial stress in
FG plate, a/h=2
Even Uneven Logarithmically-Uneven
p 4 b/a=1 b/a=2 b/a=3 b/a=4 b/a=1 b/a=2 b/a =3 b/a =4 b/a=1 b/a =2 b/a =3 b/a =4
0 0 0.2815  0.4987 05884 06278  0.2815 04987 05884 06278  0.2815 04987 05884 06278
0.1 02815 04987 05884 06278 02868 05076 05987 06387 02867 05074 05984  0.6385
0.2 02815 04987 05884 06278 02923 05168 06094 06501  0.2917 0.516 0.6084  0.6491
03 02815 04987 05884  0.6278 0.298 05265  0.6207  0.6621 02968 05245  0.6183  0.6596
1 0 0.4444 07806  0.9198 0.981 04444 07806  0.9198 0.981 0.4444 07806  0.9198 0.981
0.1 04685  0.8239 0.971 1.0357  0.4586  0.8042 09472  1.0101 04582  0.8036 09465  1.0093
02 05026 08857 10442  1.1139 0.474 0.8298 09769  1.0416 04725  0.8273 0.974 1.0385
03 05553 0.983 11595 12371 04911 08579  1.0094 1.076 04875  0.8519  1.0025  1.0687
2 0 05314 09292  1.0933 11654 05314 09292  1.0933 11654 05314 09292  1.0933  1.1654
01 05812 10191 11995 12787 05548 09676 11377 12125 05542 09666 11366  1.2113
02 06652 11748 13842 14761 05819 10116 11884 12661 05792  1.0072 11834  1.2607
03  0.85% 1.55 18321 19557  0.6137 1.063 12474 13284 06067 10517  1.2346 13148
5 0 0.6592 1.137 1.3333 14196  0.6592 1.137 1.3333 14196  0.6592 1.137 1.3333  1.4196
01 07483 12866 15073 16042 07019  1.2008 14054 14952 07008  1.1991 14035  1.4932
02 09198 15827 1.853 19715 07579 12821 14962 15901 07519 12735 14866  1.5801
03 17245 31501  3.7245 39755 08385  1.3953 16213  1.7202 0.819 1.3682 15915  1.6893
10 0 07763 13467 15815 16846 07763 13467 15815 16846 07763 13467 15815 16846
01 08989 15486 18153 19324 08338 14313 16765 17841  0.8322 1.429 16739  1.7814
02 11426 19432 22697 24129 0.916 15468  1.8042 1.917 0.9067 15339 179 1.9023
0.3 25893 44839 52393 55684 10586 17378 20122 21322 10205 16875 19577  2.0759
Table 4: Effect of volume fraction exponent, porosity distribution and porosity volume fraction on dimensionless axial stress in
FG plate, a/h=4
Even Uneven Logarithmically-Uneven
p C b/a=1 b/a =2 b/a =3 b/a =4 b/a=1 b/a =2 b/a =3 bla =4 b/a=1 bla =2 b/a =3 bla =4
0 0 02156 04348 05249 05645 02156  0.4348 05249 05645 02156 04348 05249 05645
0.1 02156 04348 05249 05645 02191 04417 05332 05734 0219 0.4416 0533 0.5732
0.2 02156 04348 05249 05645 02228 04489 05418 05826 02224 04482 0541 0.5818
03 02156 04348 05249 05645 02266 04563 05507 05922 02258 04548 05489  0.5902
1 0 0.333 0.6726 08126 08742  0.333 0.6726 08126  0.8742  0.333 0.6726  0.8126  0.8742
01 03521 07111 0859 0.924 0.3421  0.6905  0.8341 08972 03419  0.6901 08335  0.8966
0.2 03798 07668 09261 09961  0.352 0.7096  0.857 0.9218  0.351 0.7078  0.8548  0.9194

366



Journal of Computational Applied Mechanics, Vol. 51, No. 2, December 2020

0.3 04244 0.8562 1.0337 1.1116 0.3626 0.7302 0.8816 0.9482 0.3603 0.7258 0.8764 0.9426
2 0 0.3928 0.7906 0.9545 1.0265 0.3928 0.7906 0.9545 1.0265 0.3928 0.7906 0.9545 1.0265
0.1  0.4325 0.8699 1.0498 1.1288 0.4073 0.8185 0.9877 1.0621 0.4069 0.8178 0.9869 1.0612
0.2 0.5039 1.0123 1.2209 1.3125 0.4237 0.8496 1.0249 1.1019 0.422 0.8465 1.0212 1.098
0.3 0.685 1.3736 1.6546 1.7778 0.4424 0.8851 1.0671 1.1471 0.4384 0.8774 1.058 1.1373
5 0 0.4695 0.9396 1.1332 1.2183 0.4695 0.9396 1.1332 1.2183 0.4695 0.9396 1.1332 1.2183
0.1  0.5287 1.0547 1.2711 1.3662 0.4896 0.9756 1.1756 1.2636 0.4891 0.9746 1.1746 1.2624
0.2 0.6511 1.2925 1.5555 1.671 0.5135 1.0167 1.2238 1.3147 0.511 1.0126 1.2189 1.3096
03 14132 2.8063 3.3701 3.6167 0.5439 1.0664 1.2811 1.3754 0.5369 1.0552 1.2683 1.3619
10 0 0.5595 1.1227 1.3549 1.4569 0.5595 1.1227 1.3549 1.4569 0.5595 1.1227 1.3549 1.4569
0.1  0.6359 1.2715 1.5334 1.6485 0.5848 1.1676 1.4077 1.5132 0.5841 1.1664 1.4063 1.5118
0.2 0.7818 1.5493 1.865 2.0037 0.6156 1.2184 1.4666 1.5757 0.6124 1.2133 1.4607 1.5695
0.3  1.8652 3.6278 4.3407 4.6525 0.66 1.2839 1.5403 1.6529 0.6489 1.2682 1.5229 1.6348

Table 5: Effect of volume fraction exponent, porosity d;:sglbijt{on a%]dl%oms'ty volume fraction on dimensionless axial stress in
p al ey =

Even Uneven Logarithmically-Uneven
p C b/a=1 b/a =2 b/a =3 b/a =4 b/a=1 b/a =2 b/a =3 b/a=4 b/a=1 b/a =2 b/a=3 bla=4
0 0 0.1988 0.4183 0.5085 0.5481 0.1988 0.4183 0.5085 0.5481 0.1988 0.4183 0.5085 0.5481
0.1 0.1988 0.4183 0.5085 0.5481 0.2019 0.4247 0.5163 0.5565 0.2018 0.4245 0.5161 0.5563
0.2 0.1988 0.4183 0.5085 0.5481 0.205 0.4313 0.5242 0.5651 0.2047 0.4306 0.5235 0.5642
0.3 0.1988 0.4183 0.5085 0.5481 0.2083 0.438 0.5325 0.5739 0.2076 0.4366 0.5308 0.5721
1 0 0.3047 0.6448 0.7849 0.8465 0.3047 0.6448 0.7849 0.8465 0.3047 0.6448 0.7849 0.8465
0.1 03225 0.682 0.83 0.8951 0.3124 0.6611 0.8047 0.8678 0.3122 0.6606 0.8042 0.8673
0.2 0.3486 0.7361 0.8956 0.9657 0.3206 0.6783 0.8257 0.8905 0.3198 0.6767 0.8237 0.8883
0.3 0.3912 0.8235 1.0011 1.0792 0.3294 0.6968 0.8481 0.9146 0.3276 0.6929 0.8434 0.9095
2 0 0.3568 0.7542 0.9179 0.9898 0.3568 0.7542 0.9179 0.9898 0.3568 0.7542 0.9179 0.9898
0.1 0.3938 0.8306 1.0103 1.0892 0.3687 0.779 0.948 1.0222 0.3684 0.7784 0.9472 1.0214
0.2 04618 0.9693 1.1776 1.2691 0.382 0.8065 0.9813 1.0581 0.3807 0.8038 0.978 1.0545
0.3 0.6392 1.3267 1.6074 1.7304 0.397 0.8374 1.0187 1.0983 0.3937 0.8307 1.0106 1.0897
5 0 0.4188 0.8865 1.0792 1.164 0.4188 0.8865 1.0792 1.164 0.4188 0.8865 1.0792 1.164
0.1  0.4695 0.9918 1.207 1.3016 0.4323 0.9144 1.1132 1.2006 0.4319 0.9137 1.1123 1.1997
02 05777 1.2129 1474 1.5886 0.4466 0.9439 1.149 1.2391 0.4452 0.9411 1.1455 1.2354
0.3  1.3267 2711 3.2718 3.5172 0.462 0.9751 1.1867 1.2797 0.4588 0.9686 1.1788 1.2712
10 O 0.5014 1.0623 1.2937 1.3954 0.5014 1.0623 1.2937 1.3954 0.5014 1.0623 1.2937 1.3954
0.1 0.5646 1.1961 1.4566 15711 0.5172 1.0956 1.3343 1.4392 0.5168 1.0948 1.3333 1.4382
0.2 0.6819 1.4404 1.753 1.8904 0.5326 1.1277 1.3734 1.4814 0.5312 1.1248 1.3698 14776
0.3  1.6548 3.3827 4.0841 4.3912 0.5471 1.1562 1.4077 1.5184 0.5442 1.1508 1.4013 15114

Table 6: Effect of volume fraction exponent, porosity distribution and volume fraction of porosity on Dimensionless transverse
shear stress in FG plate, a/h=10

Even Uneven Logarithmically-Uneven
p C b/a=1 b/a =2 b/a =3 b/a =4 b/a=1 b/a =2 b/a =3 bla =4 b/a=1 b/a =2 b/a =3 bla=4
0 0 0.2375 0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472

0.1  0.2375 0.3801 0.4276 0.4472 0.2326 0.3723 0.4188 0.4380 0.2327 0.3725 0.4190 0.4382
0.2  0.2375 0.3801 0.4276 0.4472 0.2273 0.3638 0.4093 0.4280 0.2278 0.3646 0.4102 0.4290
03  0.2375 0.3801 0.4276 0.4472 0.2215 0.3545 0.3989 0.4171 0.2227 0.3565 0.4011 0.4194
2 0 0.2174 0.3480 0.3915 0.4095 0.2174 0.3480 0.3915 0.4095 0.2174 0.3480 0.3915 0.4095
0.1  0.2139 0.3424 0.3852 0.4028 0.2032 0.3252 0.3659 0.3827 0.2036 0.3258 0.3666 0.3834
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0.2  0.2087 0.3340 0.3757 0.3929 0.1858
0.3  0.1993 0.3190 0.3589 0.3754 0.1639
5 0 0.1917 0.3069 0.3452 0.3610 0.1917
0.1 0.1785 0.2857 0.3214 0.3362 0.1630
0.2  0.1538 0.2462 0.2770 0.2897 0.1214
0.3 0.0872 0.1395 0.1570 0.1642 0.0554
10 0 0.2101 0.3363 0.3784 0.3957 0.2101
0.1 0.2006 0.3211 0.3613 0.3778 0.1777
0.2 0.1789 0.2864 0.3222 0.3370 0.1247
0.3 0.0616 0.0987 0.1110 0.1161 0.0206
o 0 0.2375 0.3801 0.4276 0.4472 0.2375
0.1  0.2375 0.3801 0.4276 0.4472 0.2052
0.2  0.2375 0.3801 0.4276 0.4472 0.1492
0.3  0.2375 0.3801 0.4276 0.4472 0.0243

0.2973 0.3345 0.3498 0.1876 0.3002 0.3378 0.3532
0.2623 0.2951 0.3086 0.1688 0.2702 0.3040 0.3179
0.3069 0.3452 0.3610 0.1917 0.3069 0.3452 0.3610
0.2609 0.2935 0.3069 0.1638 0.2622 0.2950 0.3085
0.1944 0.2187 0.2287 0.1261 0.2018 0.2271 0.2375
0.0887 0.0998 0.1044 0.0719 0.1152 0.1296 0.1355
0.3363 0.3784 0.3957 0.2101 0.3363 0.3784 0.3957
0.2844 0.3200 0.3346 0.1786 0.2859 0.3217 0.3364
0.1996 0.2246 0.2348 0.1310 0.2098 0.2360 0.2468
0.0330 0.0371 0.0388 0.0494 0.0791 0.0890 0.0931
0.3801 0.4276 0.4472 0.2375 0.3801 0.4276 0.4472
0.3284 0.3695 0.3864 0.2062 0.3300 0.3712 0.3882
0.2388 0.2686 0.2809 0.1562 0.2499 0.2812 0.2941
0.0390 0.0438 0.0458 0.0612 0.0980 0.1102 0.1153

Figure 3 shows the through-the-thickness distribution of
dimensionless deflections of square FG plate in the thickness
direction for a/h=10 with several values of p and ¢.

From Figure 3a it is seen that the deflection increases as p
increases for { = 0. The influence of porosity distribution and the
volume fraction of porosity are illustrated in Figures 3b-d. The
increase of ¢ value increases the deflection. The maximum center
deflection occurs at the plate center for all types of porosity
distributions and porosity volume fractions and varies
symmetrically about the mid plane through-the-thickness of the
plate for fixed p=0.5 (see Figures 3b-d). However the maximum
center deflection hasn't occurred at the plate center for perfect FG
plates. This is because of the inhomogeneity of the plate material.
Also seen that, the even porosity distribution shows larger
deflection compared to uneven and logarithmically-uneven
distribution values in the thickness direction of all porosity
volume fractions.

The distribution of dimensionless axial stress Si; of very thick
(a/h=4) rectangular (b/a=3) FG plate in the thickness direction is
portrayed in Figure 4 for several values of p and {. The axial
stresses are tensile and compressive at the upper and lower surface
of the plate respectively, for three types of distributions and
porosity volume fraction values. The increase of the porosity
volume fraction results in increase of axial stress. This can be
defended by the fact that the porosity lessens the rigidity of the
plate. From Figure 4a, it is noteworthy to see that the stress
increases with increase of exponent p. The difference in axial
stress is more in even distribution compared to other two
distributions. The volume fraction of porosity ¢ of even porosity
distribution (see Figure 4b) has no influence on axial stress in two
positions, S11=-0.26 at z/h=-0.23and S;;=0.31 at z/h=0.325.
Whereas the porosity volume fraction ¢ of uneven (see Figure 4c)
and logarithmic-uneven (see Figure 4d) porosity distribution has
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no influence on axial stress in three positions, S1;=-0.37 at z/h=-
0.2711, S;;=0.05 at z/h=-0.1211 and S;;=0.5 at z/h=0.39. &
$11=0.27 at 2/h=-0.365, S11=-0.1291 at z/h=0.045 and Sy;= 0.52 at
2/h=0.39 respectively.

The distribution of normal stress Ss; in the thickness direction
of very thick (a/h=4) rectangular (b/a=3) FG plate is shown in Fig.
5 for several values of p and ¢. The volume fraction of porosity
has no influence on normal stress Ss; in three positions for uneven
and Logarithmically-uneven distribution (see Figures. 5c-5d)
respectively, are S33=-0.0677 at z/h=-0.3, S3=-0.0697 at
z/h=0.06, S3;=0.016 at z/h=0.45 & Sgz= -0.0677 at z/h=-0.29,
S3=-0.066 at z/h=0.07, S33=0.016, at z/h=0.45.

Lastly, Figure 6 illustrates the distribution of dimensionless
transverse shear stress Si3 of FG rectangular (b/a=3) in the
thickness direction for a’h=4 with different values of p and {. The
transverse shear stress Sz increases as p=0, 1 and 2 while it
decreases as p=5 and 10 (see Figure. 6a). The maximum values of
transverse shear stress for perfect, even, uneven and logarithmic-
uneven distributions at p=2 respectively, are Si3=0.4962 at
z/h=0.2, S13=0.5835 at z/h=0.2 and ¢ = 0.2, S13 =0.5752 at
z/h=0.2 and { = 0.3 & S;3 =0.5645 at z/h=0.3 and { = 0.3 (see
Figures. 5a-d). From Figures 6b-d, it is observed that the
transverse shear stress increases as ¢ increases. The porosity
volume fraction ¢ of even porosity distribution (see Figure. 6b)
has no influence on transverse shear stress in one position,
S13=0.4325 at z/h=0.05. Whereas the porosity volume fraction ¢
of uneven (see Figure. 6¢) and logarithmic-uneven (see Figure.
6d) porosity distribution has no influence on transverse shear
stress in two positions respectively, are S13=0.114 at z/h=-0.3375,
S15=0.468 at z/h=0.11 & S;3=0.115 at z/h=-0.34 S;5=0.47 at
z/h=0.115.
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Figure. 3. Distributions of dimensionless deflection through the thickness of square (a) perfect FG plate; (b) FG Plate with Even porosity distribution; (c) FG
Plate with the uneven porosity distribution; (d) FG Plate with Logarithmic-uneven porosity distribution for p=0.5 (a/h=10)
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Figure.4. Distributions of dimensionless axial stress through the thickness of Rectangular (b/a=3) (a) perfect FG plate; and (b) FG plate with the Even porosity
distribution; (c) FG plate with the uneven porosity distribution; (d) FG plate with Logarithmic-uneven porosity distribution for p=2 (a/h=4)
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Figure 6. Distributions of dimensionless Transverse shear stress through the thickness of Rectangular (b/a=3) (a) perfect FG plate; and (b) FG plate with the
Even porosity distribution; (c) FG plate with the uneven porosity distribution; (d) FG plate with Logarithmic-uneven porosity distribution for p=2 (a/h=4)

5. Conclusions

A novel higher order theory is developed by considering the
thickness stretching of ceramic/metal single-layered FG plates.
This theory fulfills the nullity conditions at the top and bottom The
surfaces of the FG plate for the transverse shear stresses and thus

eliminates the use of a shear correction factor. The equilibrium
equations are derived by employing the principle of virtual

even,
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displacements. Then, the analytical solutions are presented for
porous FG plates under all sides are simply supported conditions.
uneven
distributions are used to approximately portray the variations of

and logarithmically-uneven porosity
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the properties of FG plates with porosities. The present theory is
validated with the results available in the open literature. The
numerical results estimated by the present theory are accurate in
estimating the flexural response of perfect and porous FG plates.
The influence of thickness ratio a/h, aspect ratio b/a, gradation
index p, and porosity volume fraction of the flexural response of
FG plates are studied. Also, the provided numerical results can be
used to evaluate various plate theories and also to compare the
results provided by other analytical methods and finite element
methods. Based on the present work, it can be concluded that the
present theory allows examining the flexural behavior of porous
FG plates produced by sintering process.
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