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Fiber-reinforced laminated composites are frequently preferred in many engineering
projects. With the development in production technology, the using of the fiber
reinforced laminated composites has been increasing in engineering applications. In the
production stage of the fiber-reinforced laminated composites, porosities could be
occurred due to production or technical errors. After a level of the porosity, the
mechanical behaviors of composite materials change significantly. This paper presents
buckling analysis of fiber-reinforced laminated composite plate with porosity effects
within the first shear deformation plate theory. In the porosity effect, three different
porosity models are used in the laminated composite plate. The material properties of
the laminas are considered as orthotropic property. In the solution of the problem, the
Navier procedure is used for the simply supported plate. Influences of the porosity
coefficients, the porosity models, the fiber orientation angles and the sequence of
laminas on the critical buckling loads are presented and discussed.

1. Introduction

Fiber reinforced laminated composite materials have been
used engineering applications, such as thermal barrier, chemical
plant, automotive industries, space shuttle. Because of high
strength, fire resistance and lightweight properties. During the
production in fiber reinforced laminated composite materials,
micro-voids and porosities could occur due to production or
technical errors. With porosity, the mechanical behavior of
composites changes significantly. So, porosity problems are very
important in the mechanical behavior of composites. In the
literature, the studies about the mechanical behavior of composite
plates with porosity effects are presented briefly as follows; free
vibration of a simply supported rectangular functionally graded
plate with porosity.

Rezai and Saidi [1] studied free vibration analysis of thick
rectangular porous plates. Akbas [2] analyzed the free vibration
and static bending of a simply supported functionally graded plate
with the porosity effect. Rezaei et al. [3] examined the free
vibration of porous functionally graded rectangular plates by using
the first shear deformation plate theory. Wang and Zu [4]
investigated the vibration analysis of porous functionally graded
plates with temperature-dependent mechanical properties. Askari
et al. [5] performed the free vibration analysis of rectangular plate
with porous-cellular composed of piezoelectric layers. Ebrahimi et
al. [6] investigated the free vibration of the magneto-electro-elastic
plate with porosity on elastic foundations. Zhao et al. [7] analyzed
the vibration of porous functionally graded plates by using (3-D)
elasticity theory. Yang et al. [8] performed free vibration and
buckling analyses of porous functionally graded graphene
nanocomposite plates by using the Chebyshev-Ritz method.
Arshid and Khorshidvand [9] examined free vibration of

functionally graded porous circular plate with piezoelectric
actuators by using a differential quadrature method. Gao et al. [10]
examined nonlinear free vibration of made of graphene platelets
with functionally graded nanocomposite plates on elastic
foundation. Zhao et al. [11] studied the vibration of functionally
graded porous shallow shells by using a unified solution.
Demirhan and Taskin [12] examined free vibration and static
bending of the functionally graded porous plate by Levy type
solution. Kim et al. [13] presented free vibration, bending and
buckling analysis of functionally graded microplates with porous
by using the classical and first shear deformation plate theory.
Heshmati and Jalali [14] investigated the free vibration of circular
and annular sandwich plates with radially grade porosity. Xue et
al. [15] analyzed free vibration of porous circular, square and
rectangular plates based on the isogeometric approach. Zhao et al.
[16] performed free vibrations analysis of a porous functionally
graded rectangular plate with elastic boundary conditions.
Karimiasl et al. [17] studied nonlinear forced vibration of the
composite sandwich plate with double curved porous shell. Huang
et al. [18] investigated nonlinear forced and free vibrations of the
porous functionally graded plate resting nonlinear elastic
foundations. Zhou et al. [19] examined the vibration of
functionally graded porous plates with temperature-dependent
physical properties. Yiiksel and Akbag [20] analyzed the effects of
temperature on the vibration responses of laminated plates. Akbag
[21,22,23,24,25] studied the effects of porosities on post-buckling,
dynamic and nonlinear behaviors of composite beams. Li et. al.
[26] examined dynamic buckling and nonlinear vibration of the
porous functionally graded sandwich plate on the Winkler-
Pasternak elastic foundation. Nam et. al. [27] investigated
buckling and post-buckling behavior of cylindrical functionally
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graded porous plates under torsion in thermal environment. Chen
et. al. [28] examined the bending and buckling behavior of a
porous novel functionally graded plate by using the Ritz method.
Safaei et.al. [29] analyzed buckling of a laminated porous
nanocomposite plate resting on elastic foundation. Jabbari et. al.
[30] performed thermal buckling analysis of a circular porous plate
with piezoelectric by using first-order shear deformation theory.
Cong et. al. [31] presented nonlinear thermomechanical buckling
and post-buckling behavior of functionally graded porous plates
based on high order shear deformation theory. Dong et. al. [32]
investigated buckling behavior of functionally graded
nanocomposite cylindrical porous shells. Jabbari et. al. [33]
examined buckling of the circular porous plate under uniform
radial compression.

The aim of this study is to investigate the effects of the porosity
on the buckling results of a simply supported rectangular plate
composed of fiber-reinforced laminated composite materials. The
Navier method is used in the solution of the problem. In the
numerical results, the effects of the porosity coefficients and
models, the fiber orientation angles and the sequence of laminas
on the critical buckling loads are investigated.

2. Equations

In figure 1, a simply supported fiber-reinforced laminated plate
with two layers under biaxial compressive loads (Ng) is shown
with Xi, X, X3 coordinate system. The height of laminas (h)) is
equal to each other.
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Figure 1. A simply supported fiber-reinforced laminated porous
plate subjected to biaxial compressive loads.

According to the first shear deformation plate theory, the strain
components are expressed in terms of displacement as follows;

_ aum 6¢X1 _ auoz a@xz
fax T gx, TN Gx, X Tox, Thhx, (D)
0ug, 0ug, 00y, 00y
= X 1 2
Yaxe = gxt ox, T4\ ax, T ox, )
6u03 0uys
Vx,x;3 = 6X + Q)xl , VYx,x3 = a—Xz + (Z)xz , ©)
&xx, = 0

where ugyq, Uy and w3 indicate displacements in X4, X, and X5
directions, respectively. In the porosity distribution of each
lamina, three different porosity distribution models are used.
These porosity distribution models are shown in figure 2. In model
1, the voids spread uniformly in through the height. In model 2,
the voids stack in the middle of laminas. In model 3, the voids
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spread the voids stack in the upper and lower surfaces of the
laminas.

a)Model1 ™

b) Model 2
volds )

¢) Model 3

Figure 2. Porosity Distribution Models in Laminas. a) Model 1,
b) Model 2 and c) Model 3.

According to these models, the effective material properties (P)
such as Young Modulus, Poisson’s ratio etc. are given as follows;

P(a)=P(1—a) for model 1 )
P(a)=P (1 - a%yl) for model 2 (4b)
P(a)=P <1 - %(1 - %")) for model 3 (40)

In equation 4, a (a<<1) indicates the volume fraction of porosity.
Constitutive relations of orthotropic laminated plate for nth layer
with porosity effect are given as follows:

JX1 X, n)
Ox, X,

Ox, X,

0,@ 0,0 0,@]"
=[2,@ 0,@ 0,
0@ 0@ 0@

Ouoy 4, 0%ugs
|( 39X, 3 9x,2 \| (5a)
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39X, 3 9x,2
Oupy |, Ougy _ 0%ugg _ I
X, X, 3 ax,2 J
(auoz Mgz ™
— V==
0X2X3 Q44(a) (g45(a) " { X, 0X, }
{orn) " [Qis(@ Qss(@)] ) 9ues 9ues (5b)
(ax, ~ax,
where Qj; (a) indicates the components of stiffness tensor which

depends the porosity parameter (a) are presented as follows:
a11(61) = Qy,(a)cos*6
+2(Q12(a) + 2Q46(a))sin*bcos?6 +
Qz2(@)sin*6
612 (a) = (Qu(a) + Qz2(a) — 4Q66(a)) sin®@cos?0
+ Q2 (a)(sin*0 + cos*H)
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622((1) = Q11 (a)sin*6 + 2(Q12(a) + 2Qe6(a)) Where 4;;, B;; and Dy; are extensignal §tiffness, bend.ing -
extensional couplmg stlffness and bending stiffness respectively,

s 2 2 4
sin*fcos*6 + Qz(a)cos*0 K indicates the shear correction coefficient;

Q,6(@) = (Q11(a) — Q12(a) — 2Q46(a))sinbcos®0
+(Q12(a) — Qz2(a) + 2Q¢¢(a))sinBcosH Ajj(a) = z QU (a)(zn+1 Zp) (%)
Q56(@) = (011(@) — Q12(a) — 2Qu6 (@) )sin*dcosd
+(Qa2(@) — Q22(a) + 2Q4(@))sinbcos0 Bij(a) = zz 0 (@) (s = 72) (9b)
Q44(a) = Qus(a) cos? 6 + Qs (a) sin? 6
Dy (@) = Z 0, (@@ —2) ©0)

Q45(a) = (Qs5(a) — Qq4(a)) cos O sin O

Qs5(a) = Qua(a)sin® 6 + Qs5(a) cos? 6 (6) The governing equations of the problem are presented as follows;
JdN daN,
where, @ is the fiber orientation angle. The — g o g (10a)
components of the Q;; are given as follows; 09X, 0X,
Ei(a) aNX1X2 % =0
Qll(a) 1 _ Vlz(a)V21(a) 4 0X1 aXZ ( )
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In the solution of the governing equations, the Navier method
is used. The boundary conditions and displacement fields are
presented as follows:

. Up1(0,X,) =0, uy(a,X,)=0,
Stress resultants are given as follows; 01(0,X2) 01(@Xz)

(11a)
(NX1X1\ Ug2(X1,0) = 0, ug,(Xy,0) =0,
i NXZXZ i uOS(Xl'O) = 0' u03(X1'b) = 0!
N, 11b
{M);f(z } - u3(0,X2) =0, upz(a X;) =0, (11b)
i 121
|szxz | (Dxl (X1,0) =0, Qxl (X1,b) =0,
My, x, (11c)
@x,(0,X,) =0, @y, (aX;)=0,
Jugy : ’
0X; Ny, x, (0,X3) =0, inxz(a' X3) =0,
ou 11d
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l By1 By Bas D31 Dz Dy J 0X;
B3 Bzz Byzl D31 D3z Dag 00y, where Uy, Uz, Us, Xx, . Y, are displacement
X, coefficients, k = mm/Ly , | = nm/Ly,
90y, | 90x, . _ i
X, = X, Substituting egs. (11-12)_ into eqs. (10) and ther) using Eigen-
value procedure, the algebraic equation of the buckling problem is
03
+0
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+ Oy
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given as follows;

U
P11 P12 0 P14 Pis Ul"m
P12 D22 0 P24 P2s 2mn
0 0 ps3—No(k?+sl?) psa Pss Usin
lP14 D24 D34 Paa P45J Xlen
Pis  DP2s Ps3s Pss  DPss szmn (13)

(o)
=40
0
0
where,
P11 = (A1 (@k? + Ags (@)1?),
P12 = (A12(a) + Age(a))kl
P13 =0, piys=2Bc(a)kl
P1s = (Big(@)k? + By (@)1?),
P2z = (Ass(Wk? + A ()1),
P24 = P1s»
P33 = K(Ass()k? + Ay ()12,
Pss = KA (a)l,
Das = (D11 (@)k? + Dyy(a)l? + KAss(a))

P23 =0,
P25 = Bys(@)kl,
P3a = KAss(a)k,

Pss = (D12(a) + Des(a))klr (14)
Pss = (Dss(@)k? + Dpp(a)* + KAy (a))
c C,

DPssa = Daa 15’1400 p24COr

.. %1 &)
P45 = Das 25’1500 pzsc0

.. C3 Cy
Pss = Pss — P15~ — P25
o ¢y

Co = P11P22 — P12P12»
C1 = P14P22 — P12P24» Co = P11P24 — P12P14
C3 = P15P22 — P12P25» C4 = P11P25 — P12P15»
After the solution of the equation (13), the critical buckling load is
expressed as follows;

1
Non = 2 52
(P34ﬁ55 — P3sPas
PaaPss — DasPas

_ D4aP3ss — DasP3a

PasPss — PasPas '

) (15)

Dimensionless fundamental frequency N,,,, is defined as follows;

LX12)

Ny, = K
mn mn (Eozh3

(16)

3. Numerical Results

In the numerical examples, the effects of porosity coefficients,
fiber orientation angles and different porosity models on the

critical buckling loads of the porous fiber-reinforced laminated
plate are investigated. In the numerical study, the material of the
plate is considered as graphite-epoxy and its material parameters
are; E;=150 GPa, E,=9 GPa, Es=9 GPa, G1,=7,1 GPa, G»=2,5
GPa, G13=7,1 GPa, vi,= v»1=0.3. The geometry properties of the
plate are selected as Ly, = 3m, Ly, = 3m, h=0.3m.

In figures 3, 4 and 5, the relationship between the fiber
orientation angle (0) and dimensionless critical buckling load
(N.mn) is presented for different sequence of laminas, different
porosity coefficients (a) and porosity distribution models for
buckling mode 1-1, mode 2-2 and mode 3-3, respectively. In these
figures, 0/60 and /-0 the sequence of laminas are used. It is seen
from figures 3,4 and 5, the porosity distribution has a great
influence on behavior of the fiber orientation angles and the
buckling responses. In different porosity distribution models, the
effects of the fiber orientation angles on the buckling responses
differ considerably. Especially, in model 1, the buckling results are
very sensitive to fiber orientation angles. This is because the voids
uniformly spread through all volume of material. So, the rigidity
of laminas in model 1 is lower than the other models. In addition,
the effects of the porosity parameters on the buckling vary
according to different porosity distribution models. With
increasing in the number of buckling modes, the effects of the
porosity on the buckling increase considerably.

In order to get more see the effects of the porosity coefficient,
the relationship between the porosity parameters (a) and
dimensionless critical buckling load (N,,,) is plotted in figure 6
for different sequences of laminas, different porosity distribution
models and fiber orientation angles for buckling mode 1-1. Figure
6 shows that the sequence of lamina very effective in the effects of
the porosity on the bucking. The effects of porosity in 6/-0
sequence are bigger than those of 0/6 sequence. The difference
among the dimensionless critical buckling loads in /-0 sequence
is bigger than 0/6 sequence. In 6/-6 sequence, because the fiber
direction does not coincide with the principal axes of laminas in
all laminas, the rigidity of plate in 6/-0 is lower than 0/6 sequence.
So, the 6/-6 sequence is more sensitive with porosity effects in
contrast with 0/6 sequence. Also, it is more clearly seen from
figure 6 that the critical buckling loads decrease with increasing
porosity parameter a because the strength of plates naturally
decreases with increasing porosity.

4. Conclusions

In this paper, the effects of porosity and its distribution models on
the buckling behavior of a laminated plate are investigated. Three
porosity distribution models are used. The governing equations of
the considered problem are solved by using Navier method for a
simply supported laminated porous plate. In the numerical results,
the dimensionless critical buckling loads are obtained with
different porosity coefficients, fiber orientation angles, the
sequence of laminas, and porosity models. In obtaining from
numerical results, the porosity changes the buckling behavior of
laminated plates, significantly. The porosity distribution and the
sequence of laminas have a great influence on the buckling
behavior of fiber-reinforced laminated plates. The critical buckling
loads decrease with increasing porosity parameters. In the different
sequence of laminas, the buckling responses of the laminated plate
differ with porosity, considerably. With suitable choosing the
sequence of laminas, the effects of the porosity can be decreased
to a certain level.
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Figure 3. The relationship between the fiber orientation angle (6)

and dimensionless critical buckling load (N,,,,,) for a different
sequences of laminas, different porosity distribution model and
parameters for buckling mode 1-1.
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Figure 4. The relationship between the fiber orientation angle
(#) and dimensionless critical buckling load (N,,,,) for a different
porosity distribution model and parameters for buckling mode 2-2.
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