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1. Introduction 

In recent years, microstructures have been widely used in 

various industries such as computer industry and medical devices 
because of their high efficiency. Microtubes have attracted much 

attention by researchers [1, 2]. The microtubes are microstructures 

that are extensively used in fabricating microelectromechanical 

systems (MEMSs) [3]. Therefor study of their mechanical 

behavior is very necessary. Experimental data showed effect of 

size on mechanical properties in micro scale so that size effect in 
microtubes cannot be ignored [4-8].  On the other hand classical 

continuum mechanics cannot able to consider influence of size 

therefore to predict mechanical behavior of micro and nano 

structures some of new theories have been developed such as 

nonlocal elasticity theory[9-11], couple stress theory [12], strain 

gradient theory [13] and etc. Nonlocal elasticity theory has 
received much attention from scientists. Based on nonlocal 

elasticity theory the stress at a reference point is considered to be 

a function of the strain at every point in the body. There are 

numerus studies related to size dependent theory [4-7, 14-30]. 

Scientists have been always looking to improve the properties 

of materials. Functionally graded materials (FGM) are advanced 
composite materials in which material properties continually vary 

along one or more directions [31-36]. FGMs has more advantages 

than traditional composites such as improved residual stress 

distribution, higher fracture toughness and reduced stress intensity 

factors. Related to FGMs a number of articles have been published 

[37-39]. 

——— 
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Magnetic field effect is important in mechanical study of micro 
structures such as accelerometers and gyroscopes. Recently the 

research interest has grown on studying the magnetic properties of 

microtubes and mechanical behaviour of microtubes subjected to 

an external magnetic field. Arani et al [40] present an investigation 

about vibration of double-walled carbon nanotubes (DWCNTs) 

conveying fluid placed in uniform magnetic field based on 
nonlocal elasticity theory. Murmu et al [41] studied the influence 

of a transverse magnetic field on the axial vibration of nanorods 

based on nonlocal elasticity approach. An nonlinear study was 

performed by [42] to investigate the vibration of the single-walled 

carbon nanotubes (SWCNTs) under longitudinal magnetic field. 

magnetoelastic model of a pinned beam with the thermal loads was 
performed by Wu [43] to analysis of dynamic instability and 

vibration motions of a pinned beam. Influences of longitudinal 

magnetic field on wave propagation in carbon nanotubes 

embedded in elastic matrix were reported by Wang et al. [44]. 

Narendar et al. [45] presented the effect of longitudinal magnetic 

field on wave dispersion characteristics of equivalent continuum 
structure (ECS) of single-walled carbon nanotubes (SWCNT) 

embedded in elastic medium using nonlocal Euler–Bernoulli beam 

theory. Li [46] presented a new analytical approach to investigate 

torsion of cylindrical nanostructures using nonlocal elasticity 

theory. Nonlocal scale effect is modeled in nano-beams under 

torsion by Barretta et al. [47]. In addition Barretta et al performed 
an exact solution to investigate torsion of functionally graded 

viscoelastic circular nanobeams based on nonlocal elasticity 

theory. Murmu et al [48] developed an analytical model for 
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studying the effects of a longitudinal magnetic field on the 

vibration of a magnetically sensitive double-walled carbon 

nanotube system. Chang [49] performed the nonlinear free 

vibration analysis of nanobeams under longitudinal magnetic field 

based on Eringen’s nonlocal elasticity theory.  

To the best of authors’ knowledge, it is obvious that there are 
strong scientific requirements to develop a good analytic model for 

the static torsion analysis of BDFG nano-rod under magnetic field. 

In this study, minimum potential energy is used to drive equation 

of motion. The effects of some parameters like magnetic field, size 

scale parameter and inhomogeneity constant are investigated 

utilizing the GDQ method in detail. 

 

2. Formulation 

Schematic of BDFGM microtube under a longitudinal magnetic 
field is shown in the Fig1. 

 

Figure 1. Schematic of microtube made of bi-directional functionally 

graded material subjected to the longitudinal magnetic field and distributed 

torque 

  

The material properties of BDFGM microtube varies along 
longitudinal and radial direction according to 
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where  G r and  G z  are the shear module in the radial and 

the longitudinal direction respectively.  r  and  z  are 

magnetic permeability in the radial and the longitudinal direction 

respectively. iG and oG  is the shear modulus in the inner radius 

and the outer radius of the BDFGM microtube, respectively. i  

and o are magnetic permeability coefficients in the inner radius 

and the outer radius of the BDFGM microtube, respectively. The 

distribution of BDFGM microtube material properties in the radial 
and longitudinal direction has been illustrated in Figure 2 and 3 

respectively. It is observed that the selection of various quantities 

for   or   indexes, various distributions of mechanical 

properties in the radial and longitudinal directions are obtained, 

respectively. 

 

 

 

Figure 2. Variation of material properties in the radial direction for 

different values   

 

 

 

Figure 3. Variation of material properties in the longitudinal direction 

for different values   

 

 

The displacement field for torsion of microtube expressed as 
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where   is the torsion angle, r  is the distance from the center 

of the microtube cross section, 1u , 2u and 3u  indicate the 

displacement in x , y  and z  direction respectively. When the 

small deflection is considered, the component of strain reduced to 
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Based on nonlocal elasticity theory the stress at a reference 
point is considered to be a function of the strain at every point in 

the body and the constitutive equation can be described as follow 

2 21 ij ijkl ijc        (4) 

Where ij  is the components of stress tensor in the body 

respectively.   is the nonlocal parameter which denotes distance 

between atoms. Due to pure torsion of microtube Eq. (4) simplified 
as 
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Multiplying Eqs. (5,6) by xdA and ydA respectively and 

integrating the result over the area of the beam cross section and 

subtracting Eq. (5) from the Eq. (6), the following relation is 
obtained. 
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The Lorentz force induced by the longitudinal magnetic field 

can be obtained from Maxwell’s relations as follow. 

 f J H   (8) 

 h u h    (9) 
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Denoting J  as current density, h  as distributing vector of the 

magnetic field. According to longitudinal magnetic field in z 

direction The Lorentz force reduced to 

2
2

2

2
2

2

0

z

x

y z

z

d
H y

dz
f

d
f f H x

dz
f







  
  
  

                  
 
 
 

 (11) 

The principle of minimum potential energy is expressed as 

0U W    (12) 

where U and W are the variation of strain energy and 

external work due to longitudinal magnetic field and external 
torque respectively. 
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Substituting Eqs. (13,14) into Eq. (12) with using Eq. (7), the 
governing equation for torsion of BDFGM is derived as 
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3. Solution method 

For Galerkin method approximate solution introduced bellow  
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where the shape function 
i , is introduced to satisfy the 

boundary conditions, and 
ia  is the unknown coefficient to be 

determined. As N, the number of terms in the approximate 
solution, increases, the accuracy rapidly increases. Applying 

Galerkin method the following relations are achieved. 
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 According to the GDQ method the various order derivative   are 

defined as a linear combination of weighted coefficients of  . 

 
 

   

1 1

1

N

i k

k

ij N

i j j k

k

x x

C

x x x x









 




  

   1 1

1

N

ii ik

k

C C


    

     
 1

1 1

n

ijn n

ij ii ij

i j

C
C n C C

x x




 
  
 
 

  

 

1

,   i,j=1,2,...,N,   i j
N

nn

ii ik

k

C C


    (18) 

Using the GDQ method the boundary condition for clamped 
microtube based on nonlocal theory is simplified as 
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 The domain of the equation is divided into N points using the 
Chebyshev polynomials as follows. 
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By applying the boundary conditions, the governing equation is 

simplified to the N numbers of algebraic equations below. 

    A T   (21) 

 

4. Results and discussion 

This section investigates the torsional angle of BDFGM 

microtube based on nonlocal theory under uniform longitudinal 
magnetic field and sinusoidal distributed torque 

   310 sinT z z L . In addition a comparison between the 

GDQ and Galerkin methods is performed. To this aim following 
data in table 1 are considered  

Table 1. Geometry and material properties of BDFGM microtube 
Material property Geometry property 

 iG Gpa  129  ir m  20 

 0G Gpa  48 or m  40 

 /i H m  110   L m  100 

 /i H m  310    

In the figure 4 the ratio of 
max  respect to the length of 

microtube is presented by GDQ method and Three precision of 

Galerkin approach. 

 

Figure 4. Comparison of the GDQ method with Galerkin method for 

0  , 1  , 20 m  , 1zH MT  

 

The convergency of the GDQ numerical method is shown in the 
figure 5. It is found that by selecting the number of discretization 

points higher than 50 Convergency is achieved. 
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Figure 5. Convergency of the GDQ method for 0  , 0  , 

20 m  , 5zH MT  

Magnetic field, FGM indexes and small-scale effect have 
important role on the static torsion behavior of BDFGM 

microtubes that should be carefully realized. Nonlocal effect in 
conjugation with longitudinal magnetic field is studied in figure 6. 

The results show that by increasing of the longitudinal magnetic 
field for all values of the small-scale parameter and all FGM 

indexes reduces the maximum angel of BDFGM microtube. In 
addition the variation of the torsion angle of microtube is related 

to the nonlocal parameter such that at high intensity of magnetic 
field the effect of size is negligible. For values smaller than 

0.4 zH T Increasing the nonlocal parameter increases the 

torsional angle of microtube. In contrast for values higher than 

0.4 zH T Increasing the nonlocal parameter decrease the 

torsional angle of microtube. 

 

Figure 6. Variation of maximum torsional angle respect to longitudinal 

magnetic field for different  , 0  , 0   

In figure 7 and 8 maximum torsional angle of BDFGM 
microtube respect longitudinal magnetic field is plotted in 

different G and G  respectively. the effects of G and G on the 

torsional angle of BDFGM microtube is negligible with increasing 

of magnetic field intensity. increasing of G decrease torsional 

angle of BDFGM microtube in contrast increasing of G increase 

torsional angle of BDFGM microtube. 

 

Figure 7. Variation of maximum torsional angle respect to longitudinal 

magnetic field for different 
G , 0  , 0  , 20 m   

 

Figure 8. Variation of maximum torsional angle respect to longitudinal 

magnetic field for different 
G , 0  , 0  , 20 m   

By using the GDQ approach as the numerical method the 
maximum torsional angle for BDFGM microtube has been 

computed for different  and   in figure 9 and 10. It is observed 

that maximum torsional angle of BDFGM microtube is decreasing 

as intensity of longitudinal magnetic field increases. Torsional 

angle of BDFGM microtube is not sensitive to change of  and 

  at low and high intensity of longitudinal magnetic field. The 

maximum torsional angle of BDFGM microtube is decreasing as 

  increases in contrast the maximum torsional angle of BDFGM 

microtube is increasing as  increases.  

 

Figure 9. Variation of maximum torsional angle respect to longitudinal 

magnetic field for different  , 0G  , 0  , 20 m   



Barati and norouzi 

 

35 

 

 

 

Figure 10. Variation of maximum torsional angle respect to 

longitudinal magnetic field for different  , 0  , 0G  , 

20 m   

5. Conclusion 

In this paper the static behavior of BDFGM microtube 

investigated. The size-effect considered based on nonlocal 
elasticity theory. Using the GDQ method effects of nonlocal 

parameter, intensity of magnetic field and FGM indexes on the 

torsional angle of microtube discussed. Result indicated that 
intensity of longitudinal magnetic field had important role on the 

torsional angle of microtubes such that when intensity of 
longitudinal magnetic field increased the torsional angle of 

microtubes decreased as well as for values smaller than 

0.4 zH T increasing the nonlocal parameter increased the 

torsional angle of microtube. In contrast for values higher than 

0.4 zH T increasing the nonlocal parameter decreased the 

torsional angle of microtube. In addition the effect of 
G and 

G

on the torsional angle of BDFGM microtube was negligible with 

increasing of magnetic field intensity. Effects of  and   on the 

torsional angle of BDFGM microtube was negligible at low and 

high intensity of longitudinal magnetic field. 
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