Thermoelastic response of microbeams under a magnetic field rested on two-parameter viscoelastic foundation

Adam Zakriaa,b* and Ahmed E. Abouelregala,c

aDepartment of Mathematics, College of Science and Arts, Jouf University, Qurayyat, Saudi Arabia
bFaculty of Science, Department of Mathematics, University of Kordofan, Sudan
cDepartment of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

\begin{abstract}
Mechanical foundations and pavement design need a perfect prediction of the response of the material to reach a reliable and safe structure. This work deals with the thermoelastic response of microbeams rested on a two-parameter viscoelastic foundation due to a magnetic field in the context of the dual-phase lag thermoelasticity model. The solutions of the governing equations are attained using the Laplace transform method. The distributions of the deflection, temperature, displacement and the flexure moment of the microbeam are numerically obtained and illustrated graphically. The effects of the magnetic field, Winkler and shear foundation parameters, the ramping time parameter and the models of thermoelasticity on the considered fields are concerned and discussed in details. For comparison purposes, the response of the microbeam and the dynamic deflection using the Bernoulli-Euler beam and thermoelasticity theories are compared with earlier investigated studies and magnificent agreements are detected.

Keywords: Microbeams, Thermoelasticity, Magnetic field, Pasternak foundation, Phase lags
\end{abstract}

1. Introduction

Microbeams are very important in the applications of Micro-electro-mechanical systems (MEMS) and Nano-electro-mechanical systems (NEMS). The axial parameters of a microbeam are applied to cause changes in its distributive behaviors. These differences in distribution allow the use of a small beam as a sensor to measure physical quantities such as the deflection, the displacement, temperature and the flexure moment. In recent decades, the thermal response of microbeams has been studied and there are many interesting papers published in this area of research (see Akgöz and Civalek [1], Thai, et al. [2], Akgöz and Civalek [3], Belardinelli, et al. [4], Baghani [5]).

Recently, non-ideal boundary conditions have been investigated for both microbeams.Pakdemirli and Boyacı [6] studied the concept of boundary conditions to the microbeam problem. A linear and non-linear model of microbeam was introduced to investigate the initial resonance of the microbeam due to consistent external distributed force, and the effect of linear and non-linear foundation on the required vibration response is noted. These variations of conditions allow the use of a micro-beam as a sensor to measure physical quantities such as the deflection, temperature, displacement and the flexure moment which are important to various kinds of research (Safarabadi, et al. [7], Baghani, et al. [8], Şimşek [9], Ghayesh, et al. [10], Caputo [11], El-Karamany and Ezzat [12]).

The highway pavements, railroad tracks, and strip foundations that take into account different types of foundations such as Pasternak, Winkler, flexible or sticky, are among the issues related to the interaction of soil structure. The problems of the physical fields of beams on continuous elastic foundations have been investigated by a number of researchers. For instance, the effect of sticky foundation on the deflection behaviors of mechanical and precision mechanics was sticky investigated by Pradhan and Murmu [13], Goodarzi, et al. [14], Mohammadi, et al. [15], Mohammadi, et al. [16], Younis, et al. [17], Zenkour and Sobhy [18]. Also, Chen, et al. [19] discussed the dynamic stiffness of the beams based on the viscosity due to harmonic motion. In addition, Abdalla and Ibrahim [20] used the discrete Reissner–Mindlin element to explain the problem of thin and thick plates resting on the Winkler-type foundation.

There is a growing interest in the generalized theory of thermoelasticity, which has been found to produce more realistic results than double or unplanned models of thermoelasticity, especially when short time effects or temperature gradients are considered. The thermoelastic diffusion theory that uses the thermal elastic model was developed by Kumar, et al. [21]. Also,
Tzou [22], Tzou [23] proposed a new concept of dual-phase-lag (DPL) model in which the heat flux and temperature gradient could be simulated with lag times. In addition, Biot [24] investigated the theory of the classical dynamical thermoelasticity (CTE).

This study is an effort to study a thermoelastic response of microbeams under various magnetic fields based on the DPL thermoelasticity model. Also, an important comparison between different models of thermoelasticity and their effect on different fields is illustrated. Non-dimensional variables with the analytical Laplace transform technique are used to compute the vibration of the studied fields of the microbeams. Some comparisons have been also shown graphically to estimate the effects of Winkler and shear foundation parameters, the magnetic field, phase lags and ramping time parameters on all the physical fields.

2. Formulation of the Problem

We consider a thermoelastic thin microbeam initially at temperature T_0 rested on a two-parameter viscoelastic foundation. A linear viscoelastic foundation model is shown in Fig. (a) where the foundation is modeled by introducing a shear layer mounted on a set of linear elastic springs. Let us consider that the x-axis is drawn along the axial tendency of the beam and y, z axes agree to the width and thickness, correspondingly. The teny deflections of the microbeam with dimensions of length L, width b and thickness h and cross-section area $A=bh$ are considered.

![Fig. a. Schematic diagram for the microbeam.](image)

According to Euler–Bernoulli beam theory, the components of displacement vector are given by:

$$u = -\frac{\partial w}{\partial x}, \quad v = 0, \quad w(x, y, z, t) = w(x, t)$$ \hspace{1cm} (1)

For a one-dimensional problem, the constitutive equation after using Eqs. (1) can be expressed as

$$\sigma_x = -E \left[\frac{\partial^2 w}{\partial x^2} + \alpha_\tau \theta \right]$$ \hspace{1cm} (2)

Where σ_x is the nonlocal axial stress, and $\alpha_\tau = \alpha / (1 - 2\nu)$. With aid of Eq. (2), the flexure moment M is given by

$$M(x, t) = -E \left[\frac{\partial^2 w}{\partial x^2} + \alpha_\tau \theta \right]$$ \hspace{1cm} (3)

where

$$M_r = \frac{12}{h^2} \int_{h/2}^{h/2} \theta(x, z, t) \, dz$$ \hspace{1cm} (4)

Due to the application of the initial magnetic field H and the density of the current J, there results an induced magnetic and electric fields h and E. The Maxwell’s equations for a homogeneous and electrically perfect conducting thermoelastic solid (neglecting the charge density) can be recovered as Wang, et al. [25]

$$j = \nabla \times h, \quad \nabla \times E = -\mu_0 \frac{\partial h}{\partial t}, \quad E = -\mu_0 \left(\frac{\partial E}{\partial t} \right) + H$$ \hspace{1cm} (5)

We can write the vector of the induced magnetic field h and current density J as follows:

$$j = \nabla \times h, \quad \nabla \times E = -\mu_0 \frac{\partial h}{\partial t}, \quad E = -\mu_0 \left(\frac{\partial E}{\partial t} \right) + H$$ \hspace{1cm} (6)

Using previous equation (6) into the expressions for the Lorentz force F induced by the applying longitudinal magnetic field H, yields

$$F = \left(f_r, f_y, f_z \right) = \mu_0 H^2 \left(0, 0, \frac{\partial^2 w}{\partial x^2} \right)$$ \hspace{1cm} (7)

As is known, the Winkler model of the elastic foundation is the most preliminary in which the vertical displacement is assumed to be proportional to the contact pressure at an arbitrary point (see Hetenyi [26]). Due to the interaction between the microbeam and the supporting foundation, the normal stress per unit area R_f (foundation reaction) and vertical displacement w at an arbitrary point on the lower boundary of the microbeam follows the following relationship

$$R_f = K_w w(x, t) - K_s \frac{\partial^2 w(x, t)}{\partial x^2}$$ \hspace{1cm} (8)

Where K_w is the Winkler’s foundation modulus, and K_s is the shear foundation modulus. It is observed that when $K_s = 0$, Eq. (8) is equivalent to that of the microbeam on a Winkler foundation type; also, when $K_w = K_s = 0$ (the subgrade reactions are zero), indicating that the microbeam not have a foundation. The equation of motion for the transverse response of microbeams can be written as

$$\frac{\partial^2 w}{\partial x^2} - R_f + f(x) = \rho A \frac{\partial^2 w}{\partial x^2}$$ \hspace{1cm} (9)

where $f(x)$ is a function of space to incorporate the longitudinal magnetic force. Here $f(x) \neq f_r$, since f_r is a body force and $f(x)$ denotes the force per length. So, $f(x)$ can be written as

$$f(x) = A_f = A \mu_0 H^2 \frac{\partial^2 w}{\partial x^2}$$ \hspace{1cm} (10)

Introducing Eqs. (3), (8) and (10) into Eq. (9), the following motion equation of the mirobeam is obtained

$$\frac{\partial^2 w}{\partial x^2} - \frac{K_w}{E} \frac{\partial^2 w}{\partial x^2} + \frac{K_s}{E} \frac{\partial^2 w}{\partial x^2} + \frac{p_k}{1 - \nu} \frac{\partial^2 w}{\partial x^2} + \frac{K_s}{E} \frac{\partial^2 w}{\partial x^2} = 0$$

The generalized heat conduction in the context of Tzou [22] theory is given by

$$K \left(1 + \frac{r_0}{\partial t} \frac{\partial^2 w}{\partial x^2} + \frac{r_3}{\partial t} \frac{\partial^2 w}{\partial x^2} \right) = \left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left[\frac{r_0 C_\theta}{\partial t} + \nu T_0 \frac{\partial^2 \theta}{\partial x^2} \right]$$

Putting Eq. (1) into (12), we get the generalized heat conduction equation as

$$\left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} \right] = \left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} \right)$$

$$\left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} \right] = \left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} \right]$$

$$\left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} \right] = \left(1 + \frac{r_0}{\partial t} + \frac{r_3}{\partial t} \right) \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} \right]$$
3. Solution of the Problem

For a very thin microbeam, assuming that the increment temperature varies in a sinusoidal form along the thickness direction and also the microbeam is thermally insulated. Then, the variation of the temperature can be expressed as

$$\theta(x, z, t) = \theta(x, t) \sin \left(\frac{2\pi z}{h} \right)$$ \hspace{1cm} (14)

Substituting Eq. (14) into Eq. (11), the motion equation (11) can be represented as

$$\frac{\partial^4 w}{\partial x^4} - \left(\frac{K}{h} + \frac{4\mu_w h^4}{EI} \right) \frac{\partial^2 w}{\partial t^2} \frac{\partial^2 w}{\partial x^2} + \frac{4\mu_w h^4}{EI} \frac{\partial^2 w}{\partial t^2} + \frac{2a_2 c_v^2 \theta}{h^2} \frac{\partial^2 \theta}{\partial x^2} = 0$$ \hspace{1cm} (15)

From Eqs. (3) and (14), the flexure moment M can be written as

$$M(x, t) = -EI \frac{\partial^2 w(x, t)}{\partial x^2} - \frac{4\mu_w h^4}{EI} \frac{\partial^2 w}{\partial t^2} \frac{\partial^2 \theta}{\partial x^2}$$ \hspace{1cm} (16)

Integrating Eq. (13) with respect to z through the thickness of the microbeam from $-\frac{h}{2}$ to $\frac{h}{2}$ yields

$$\left[1 + \tau_{\theta} \frac{\partial}{\partial t} \right] \left(\frac{1}{(1 + \tau_0) \frac{\partial^2}{\partial t^2}} + \frac{1}{(1 + \tau_0) \frac{\partial}{\partial t}} \right) \left(\frac{\partial^2 \theta}{h^2} \right) = 0$$ \hspace{1cm} (17)

To facilitate the numerical analysis, the following dimensionless parameters are introduced:

$$(x', z', u', w') = \frac{1}{L} \left[x, z, u, w \right], \quad \left[t', \tau_0 \right] = \frac{2}{L} \left[t, \tau_0 \right], \quad \theta' = \frac{\theta}{\theta_0}, \quad \sigma' = \frac{\sigma}{\tau_0}, \quad M' = \frac{M}{M_0}, \quad c_0 = \sqrt{\frac{E}{\rho}}$$ \hspace{1cm} (18)

So, the basic equations in nondimensional forms are simplified as

$$\frac{\partial^4 w}{\partial x'^4} - A_1 \frac{\partial^2 w}{\partial x'^2} + A_2 \frac{\partial^2 w}{\partial t'^2} - A_3 \frac{\partial^2 \theta}{\partial x'^2} = 0$$ \hspace{1cm} (19)

$$M(x, t) = -A_5 \frac{\partial^2 w(x, t)}{\partial x'^2} - A_6 \theta'$$ \hspace{1cm} (20)

where

$$A_1 = L^2 \left(\frac{12K_0}{h^3} + \frac{12\mu w h^4}{EI} \right), A_2 = \frac{12\mu w h^4}{EI}, A_3 = \frac{12\mu w h^4}{EI}, A_4 = \frac{124L h^E}{h^2}, A_5 = \frac{24L h^E}{h^2}, A_6 = \frac{24L h^E}{h^2}$$

4. Initial and boundary conditions

To solve the problem, the initial and boundary conditions essential be reserved into consideration. The homogeneous initial conditions are reserved as

$$\theta(x, 0) = \frac{\partial \theta(x, 0)}{\partial t} = 0 = w(x, 0) = \frac{\partial w(x, 0)}{\partial t}$$ \hspace{1cm} (21)

For example, we'll assume that both ends of the mirobeam satisfy

$$w(0, t) = w(L, t) = 0 = \frac{\partial w(0, t)}{\partial x} = \frac{\partial w(L, t)}{\partial x}$$ \hspace{1cm} (22)

Also, we assume that the mirobeam is loaded thermally by ramp-type heating, hence

$$\theta(x, t) = \Theta_0 \left\{ \begin{array}{ll} 0, & 0 \leq t \leq t_0 \\ \frac{t}{t_0}, & 0 \leq t \leq t_0 \\ 1, & t > t_0 \end{array} \right\}$$ \hspace{1cm} (23)

where t_0 is ramp-type parameter and Θ_0 is a constant. Moreover, the temperature at the end boundary should achieve the following relationship

$$\frac{\partial \theta}{\partial x} = 0 \quad \text{on} \quad x = L$$ \hspace{1cm} (24)

5. Solution of the problem in the Laplace transform domain

Using the Laplace transform defined by

$$f(x, t) = \int_0^\infty f(x, t) e^{-s x} dt$$ \hspace{1cm} (25)

to both sides of Eqs. (19) and (20) and by the homogeneous initial conditions (21), one gets the field equations in the Laplace transform space as

$$\frac{d^m w}{dx^m} - A_{10} \frac{d^2 \theta}{dx^2} + A_{11} \Theta = -A_{12} \frac{d^2 w}{dx^2} \frac{d^2 \theta}{dx^2} \hspace{1cm} (26)$$

$$\frac{d^m w}{dx^m} - A_{10} \frac{d^2 \theta}{dx^2} + A_{11} \Theta = -A_{12} \frac{d^2 w}{dx^2} \frac{d^2 \theta}{dx^2} \hspace{1cm} (27)

where

$$A_{11} = \frac{\tau^2}{\tau_0}, A_{12} = A_{14} = A_{15} = A_{15} = A_{16} = A_{17}$$

Elimination Θ or Θ from Eqs. (26), one obtains:

$$(D^6 - AD^4 + BD^2 - C)(\tilde{w}, \tilde{\Theta})(x) = 0$$ \hspace{1cm} (28)

where A, B and C are given in (29)

$$A = A_{10} + A_{14} + A_{12} A_{14} \quad \text{and} \quad B = A_{10} A_{14} + A_{11} \quad \text{and} \quad C = A_{11} A_{14}$$

Equation (28) can be moderated to

$$(D^6 - AD^4 + BD^2 - C)(\tilde{w}, \tilde{\Theta})(x) = 0$$ \hspace{1cm} (30)

where $m_{1,2,3,4}$ are roots of

$$m^5 - A m^4 + B m^2 - C = 0$$ \hspace{1cm} (31)

The solution of equation (31) in the Laplace transformation domain can be characterized as

$$\{\tilde{w}, \tilde{\Theta}\}(x) = \sum_{n=1}^3 \left[\left(1, \beta_n \right) C_n e^{-\beta_n x} + \left(1, \beta_n \nu \right) C_{n,12} e^{\beta_n x} \right]$$ \hspace{1cm} (32)

Where the consensus between these two equations and Eq. (27), we get

$$\beta_n = -\frac{m_n A_n}{m_n^2 - A_n}$$ \hspace{1cm} (33)
The displacement can be obtained after using Eq. (32) as follows

\[
\bar{u}(x) = -z \frac{d\bar{w}}{dx} = z \sum_{n=1}^{3} m_n (C_n e^{-\nu_n x} - C_{n+1} e^{\nu_n x})
\]
(34)

Substituting the expressions of \(\bar{w}\) and \(\Theta\) from (32) into (28), we got to solve the flexure moment \(\bar{M}\) as follows:

\[
\bar{M}(x) = -z \sum_{n=1}^{3} (m_n A_{1n} + A_{1c} \beta_n) (C_n e^{-\nu_n x} + C_{n+1} e^{\nu_n x})
\]
(35)

Also, the strain gives

\[
\varepsilon(x) = \frac{d\bar{u}}{dx} = -z \sum_{n=1}^{3} m_n^2 (C_n e^{-\nu_n x} + C_{n+1} e^{\nu_n x})
\]
(36)

After applying Laplace transforms, the boundary conditions (21)-(23) take the forms

\[
\bar{w}(0,z) = \bar{w}(l,z) = 0, \quad \frac{\partial \bar{w}(z,x)}{\partial z} = 0, \quad \frac{\partial \varepsilon(z,x)}{\partial x} = 0
\]
(37)

Replacing Eq. (32) in the above-mentioned boundary conditions, one obtains six linear equations

\[
\sum_{n=1}^{3} (C_n + C_{n+1}) = 0, \quad \sum_{n=1}^{3} (C_n e^{-\nu_n l} + C_{n+1} e^{\nu_n l}) = 0
\]
(38)

\[
\sum_{n=1}^{3} m_n^2 (C_n + C_{n+1}) = 0, \quad \sum_{n=1}^{3} m_n^2 (C_n e^{-\nu_n l} + C_{n+1} e^{\nu_n l}) = 0
\]
(39)

\[
\sum_{n=1}^{3} m_n (\beta_n C_n - \beta_{n+1} C_{n+1}) = -G(z)
\]
(40)

The solution to the system of linear equations above provides unknown parameters \(C_n\) \((n = 1,2,..,6)\). To determine the fields studied in the physical field, a Riemann sum approximation method is used to obtain numerical results.

6. Numerical results

Using the theoretical analysis described in the previous sections, and to assess the effects Winkler and shear foundation parameters \(K_w\) and \(K_g\), initial magnetic field \(H_z\) and ramping time parameter \(t_0\) on the deflection \(w\), temperature \(\Theta\), displacement \(u\) and the flexure moment \(M\) distributions, a marginal study is conducted as follows. A comparison of our results with those of other articles can be seen in Figs. 1-16. The physical and geometrical properties of the microbeam are listed in Table 1. Numerical calculations and graphs have been divided into four cases.

<table>
<thead>
<tr>
<th>Material properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity K (W m(^{-1})K(^{-1}))</td>
<td>156</td>
</tr>
<tr>
<td>Young' modulus E (GPa)</td>
<td>169</td>
</tr>
<tr>
<td>Density \rho (Kgm(^{-3}))</td>
<td>2330</td>
</tr>
<tr>
<td>Thermal expansion \alpha (K(^{-1}))</td>
<td>2.59 \times 10^{-6}</td>
</tr>
<tr>
<td>Thermal diffusivity k (m(^2)s(^{-1}))</td>
<td>9.4 \times 10^{-5}</td>
</tr>
<tr>
<td>Poisson's ratio \nu</td>
<td>0.22</td>
</tr>
<tr>
<td>Specific heat C_v (J/kgK)</td>
<td>713</td>
</tr>
</tbody>
</table>

6.1. The effect of the initial magnetic field parameter

In this case, we have studied the effect of the initial magnetic field parameter \(H_{z0}\) on all studied field variables \((w, \Theta, u, M)\) in the wide range \(1 \leq x \leq 2\). We take the initial magnetic field \(H_z = 10, 20, 30\) in the presence of the magnetic field and put the parameter \(H_z = 0\) when the magnetic field is absent. The other parameters are assumed to be constants \((K_w = 100, K_g = 50, \tau = 0.05, \tau = 0.03\) and \(t_0 = 0.1\)). The results obtained are displayed graphically in Figs. 1-4. From Figs. (1-4) we can see that the parameter \(H_{z0}\) has a great effect on all the studied fields. Also, we can observe that the deflection \(w\) start increasing with parameter \(H_{z0}\) in the range \(1 \leq x \leq 1.4\), thereafter decreasing in the range \(1.4 \leq x \leq 2\). The natural temperature \(\Theta\) vs the magnetic field parameter is plotted in Fig. 2. We observed that the increase in the value of \(H_{z0}\) causes an increase in the values of temperature \(\Theta\). The variation of displacement \(u\) vs the distance is plotted in Fig. 3. From the figure, we observed that the increase in the value of the \(H_{z0}\) causes decrease in the values of the displacement \(u\). As seen in Fig. 4, it is to be noted that the flexure moment \(M\) start increases with parameter \(H_{z0}\) in the wide range \(1 \leq x \leq 1.1\), thereafter the profile decreasing on the interval \(1.1 \leq x \leq 2\).
6.2. The effect of Winkler and shear foundation parameters

In this section, particular attention is focused on the analytical and numerical analysis of Winkler and shear foundation parameters K_W and K_s on the beam response. To verify the influences of the Pasternak foundation parameters on the behavior of the microbeam, Figs. (5−8) are plotted. It is assumed that $K_W = K_s = 0$ for classical model (without foundation), $K_W = 100, K_s = 0$ for Winkler foundation model and $K_W = 100, K_s = 50$ or Pasternak foundation model. In all cases, the other parameters remain constant. From Fig.5 the deflection w reaches its highest values in the case $K_W = 0, K_s = 50$. Also we can observe that the deflection w has minimum values in the case of $(K_W = 100, K_s = 0)$ compared with other cases. We observed as displayed in Fig. 6 the temperature θ in the case $K_W = K_s = 0$ is close to that in the case of $K_W = 100, K_s = 0$. In Fig. 6 it noted that the displacement u in the case $K_W = K_s = 0$ is adjacent to that in the case of $K_W = 100, K_s = 0$. Fig.8 shows that the flexure moment M in the absence of Pasternak $(K_W = 0, K_s = 50)$ is less than the presence of Pasternak $(K_W = 100, K_s = 50)$.

6.3. The effect of the ramping time parameter t_0

This case investigates the influence of the ramping time parameter t_0 on the studied field quantities. Benchmark results are shown in Figs. 9−12 for future comparisons with other researchers. It is detected that the ramping time parameter t_0 has a pronounced effect on all the distribution of the physical fields. The variations are plotted vs the distance x for ramping time parameter t_0 when $K_W = 100, K_s = 50, t_0 = 0.05, t_0 = 0.03$ and $H_0 = 10$. We can see that the values of the deflection w start decreasing with the ramping time parameter in the range $1 \leq x \leq 1.4$, thereafter increasing to maximum amplitudes in the range $1.4 \leq x \leq 2$ (see Fig. 9). From Fig. 10, we can conclude that the increase in the value of the ramping time parameter t_0 causes decreasing in the values of temperature θ. It is noted from Fig. 11 that the increase in the value of the ramping time parameter t_0 causes decreasing in the values of the displacement u, which is very obvious in the peak points of the curves. As shown in Fig. 12 the values of the flexure moment M start decreasing with the ramping time parameter in the range $1 \leq x \leq 1.1$, there after increasing t_0 maximum amplitudes in the range $1.1 \leq x \leq 2$.
6.4. Comparison between different models of thermoelasticity

The last case illustrates an important comparison between the different theories of thermoelasticity as they can be obtained as special cases from the presented model (DPL). The classical theory of thermoelasticity (CTE) can be obtained by setting \(\tau_w = 0, \tau_\phi = 0 \) and the generalized thermoelasticity with a single phase-lag (LS) can be achieved when \(\tau_w = 0, \tau_\phi = 0.03 \). The distributions of the deflection \(w \), temperature \(\theta \), displacement \(u \) and the flexure moment \(M \) for different models of thermoelasticity are presented graphically in Figs. 13-16. The distribution in the LS model is near to that in the DPL model, but the distributions in the CTE model are different from those in the DPL model. From Fig. 13 we can observe that the deflection \(w \) reaches its maximum values in the case of DPL model compared with other theories. Fig.14 shows that the temperature distribution \(\theta \) has a convergence between the different models of thermoelasticity. From Fig. 15 it is to be noted that the displacement \(u \) in the case of the LS model is close to that in the DPL model, while the displacement \(u \) in the CTE model is different from those in the DPL model. We observed also as displayed in Fig. 16 the distribution of the flexure moment \(M \) in the case of the LS model is small compared to the other models.

7. Conclusion

In this paper, we have analyzed the thermoelastic response of microbeams posted on a two-parameter viscoelastic foundation. One of these parameters represents the Winkler foundation parameter. The second parameter represents the shear foundation modulus \(K_s \) and the ramping time parameter \(\tau_{\phi} \). The results are displayed graphically to explain the effect of the magnetic field, Winkler and shear foundation modulus, the ramping time parameter, and the models of thermoelasticity. The results indicate that the field quantities such as the deflection, temperature, displacement and the flexure moment of microbeam distributions depend not only on the space coordinate \(x \) but also depend on the magnetic field \(H \), Winkler and shear foundation modulus \(K_s \), and the ramping time parameter \(\tau_{\phi} \). The results of the present LS model are an agreement with those of the DPL model, whereas the results of the present CTE model are spaced with those of the DPL model. In this manuscript we can see a good agreement between the deviations obtained and those published. The results are useful for Microelectromechanical systems (MEMS) design and many other applications.
Nomenclature:

\[\begin{array}{ll}
\lambda, \mu & \text{Lamé's constants} \\
\alpha & \text{thermal expansion coefficient} \\
\sigma_0 & \text{specific heat} \\
\nu & \text{heat source} \\

y = (1 - 2\nu)\alpha T & \text{thermal coupling parameter} \\
\tau_e & \text{environmental temperature} \\
\xi & \text{Kronecker's delta function} \\

T & \text{temperature increment} \\
\Delta T & \text{absolute temperature} \\
F & \text{induced electric field} \\
\phi & \text{phase lag of heat flux} \\
\mathbf{u} & \text{displacement vector} \\
\mathbf{v} & \text{phase lag of temperature} \\

\epsilon = \frac{\varepsilon}{\eta} & \text{cubical dilatation} \\
\varepsilon & \text{current density} \\
\sigma_0 & \text{stress tensor} \\
\sigma & \text{strain tensor} \\
q & \text{heat flux vector} \\
\mathbf{M} & \text{the moment} \\
K & \text{Winkler foundation parameter} \\
K_0 & \text{shear foundation parameter} \\
\theta & \text{the deflection} \\
\end{array} \]

References

