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1. Introduction 

Plates suffer from various damages during their lifetime, such 

as the creation and expansion of the cracks. The presence of 
cracks in the plate affects its mechanical behavior. Since the 

crack is known as a deterioration factor in structures, 
investigation of the effect of crack on the behavior of structures 

has significantly affect the assurance and economic design of 
various structures. Hence, many researchers have studied the 

behavior of cracked structures in different fields. One of these 
areas is to investigate the free vibrations of cracked plates, which 

is considered in this research. The first step is to develop crack 
detection methods in the plate with the help of its vibrational 

properties. 

Rice and Levy [1] studied the effect of cracks in the plate by 

developing a strap model with edge-cutting. Meanwhile they 
calculated the coefficient of stress intensity for the rectangular 

cracked plate under the influence of tensile and bending loads. 
Khadem and Rezaei [2] examined the vibrational behavior of 

rectangular plate with total cracks using bending spring model. 

They have always presumed the cracks as open and split the plate 
along the crack. With the replacement of a linear spring instead 

of the crack, Israr [3] studied the effect of the existence of middle 
cracks parallel to one side of the isotropic rectangular plates on 

the natural frequencies of the plate, and observed that, with 
increasing the crack’s length, the natural frequencies decreased. 

Israr and Atepor [4] solved the problem of compulsory vibration 

of the cracked plate, using analytical and numerical methods, and 

compared obtained results with the experimental results. They 
extracted the nonlinear vibration equation of cracked plates and 

solved it using the Galerkin method and multiple scale method. 

Osman et al. [5] used differential quadrature method to 

investigate the stress intensity factor of the third mode of a 
cracked plate. They split the plate with an arbitrary shape into a 

set of sub-domains and, using the mapping method, converted the 
plate into several smaller rectangular plates. Then, by applying a 

differential quadrature method on each of these plates, and also 
considering the appropriate boundary conditions, they calculated 

the third mode stress intensity factor for a plate having angular 
cracks. Bachene et al. [6-7] also studied the vibrations of a 

rectangular cracked plate using X-FEM method. In their 
calculations, they also considered the rotary inertia and transverse 

shear deformation effects and used the desired method to 
examine the behavior of the plates having edge and middle 

cracks. Stahl and Kear [8] investigated the vibrations and 
buckling of rectangular plates having lateral and middle cracks 

parallel to one side of the plate. Using dual series, they reduced 
the problem of the eigenvalue to the second-order Fredholm 

integral equations, which calculated the values of the natural 
frequencies and the buckling load of the cracked plates. Nezo [9] 

examined the free vibrations of a rectangular plate with simple 

supports. He assumed that the desired cleavage was parallel to 
one side of the plate. Makvandi et al. [10] studied the vibrations 
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of buckled cracked rectangular plates using the differential 

quadrature element method. By using the arc length method and 
considering the crack as a rotational linear spring, they 

investigated the effect of different crack parameters on plate 
behavior, and compared the results with the results of the finite 

element method and also the experimental results. 

As noted earlier, the widespread use of the plates has made it 
very important to study the behavior of cracked plates. It has 

been determined from the studies that so far, the vibrational 

behavior of thick, rectangular cracked plates with initial 

geometric imperfection has not been investigated. Therefore, in 

this research, a method is developed to analyze the crack effect 

on vibrational behavior of thick cracked plates. For this purpose, 
first, using the fracture mechanics relations, the crack is modeled 

as a non-massive linear rotary spring. Then, with the assumption 

that the crack is open, the governing equations are extracted from 

the problem. These equations form a system of differential 

equations. The obtained equations are then discriminated using 

the differential quadrature method. The equations system is the 
result of a nonstandard eigenvalue problem, after converting it 

into a standard form and solving it, the frequencies and the mode 

shapes of the cracked plate are obtained. Investigation of the 

frequencies and the shape of the obtained modes for different 

values of the depth, length and location of the cracks showed that 

increasing the length and depth of the crack decreases the natural 
frequencies by decreasing the stiffness of the plate, while the 

effect of the crack position on the frequency depends on the 

shape of the mode in question. 

2. Differential Quadrature Method 

The differential quadrature method is developed based on the 

Gaussian derivative method to calculate the derivative of a 
function based on its value in a limited number of domain points. 

This method provides an approximation to express the derivation 
of a function at a point on its domain, in terms of the weight 

composition of the function values of the points within that 
domain [11] and the first-order derivative f (x, y) at a point 

relative to x and y is a linear approximation of the sum of the 
values of the function over the entire derivative interval as 

Equation (1). 
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In the above relation f is the function in question, xn and yn  

are the number of grid points along x , y , ix and iy are the i’th 

and j’th points of accuracy on the domain of the function 

and
)(n

ijC and
)(m

ijC are the weight coefficients to obtain the 

derivatives of order n and m of the function f (xi, yi) in (xi, yi). In 
this study, relations 2 and 3 have been used to calculate the 

differential quadrature weight coefficients [12]. 
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The weight coefficients of higher-order derivatives are 

obtained by using first-order weight coefficients of the recurrence 
relation as relations 4 and 5. 
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One of the effective parameters in the accuracy of the 
differential quadrature method is the type of the used grid points. 

Some of the common types of them are: 

1. Accuracy points with equal space 

,  
1

1, 2, 3, ...,
1

i
x i Ni

N


 


 (6) 

2. oots of Chebyshev polynomials 

,  
1 2 1

1 cos 2, 3, ..., 1
2 2

0, 1
1

i
x i Ni

N

x x
N




   

 

  
  
    (7) 

3. roots of Legendre Polynomials 

,  
1 2 3

1 cos 2, 3, ..., 1
2 2 4

0, 1
1

i
x i Ni

N

x x
N




   


 

  
  
    (8) 

 
 .4 roots of Chebyshev-Gauss-Lobatto polynomials 

, 
1 1

1 cos 2, 3, ..., 1
2 1

0, 1
1

i
x i Ni

N

x x
N




   


 

  
  
    (9) 

 

4. Cracked plate modeling 

The presence of crack in the structure of the plates reduces the 
stiffness of the plate. One of the methods of crack modeling in 

plates is the use of rotary spring model. In this research, the plate 
is first divided into six segments around the crack, and then the 
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crack is modeled on the boundary between the two adjacent 
segments by a rotating spring. Then differential equations of 

plate behavior, boundary conditions, and proper continuity are 
considered. The equation system is transformed into a system of 

algebraic equations using the differential quadrature method, by 
solving which the vibration frequencies of the cracked plate can 

be calculate. In order to investigate the free vibrations of the 
cracked plate, a plate is considered having the length a, width b, 

thickness h, which has a crack of the depth of hc, length Lc, and 
location lc as in Fig. (1). Using the Mindlin theory and taking into 

account the existence of an initial geometric imperfection in 
strain-displacement relations, the differential equations of the 

vibrations of the desired plate are obtained as relations (10) to 
(14). 
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Here μ = ρh and Ix = Iy = (ρh3) / 12, where ρ is the density of 
the desired plate. u, v, and w are the displacements along the axes 

x, y and z, respectively, and α and β are rotation around the axes 
x and y respectively. Also, the initial geometric defect of the 

plate is represented by displacement w0. E is the modulus of 
elasticity, ν is the Poisson ratio, G is the shear modulus, and Ks is 

the shear correction coefficient used to compensate for the 
parabolic distribution of shear stress versus the assumption of the 

uniform distribution of shear stress considered in the Mindlin 
theory. 

 
Figure 1. Cracked rectangular plate 

 

Considering the use of the differential quadrature method for 

solving the equations shown above, the desired plate is first 
divided into six elements around the crack, as shown in Fig. 2, 

and then the differential equations governing the plate, as well as 
the boundary conditions and proper continuity apply to each 

element. Continuity relations between adjacent elements include 
the conjunction of all displacements and rotations, as well as all 

forces and moments and only the slopes of the two elements 2 
and 5 are discontinuous in the direction of perpendicular to the 

path of the crack. This discontinuity is shown in Equation (15). 

 
52

 (15) 
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Figure 2. Cracked plate modeling 

Due to the reduction of the stiffness of the plate in the crack 

region, the slope discontinuity is observed on both sides of the 
crack. Therefore, in order to calculate the additional rotation of 
the cracked plate, by means of the failure mechanics relations 

and the definition of the stress intensity coefficient for the first 
mode of the crack, the amount of this additional rotation can be 

calculated as the relation (16) [13]. 
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Here, b is the nominal bending stress in the direction of 

perpendicular to the crack and bb  is the softness coefficient of 

bending, which is presented in relation (17) as a function of the 
crack parameters [13]. 
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In this relation bg  is a dimensionless function of the relative 

depth of the crack (ξ=hc/h) in the range (0≤ ξ ≤0.8), which is 

taken as the relation (18) [13]. 
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5. Calculation of the natural frequencies of the cracked plate 

In this research, the differential quadrature element method is 

used to calculate the vibration frequencies of the cracked plate. 
Using this method, the differential vibration equations of the 

plate and boundary equations and their corresponding 
continuities are discrete, and a system of equations with 

eigenvalues as relation (19) is formed, which is a nonstandard 
eigenvalue problem. 
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In this case, X is the displacement vector in the form [u, v, w, 

α, β]T. Indices B and I indicate the boundary and internal values, 
respectively. This equation can be obtained in the form of 

equation (20). By solving it, the natural frequencies and mode 
shapes of the plate are obtained. 
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5.1. Results 

As it was mentioned in the description of the differential 
quadrature method, selection of the proper accuracy points 

greatly affects the convergence and accuracy of the results of the 
differential quadrature method. In this section, the effects of 

accuracy points with equal distances, accuracy points using the 
Chebyshev-Gauss-Lobatto, Chebyshev, and Legendre 

polynomials are investigated on the first three frequencies of 
natural vibrations of the plate. The number of accuracy points 

listed in the following is the number of accuracy points used in 
each element. The results obtained for a plate of length and width 

of 1 m and thickness of 0.01 m are presented in Figures 3 to 5. 
The density, Poisson coefficient and modulus of elasticity of the 

plate are 7800 kg / m3, 0.3 and 207 GPa, respectively, which are 
located on the four sides on the joint support. The studied plate 

has an initial geometric defect, which is considered as a 
coefficient of the first mode shape of the buckling of the intact 

plate as in relation (21). 
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Figure 3. variations of first frequency of plate against the number of 

nodes 

 
Figure 4. variations of second frequency of plate against the number of 

nodes 
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Figure 5. variations of third frequency of plate against the number of 

nodes 

As shown in Figures 3 to 5, the convergence and accuracy of 

the frequencies obtained using the Gauss-Lobatto-Chebyshev 
accuracy points are better than the other points. Therefore, in 

order to calculate the frequencies of the cracked plate, these 
accuracy point types are used. It is observed that by increasing 

the number of used points, the relative error rate decreases 
significantly such that, using the eleven points of accuracy, the 

relative error value is very small. 

In the following, in order to investigate the capability of the 
proposed method to extract the frequencies of the thick plate, a 

plate of length and width of 1 m and thickness of 0.1 m is 
considered. The density, Poisson coefficient and modulus of the 

elasticity of the plate are 7800 kg / m3, 0.3 and 207 GPa, 
respectively, and the desired plate is located on the four sides on 

the simply support. The effect of the number of accuracy points 
on the convergence of the first to the third frequencies of the 

plate is presented in Figures 6 to 8. The accuracy points used 
here are Gauss-Lobatto-Chebyshev accuracy points. 

 
Figure 6. variations of first frequency of plate against the number of 

nodes 

 
Figure 7. variations of second frequency of plate against the number of 

nodes 

 
Figure 8. variations of third frequency of plate against the number of 

nodes 

By investigation of Figures 6 through 8, it can be seen that, 

proper results can be obtained using 11 Gauss-Lobatto-
Chebyshev accuracy points. In order to verify the validity of the 

applied modeling method, in the following, the results are given 
in Table 1 in comparison with the results presented in reference 

[14].  

Table 1. Comparison of frequencies obtained using 

differential quadrature method and results presented in other 

references 

 

The thickness 

ratio to the 

length of the 

plate  /h a  

First 

frequency 

Second 

frequency 

Third 

frequency 

Reference [14] 

0/01 

19/7392 49/3480 49/3480 

Reference [14] 19/7319 49/3027 49/3027 

Differential 

quadrature 
19/7320 49/3032 49/3032 

Reference [14] 

0/1 

19/0584 45/4478 45/4478 

Differential 

quadrature 
19/0650 45/4827 45/4827 

 

5.2. The effect of crack depth on the natural frequencies of plate 
vibrations 

Figures 9 through 11 show the variations of the first three 
initial frequencies for different values of the crack depth. The 

results are presented for thick plate (h / a = 0.1) for cracks of 

relative length of 0.4 and relative locations of 0.5. 

 
Figure 9. variations of first frequency of plate against crack 

depth  0 / 1h
a
  
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Figure 10. variations of second frequency of plate against crack 

depth  0 / 1h
a
  

 
Figure 11. variations of third frequency of plate against crack 

depth  0 / 1h
a
  

As can be seen, with the increase of the crack depth, the first 
and third frequencies decrease, as the crack depth decreases the 

stiffness of the plate and thus the natural frequencies decrease. 
On the other hand, the second frequency remains unchanged. 

Since the studied crack is located in the center of the 

plate )5.0/( alc and on the node line of the second mode, so, 

the second mode is not basically affected by the presence of the 
cracks. 

5.3. The effect of the crack location on the natural frequencies of 
plate vibrations 

Figures 12 through 14 show the variations of the first three 
initial frequencies for different values of the crack depth. The 

results are presented for the thick plate (h / a = 0.1) for cracks of 
relative length of 0.4 and relative depth of 0.7. 

 

Figure 12. variations of first frequency of plate against crack 

location  0 / 1h
a
  

 
Figure 13. variations of second frequency of plate against crack 

location  1/0
a

h  

 
Figure 14. variations of third frequency of plate against crack 

location  0 / 1h
a
  

In Figures 12 to 14, with the maintenance of the relative 

length and depth of the crack, the effect of the relative location of 
the crack on the first to third natural frequencies is investigated. 

It can be seen that if the crack is located on a node line of a 
particular mode, the natural frequency of the mode is not 

changed. The reason for this is the zeroing of the bending torque 
and, consequently, the zeroing of the discontinuity of the slope 

on the two sides of the crack, as a result of which, the presence of 
the crack does not have any effect on the natural frequency. It is 

also observed, by careful consideration of the above figures that 
the most frequent variations in the natural frequencies of each 

mode are in the point of the plate, the curvature of which is the 
maximum. 

 

5.4. The effect of the crack length on the natural frequencies of 
plate vibrations 

In Figures 15 to 17, by keeping constant the depth and relative 
location of the crack, the effect of the crack length on its natural 

frequencies has been investigated. As is clear from the figures, by 
increasing the crack length, the natural frequencies of the plate 

decrease, due to the reduction of plate stiffness. Here, locating of 
the crack on the node line causes the crack to be ineffective on 

the natural frequency of the mode. 
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Figure 15. variations of first frequency of plate against crack length 

 1/0
a

h  

 
Figure 16. variations of second frequency of plate against crack 

length  0 / 1h
a
  

 
Figure 17. variations of third frequency of plate against crack 

length  0 / 1h
a
  

 

5.5. Investigation of the effect of geometric defect domain on 
natural frequencies 

In this section, the effect of increasing the domain of the 
geometric defect on the first three natural frequencies of the thick 

plate (h / a = 0.1) has been investigated. By investigation of 

Figures 18 through 20, it is observed that with increasing the 
domain of the initial geometric defect due to increased plate 

stiffness, the natural frequencies increase. 

 
Figure 18. variations of first frequency of plate against initial geometric 

imperfection amplitude 

 

 
Figure19. variations of second frequency of plate against initial 

geometric imperfection amplitude 

 
Figure 20. variations of third frequency of plate against initial geometric 

imperfection amplitude 

 

6. Conclusion 

In this study, the effect of crack on vibrations of thick plates was 
investigated. The crack was considered open and was modeled 

with the help of a torsional spring. The solution of the differential 
equation system was extracted using a differential quadrature 

method and solving the resulted eigenvalue system. Comparison 
of the obtained results with the results of other references showed 

the correctness and accuracy of the proposed method. The 
influence of different parameters such as crack depth, crack 

location, crack length and domain of the geometric defect of the 
plate on natural frequencies was studied. It was observed that 

with the increase in the length and relative depth of the crack, due 
to reduced plate stiffness, the natural frequencies would decrease. 
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While the effect of the crack location on the natural frequencies 

is dependent on the shape of the mode studied, and if there is a 
crack on the node line, the presence of the crack does not affect 

the behavior of the plate. It was also observed that with 
increasing the amplitude of the initial geometric imperfection due 

to increased plate stiffness, the natural frequencies increase. The 

method presented in this study, could be used for crack 
identification in thick rectangular plates using natural frequencies 

of plate which would be presented in another paper of authors. 
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