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1. Introduction 

The normal human eye is an isolated sensory organ with a 

slightly irregular hollow sphere that reacts to light and 

allows vision. The largest volume of posterior eyeball bounded 

by the posterior lens curvature, the ciliary body and retina tissue 

is filled with vitreous containing 98-99% water and salts, sugars, 
highly swollen of collagen (protein fibers) and hyaluronic acid as 

the remaining volume [1, 2]. It has been demonstrated by 

previous researchers that these components provide a highly 

hydrated gel-like structure with viscoelastic behavior for normal 

vitreous [3-9]. Physical and biochemical changes in the vitreous 

occur with age, such as vitreous liquefaction (synchysis) and 
fiber aggregation (syneresis) which are important in the 

pathogenesis of many vitreoretinal diseases. The vitreous 

liquefaction leads to formation of the pockets of liquid known as 

lacunae. In this biological phenomenon, liquid get separated from 

collagen, gradually enlarges and coalesces within the vitreous 

[10, 11]. 

Balazs and Flood [12] reported the existence of the vitreous 

liquefaction in the eyes of a 4-year-old baby, and also showed 

that 20 percent of the posterior eyeball volume in teenagers 

undergoes liquefaction. Balazs and Denlinger [13] examined the 

impact of aging on the human eye's vitreous. Their evidences 

indicate that more than half of the vitreous body is liquefied in 

ages ranging from 80 to 90 years. Lee et al. [3] showed that aging 

has a significant impact on the loss of elasticity of the gel in the 

eyeball cavity and the amount of liquefaction is considerable with 
increase of age. Nowadays, ophthalmologists and researchers 

believe that vitreous liquefaction can be considered as the main 

reason of many ocular disorders such as retinal tears, retinal 

detachment, vitreomacular traction (VMT), macular pucker, 

macular hole and etc. [14, 15]. The effect of eye movement on 

the PVL is quite complex and its understanding is important and 
to our knowledge has not been addressed so far, from a 

mechanical point of view, even in a simple configuration in the 

literature. David et al. [16] analytically assessed the saccadic 

motion of linear viscoelastic fluid based on experimental data 

provided by Lee et al. [3] and also studied Newtonian fluid flow 

numerically inside the spherical geometry. Lee et al. [17] 
analytically studied the viscoelastic flow field between two 

concentric spheres and presented the effects of radius and 

Deborah number in addition to secondary flows. Meskauskas et 

al. [18] mathematically calculated the stress exerted on the wall 

boundary of a rigid sphere filled with vitreous humor as a 

viscoelastic fluid during oscillatory motions. They showed that 
due to resonant excitation of vitreous motion, the maximum 

value of velocity occurs inside the domain and can be more than 
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twice of that for the wall boundary. Repetto et al. [19] 

numerically simulated the dynamics of the detached vitreous due 

to saccadic eye movements using Comsol Multiphysics. They 

tested the various posterior vitreous detachment configurations 

and reported the tractions exerted on the retina. Abouali et al. 

[20] investigated the liquefied vitreous flow dynamics due to 
saccadic eye movement. Their results had good agreement with 

analytical solution obtained from David et al. [16] for a spherical 

cavity. Modareszadeh and Abouali [21] simulated the effects of 

sinusoidal motions on the flow dynamics of human vitreous 

humor as a viscoelastic substance in linear and non-linear regime 

for different 2D and 3D geometries. They showed, for the same 
angular frequency and amplitude in the linear regime, the 

maximum value of wall shear stress for the vitreous chamber 

filled with the vitreous gel is about 10 times of that for the one 

filled with fully liquefied vitreous. 

The literature survey reveals the lack of numerical analysis for 

simulating the effects of human eye movements on dynamic 
characteristics of the PVL. The aim of this paper is to develop a 

3D numerical solver for two-phase viscoelastic-Newtonian fluids 

to assess this important application in biofluid mechanics. In the 

present study, for the first time, various planar interface 

conditions with initial circular shape are investigated in a simple 

three-dimensional model of vitreous chamber subjected to 
sinusoidal rotations. The paper is outlined as follows. In section 

2, the computational model is described. The methodology and 

numerical approaches are presented in section 3. The results and 

discussion are explained in section 4. Finally, the conclusions 

from this study are presented in section 5. 

 

2. Model description  

The PVL configuration inside a sphere cavity with Ro equal to 

12.5 mm (the radius of human vitreous chamber) is illustrated in 
Fig. 1. This configuration is selected based on previous 

experimental and clinical observations for one of the possible 

PVL shapes. It has been shown that vitreous liquefaction usually 

originates from the central portion of the vitreous (as early 

liquefaction) and in the next, the pockets of liquid gradually 

coalesce, and eventually, the enlarged liquefied region can lead to 
separation of the posterior vitreous from the retina. This is due to 

the physiological weakening of vitro-retinal adhesion between 

vitreous and inner layer of the retina especially in the posterior 

segment of the eye. In this process, gel-like vitreous falls into the 

one part of the chamber and the cavity is filled with two-phase 

viscoelastic-Newtonian fluid (Fig. 1, as posterior vitreous 
detachment) [22-26]. As depicted, the PVL contains two regions: 

one is liquefied vitreous assumed as a Newtonian fluid (purely 

viscous fluid), and the other is vitreous gel with viscoelastic 

properties occupying the rest of domain. Fig. 1 shows a planar 

interface condition with the initial circular shape for the PVL 

which different values are set for h/2Ro ratios in the present 
study. 

 

2.1. Vitreous rheology 

In order to model the gel-like behavior of vitreous, the 

measured dynamic moduli of vitreous humor available in the 

literature are considered. Bonfiglio et al. [9] prepared an artificial 

vitreous which had viscoelastic properties similar to real vitreous 

humor following the instructions presented by Kummer et al. 
[27]. They reported values of the complex modulus with respect 

to angular frequency for five different solutions (s1-s5) with 

various concentrations of agar powder and hyaluronic acid 

sodium salt mixed in deionised water. Among their experimental 

data, the rheological properties of solution s5 are selected for this 

study. To cover a wide range of shear rates a three-mode 

Giesekus model was applied since the capability of this model 

has been confirmed in shearing flows [28]. Therefore, the best 
fits for dynamic moduli, relaxation time and mobility factor 

(shown in Table 1) were obtained by a rheometric software 

named RheoChart. This software is utilized to optimize the 

behavior of a differential viscoelastic model by using a proper 

algorithm to analyze the rheological data. It should be noted that 

since there were significant differences among experimental data 
and one and two-mode Giesekus models [29], hence, 3-mode 

type of this model was tested in present work and excellent 

agreements between experimental data and the results of 3-mode 

Giesekus model were observed.  

 

 
                  (a)                                                    (b) equatorial plane 

Figure 1. A simple computational model of the partial vitreous 

liquefaction with a planar interface. Gel and liquefied vitreous regions are 

shown in yellow and blue, respectively; (a) the computational model of the 

PVL, and (b) cross section along the equatorial plane of the model. 

 

Table 1. Parameters of the 3-mode Giesekus viscoelastic 

model. The G, λ, α, ηp and ηs, respectively, denote dynamic 

modulus, relaxation time, mobility factor, solvent viscosity 

and polymer viscosity [28, 29]  
Mode G [Pa] λ [s] α ηp [Pa.s] ηs [Pa.s] 

1 8.88882 0.01576 0.10954 0.14009 0.001 

2 6.16848 3.00229 0.56796 18.51959 0.001 

3 2.95193 0.10996 0.74892 0.32460 0.001 

 

3. Methodology and Numerical Approaches 

The governing equations of the PVL flow as a two-phase 

viscoelastic-Newtonian fluid flow in each viscoelastic mode are 

continuity, momentum and constitutive relation. For the Giesekus 
model [29] the constitutive relation is shown in Eq. (1)). These 

governing equations are solved numerically and the dynamic 

mesh technique was used to model the eye movement [21].  

   , , , , ,

,

.
Tn

p n n p n n p n p n p n

p n

u u


      




      
 

              (1) 

where   and u  are the polymeric stress tensor and fluid 

velocity, respectively. Also, n is viscoelastic mode index and 

 denotes the upper convected derivative [21, 29]. Furthermore, 

the VOF methodology (Hirt and Nicols [30]) is used to track the 
two-phase flow interface. In this method the following transport 
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equation for a scalar function (with values in the range of [0, 1]) 

is being solved: 

   . . (1 ) 0g ru u U
t


  


        

                              (2) 

Here ug indicates the cell velocity vector of moving mesh and Ur 

is the artificial compressive velocity to limit numerical diffusion 

and the interface smear [31]. In this strategy, the γ(1 - γ) scaling 

ensures that the artificial velocity only acts in the perpendicular 

direction of the interface [32, 33]. Also, the flow of the PVL is 

laminar, incompressible, isothermal, and the density of both 
phases (vitreous gel and liquefied vitreous region) is considered 

equal to 1000 kg/m3. In this paper, in an open source CFD 

toolbox called OpenFOAM [34], a generic numerical solver is 

developed in order to simulate the different cases involving two-

phase viscoelastic-Newtonian fluids. The time-dependent sets of 

coupled non-linear partial differential equations have been 
discretized using the finite volume technique [35, 36]. The 

PIMPLE procedure has been applied for the pressure-velocity 

coupling which is a combination of SIMPLE and PISO 

algorithms [37-39]. Fig. 2 presents the flowchart of the 

computation steps for two-phase viscoelastic-Newtonian fluid 

flows used in this work. Different types of discretization schemes 
were tested to employ proper schemes for spatial derivatives, 

since an unsuitable choice may lead to instability and oscillation 

in the solution. In this study, second order accuracy is considered 

for discretization of all gradient and Laplacian terms and the 

convective terms are discretized by utilizing the Normalized 

Variation Diminishing scheme [40]. Moreover, the second-order 
implicit backward method is used for time derivatives. In terms 

of the linear system solver, according to Ajiz and Jennings [41] 

and Lee et al. [42], preconditioned conjugate gradient method 

(PCG) combined with AMG (Algebraic multi-grid method) 

preconditioning is used for pressure terms. Also, BiCGstab (Bi-

conjugate gradient stabilized) method with DILU (Diagonal 
incomplete lower-upper) preconditioning is applied for velocity 

and stress terms in both single and multimode cases. Absolute 

tolerances have been set 10-9 for the residuals of the velocity, 

pressure and stress quantities in numerical solutions. When the 

retardation ratio (the viscosity ratio of the two-phases) 

approaches zero, the elliptic diffusion term in momentum 
equation becomes small and this might lead to instability in 

numerical solution [43]. As a result, in this research we utilized 

the discrete elastic split stress (DEVSS) method proposed by 

Guénette and Fortin [44] to enhance the stability of numerical 

solution. In this method, an artificial diffusion is introduced to 

the right and left side of momentum equation explicitly and 
implicitly, respectively in order to increase the elliptical 

characteristic of this equation. The no-slip boundary condition is 

set for the wall cavity which means the fluid adjacent to the wall 

has the same velocity as the wall. The sinusoidal oscillation for 

the eye starts from the initial condition to the left up to its 

maximum amplitude which is followed by a return movement to 
its maximum amplitude in the right direction. Subsequently, 

cavity changes the direction of motion and returns to its initial 

position. It should be noted that the numerical solution is 

continued until the flow field reaches the periodic state. Thus in 

this periodic torsional oscillation, the angular displacement of the 

sphere with respect to time is applied by the following time law: 

( ) sin( )t A t                                                                           (3) 

where A and ω represent the amplitude and frequency of rotation 

about a normal axis passing through the centre of equatorial 

plane.  

 
Figure 2. Flowchart of the computational steps 

A structured 3-D numerical mesh was generated for numerical 

model of the vitreous cavity. The computational domain was 

divided into 7 zones. Each zone was meshed as a topological 

cube. The generated mesh in equatorial plane is a combination of 

O-type and H-type grids. In order to confirm grid-independency 
of the results, several tests were performed. Table 2 depicts the 

numerical results of different parameters for the PVL with 

volume fraction of h/2Ro=0.5 obtained for the angular frequency 

of 10 rad/sec and amplitude of 0.3 rad. Since present numerical 

simulations showed that the dependence of the results to the 

mesh size for stress terms is higher compared with that for the  
velocity values (not reported here for sake of brevity), thus the 

grid independence check was performed by calculating the 

maximum shear stress (τrθ) and maximum first normal stress 

difference (N1=τθθ-τrr) and the results are shown in Table 2. The 

relative differences in these two parameters (columns 2 and 3 in 

Table 2) between medium and fine meshes are less than 3% and 
4%, respectively. Hence, the grid with 1,578,352 computational 

cells was chosen for other numerical runs.  

Notably, the selected grid was also enough and accurate to 

provide the excellent agreements between numerical results and 

presented analytical solutions (Appendix 1) for variations of 

tangential velocity magnitude and shear stress magnitude (Figs. 
A2a and A2b in the concentric PVL configurations). 

Table 2 The grid independency check for the computational 

domain with h/2Ro=0.5 at A=0.3 rad and ω=10 rad/sec 

maximum N1 (Pa) maximum τrθ (Pa) Mesh cases 

4.45 2.72  764,544 

5.50 3.33 1,578,352 

5.71 3.42 1,853,182 

 

Also, for finding the optimum computational time, several 
tests with different time-step values were carried out. Eventually, 

time-step equal to 0.25 ms was applied for all simulations. 

4. Results and discussion 

As there is no available experimental data or analytical 

solution for a two-phase Newtonian-viscoelastic flow with the 

planar interface, the validation has been performed for a case 

with concentric PVL configuration. The validation is presented in 

the appendix for the periodic motions of a concentric PVL 
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configuration with different volume fractions (Fig. A1) in 

comparison with the analytical solution. After validation of 

present numerical model, now the obtained results and 

corresponding discussions for various planar interface conditions 

with initial circular shape (Fig. 1) are presented in this section. 

Fig. 3 shows the variations of the normalized tangential velocity 
with respect to radial direction of cavity across the interface layer 

at time equal to T for different h/2Ro ratios. This figure is 

obtained for angular frequency of 10 rad/sec, amplitude of 0.03 

rad and each curve is scaled with its maximum value during the 

motion. For h/2Ro ratio equal to 0.0 (normal vitreous humor) and 

in the viscoelastic regions of partially liquefied vitreous humor, 
tangential velocities vary almost linearly (like rigid body motion) 

while for fully liquefied vitreous (h/2Ro=1.0), a thin boundary 

layer is formed near the wall leading to formation of a sharp 

velocity gradient. This slope across the interface decreases 

slightly by decreasing the h/2Ro ratio. Also, the results depict that 

for higher h/2Ro ratios, the velocity gradient inside the lacunae is 
lower. From the figure, the boundary layer thickness for fully 

liquefied vitreous is less than 1.25 mm and tangential velocity 

becomes near to the stagnant condition close to the center of 

cavity. While for lower h/2Ro ratios, with an increase in the 

kinematic viscosity due to the presence of the vitreous gel, the 

amount of flow propagation to the center of cavity is increased 
and the induced force on the wall boundary is felt with entire 

domain. Therefore, this figure demonstrates the dependency of 

velocity field in the vitreous on volume fraction of liquefied 

region. Moreover, the values of non-dimensional parameters 

including the Reynolds numbers (2uRo/υ and 2uRo/υ*, where υ 

and υ* are kinematic viscosity of purely viscous fluid and 
complex kinematic viscosity of viscoelastic fluid) and the 

Weissenberg number (λu) of vitreous, which are calculated based 

on the maximum velocity in a period, are equal to 93.75, 0.67 

and 0.01, respectively. 

 
Figure 3. Variations of the normalized tangential velocity across the 

interface (along X direction on the Y/R=0.0 line), scaled with the maximum 

tangential velocity at t=T in different h/2Ro ratios for angular frequency of 10 

rad/sec and amplitude of 0.03 rad. 

The time variations of the maximum shear stress (τrθ) and first 

normal stress difference N1 during one period of motion for 

various h/2Ro ratios are obtained and shown in Figs. 4a and 4b, 
respectively. As the figure depicts, for h/2Ro ratio up to 0.5, 

stresses increase by increasing h/2Ro ratio and after that these 

two parameters have a decreasing trend with the increment of 

h/2Ro from 0.5 to 1.0. In other words, the stresses have a strong 

dependence on the volume fraction of lacunae and our numerical 

simulation indicates that the peaks of stresses occur at h/2Ro=0.5 
where the radius of planar circular interface is maximum in the 

sphere. For instance, with fifty percent increment of h/2Ro from 

0.25 to 0.5, the maximum shear stress and first normal stress 

difference increase 20% and 14% at t=0.25T (the time of change 

in direction of oscillatory motion and abrupt variation of the 

acceleration), respectively. Interestingly, for h/2Ro ratios equal to 

0.25, 0.5 and 0.75, the normal stress plays an important role on 

flow dynamics of the PVL and also, the first normal stress 

difference becomes higher than the shear stress so that for 

h/2Ro=0.5, the percentage increase is almost 40%. Also, it is 
observed from Fig. 4 that, a healthy vitreous gel (h/2Ro=0.0) 

cannot generate the remarkable normal stress difference and its 

maximum N1 is negligible in comparison with the maximum 

shear stress. Similarly, by increasing of h/2Ro ratio more than 

0.75, the importance of N1 is sharply reduced and finally in full 

liquefied vitreous humor its value reaches zero as expected. 

 
     (a) 

 
     (b) 

Figure 4. The time variations of the maximum value of (a) the shear 

stress and (b) the first normal stress difference (N1) during one period for 

various h/2Ro ratios at A=0.03 rad and ω=10 rad/sec. 

Another interesting feature of the partially liquefied vitreous is 

the location of maximum shear and normal stresses during one 
period. It was found that for all h/2Ro ratios in the range of (0, 1), 

the maximum stress components appear in the vicinity of 

interface and inside the vitreous gel region. Therefore, since the 

principal stress difference (PSD) consists of both first normal 

stress difference and shear stress (Eq. (4)), it is considered as a 

suitable parameter in order to interpret the stress contours and to 
illustrate the location of its maximum. 

 
2 2 2 2

14 4rr r rPSD N                                        (4) 

To this end, the PSD values were calculated for h/2Ro ratios 

equal to 0 .25, 0.5 and 0.75 at a specific time (at which maximum 
stresses are appeared). As the Fig. 5 shows, in all three PVL 

fractions, the maximum values of PSD are formed on the 

equatorial plane in which the width of the cavity is maximum. 

From these contours, the maximum stresses are localized on the 

wall boundary, close to the interface and in the viscoelastic phase 
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portion. Also, the maximum PSD values vary in the range of 0.4 

to 0.65 Pa as a function of h/2Ro ratio. 

 

 
                 h/2Ro=0.25                                          h/2Ro=0.5                                            h/2Ro=0.75              

Figure 5. The principal stress difference PSD (Pa) contours on the equatorial plane of vitreous chamber for ω=10 rad/sec, A=0.03 rad and different h/2Ro 

ratios at time equal to 0.25T (the time of change in direction of motion). 

In order to survey the details of the streamlines on the 

equatorial and vertical planes due to oscillatory motion, the 

numerical results for several h/2Ro ratios in ω=10 rad/sec and 
A=0.03 rad are obtained at time equal to 0.25T (the time of 

change in direction of motion) and depicted in Fig. 6. In this 

figure, vitreous gel and liquefied vitreous regions have been 

shown with light and dark colors, respectively. It can be seen 

that, the flow fields of the PVL are appeared in the domain 

with almost symmetrical flow patterns. On the equatorial 
plane, parallel distributions of the curved streamlines are 

observed in both light and dark regions. Moreover, two main 

vortices are appeared in the liquefied vitreous gel portion of the 

vertical plane, and the circulating regions become stronger as 

h/2Ro ratio increases. Notably, the velocity of the cavity 

boundary does not have any component in the vertical plane, 
so any secondary flow motion in this plane resembles the 

complex 3-D structure of the vitreous dynamic due to unsteady 

movements. Also, we found that these vortices grow in 

intensity with increasing amplitude of rotation which not 

reported here for sake of brevity. It is worth noting, the 

secondary flows might be an effective reason for the drug 
distribution in vertical directions of the PVL from fluid 

mechanical point of view, which requires more researches and 

have been left for future studies.  
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Figure 6. Streamline patterns in equatorial and vertical planes of vitreous chamber for ω=10 

rad/sec, A=0.03 rad and different h/2Ro ratios at time equal to 0.25T. 

 

 

Finally, the maximum values of shear stress and first normal 
stress difference were obtained at various amplitudes of rotation 

for a specific PVL volume fraction (h/2Ro=0.5) and the results 

are shown in Fig. 7. The variations of the maximum N1 are 

similar with maximum shear stress qualitatively, with these 

differences; the growth in maximum N1 is more rapid than that 

for maximum shear stress, and also the range of maximum N1 is 
one and half time higher. Moreover, this figure indicates that the 

variation with amplitude is non-linear so that increasing in 

amplitude of rotation from 0.03 to 0.3 rad leads to about 13 and 

15 times increment in maximum shear stress and maximum N1, 

respectively.   
Figure 7. The variations of maximum shear stress and maximum first 

normal stress difference versus amplitude of rotation for angular frequency of 

10 rad/sec in h/2Ro=0.5. 
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5. Conclusion 

The main objective of the present work was to provide a 

reliable numerical procedure for studying the flow dynamics of 

partially liquefied vitreous humor as a two-phase viscoelastic-
Newtonian fluid flow due to oscillatory motions. The developed 

numerical model was applied to investigate a PVL configuration 

with planar interface. The effects of various angular frequencies, 

amplitudes and volume fractions on the velocity field, shear 

stress, normal stress difference and streamline pattern were 

evaluated. The analysis of viscoelastic flow field revealed that 
using 3-modes Giesekus model for interpretation of artificial 

vitreous humor behavior as a gel-like substance has enough 

accuracy and acceptable consistency with provided rheological 

data in literature. It was found that when the volume fraction of 

the liquefied vitreous is higher, the secondary flow in the vertical 

plane of the PVL containing the interface layer becomes more 
noticeable which might be an effective reason for the enhanced 

drug dispersion, from fluid mechanics point of view. Also, in 

contrast to the normal and fully liquefied vitreous, the PVL 

generates normal stresses under the action of shear flow and the 

maximum normal stress difference can be more than the induced 

maximum shear stress. It was depicted that, the maximum shear 
and normal stresses depend on the volume fraction of liquefied 

vitreous region so that their maxima increase until h/2Ro=0.5 and 

then decrease again. These peaks of stresses occurred on the 

equatorial plane at the wall boundary near the interface and 

inside the vitreous region. Moreover, for h/2Ro=0.5 and angular 

frequency of 10 rad/sec, it was shown how the maximum shear 
stress varies in the range of [0.26-3.3] Pa and maximum normal 

stress difference changes from 0.37 to 5.5 with increase of the 

amplitude of rotation from 0.03 to 0.3 rad. It should be noted that 

the present research has some limits regarding to the real saccade 

movements in human eye. Firstly, the time variation of the 

saccade movements is not sinusoidal but this was assumed in 
present work as the first step for studying the complex 

phenomenon of the fluid dynamic for the partially liquefied 

vitreous. Secondly a spherical model was used for the vitreous 

chamber but the real shape is almost a sphere which has a 

deformation in one side due to the lens. Investigating the saccade 

movement effect for the real shape of the vitreous chamber when 
the virtuous gel is partially liquefied has been left for future 

studies. 

6. Appendix. 1 

The vitreous liquefaction usually originates from the central 

portion of the vitreous (Fig. A1, as early liquefaction). In this 

appendix, the analytical solution derived by David et al. [16] for 

single-phase viscoelastic fluid flow in a sphere is implemented 

for two-phase viscoelastic-Newtonian fluid flow (Fig. A1) and 

also it is utilized to validate the developed computational code.  

The general analytic solution in the present work is similar to 

that obtained by David et al. as the geometry is the same but 

because of different boundary conditions regarding to our two-

phase flow configuration the final solution is different.  

By implementing oscillatory motion to low Reynolds number 

flow and neglecting the radial velocity component, pressure 
gradient, gravity and convective terms, the momentum equation 

in radial direction can be written as follow: 

 

*
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2 2

( ) ( ) ( )1
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u r u r u r
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t r r r r
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                        (A1) 

 

 

 
               (a)                            (b) equatorial plane 

Figure A1. The interface condition with the initial concentric spherical 

configuration of the partial vitreous liquefaction; vitreous gel and liquefied 

vitreous regions are shown in yellow and blue, respectively; (a) the 

computational model of the PVL, and (b) cross section along the equatorial 

plane of the model. 

In the above equation,   is the polar angle, the angle from the 
north pole of the model so that / 2   denotes the equatorial 

plane, also  is complex viscosity defined as [16]: 

'' 'G G G
i

i


  


                                                                    (A2) 

The non-dimensional form of Eq. (A1) is obtained by 
introducing r RoR  and    ( ) sin( )i t

ou r AR f R e 

    as 

follow: 

2
2 '' ' i

2 2 0
( )

oR R
R f Rf f

or



 

 
    

 

                                   (A3) 

 

By substituting 2Ro     (the complex Womersley 

number), 2Ro    (the Womersley number), and 
1 2i Rz   (=or  ) into Eq. (A3), the modified spherical Bessel 

function of order 1 can be described as;   

 2 '' ' 22 2 0z f zf f z                                                       (A4) 

The system of general Bessel solution by assuming small 

amplitude oscillation for two-phase flow are expressed as: 

 1 1 3/2 2 3/2 int( ) ( ) ( ) / 0f z C J iz C Y iz z R r               (A5) 

 2 3 3/2 4 3/2 int( ) ( ) ( ) / of z C J iz C Y iz z R r R             (A6) 

In the above equation J and Y denote the first and second 
kind of modified spherical Bessel' function. Also the above 

solutions can be written as: 

    2

1 5 6( ) sinh cosh cosh sinh /f z C z z z C z z z z      
                                                       

int 0R r                                                               (A7) 

    2

2 7 8( ) sinh cosh cosh sinh /f z C z z z C z z z z                                                           

intoR r R                                                             (A8) 

The constants C1 to C4 (or C5 to C8) are calculated by applying 

four boundary conditions as: (1) bounded velocity at centre of 

sphere, (2) no-slip condition at wall boundary, (3 and 4) 

continuous shear stress and its gradient across the interface. 
These constants were not reported here for sake of brevity. It 

should be noted that ignoring the surface tension, pressure 
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gradient and the radial velocity component, the two latest 

conditions represent the kinematic and dynamic boundary 

conditions at the interface, respectively (White and Corfield 
[45]). The introduced analytical solution was derived for the 

linear viscoelastic regime. 

Since time=0.5T and T in sinusoidal periodic motion 

correspond to maximum velocity (minimum acceleration) and 

time=0.25T and 0.75T correspond to changing the direction of 

rotation and abrupt variation of the acceleration, thus we select 
these specific times for comparison the variations of tangential 

velocity magnitude (Fig. A2a) and shear stress magnitude (Fig. 

A2b) with respect to radius on the equatorial plane. Notably, the 

Fig. A2 is obtained for amplitude of 0.03 rad by considering 

various angular frequencies in the range of 3-10 rad/sec and 

different PVL volume fractions. According to these profiles, the 
excellent agreements between numerical results and introduced 

analytical solution are observed, confirming that the present 

numerical model well describes the behavior of the vitreous 

humor with different PVL fractions under oscillatory forcing.  

 
  (a) 

 
    (b) 

Figure A2. Comparisons of (a) tangential velocity magnitude at t=T (the 

profiles at t=0.5T are the same) (b) shear stress magnitude at t=0.25T (the 

profiles at t=0.75T are the same) between analytical and numerical results by 

considering amplitude equal to 0.03 rad, several angular frequencies and 

various volume fractions for the concentric PVL configuration. 
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