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1. Introduction 

Using adhesively bonded joints in structures and machines that 

are critical in terms of strength seems to be promising due to 
economic issues, ease, and speed of installation. Hence, it is 

important to determine the stress distribution in such joints. On 

the other hand, industrial adhesives are mainly made of polymeric 

materials that have viscoelastic properties. These properties 

should be considered while designing adhesively bonded joints. 

For this reason, stress distribution in the adhesively bonded single-
lap joints (SLJs) has been widely investigated by many 

investigators[1-6]. The analysis of adhesively SLJs was first 

started by Volkersen [7] and developed by Goland and Reissner 

[8], followed by Hart-Smith [9]. In several studies, Luo and Tong 

[10-12] applied the higher-order displacement theories, as well as 

the large deflection of the adhesive layer, to investigate the stress 
distribution in single lap joints based on analytical solutions. The 

nonlinear analysis of SLJs of composite plates was covered as 

well. The theoretical model developed by Zhao et al. [13] was 

used to investigate the stress distribution in an unbalanced 

adhesively bonded SLJ. They used two-dimensional (2D) 

elasticity theory to perform their analysis in which they applied 
the complete strain-displacement and stress-strain relationships 

for the adhesive and adherends, simultaneously. Selahi et al. [14] 
used two new techniques to calculate the stress distribution in 

composite SLJs; one on the basis of energy method and the other, 

based on the state-space equations. Liu and Huang [15] conducted 

the 2D analysis to determine the adhesive stresses in three kinds 

of adhesively bonded joints with mixed forced loadings and/or 

displacement boundary conditions. On the basis of the variational 
theorem, Zhao et al. [16] used a 2D analytical method to 

investigate the elastic stresses in symmetrically adhesively bonded 

SLJs, taking into account the longitudinal normal stress which 

varied linearly along the joint thickness. In two studies, Shishesaz 

and Reza [17, 18] investigated the stress distribution in a SLJ with 

composite adherends (single and multilayers) in presence of a 
crack in the overlap region. 

To study the unbalanced SLJ stresses and edge moment factors, 

Jiang et al. [19] proposed an improved one-dimensional beam 

model considering the effects of interfacial compliance as well as 

the large deflections of the adherends and overlap. In another 

study, Jiang et al. [20] introduced a 2D stress distribution model 
on the quasi-static behavior of unbalanced fiber reinforced plastic 

(FRP) composite SLJs, taking into account the effects of large 

deformation, bending-tension coupling, and interfacial 

compliance. Assuming a nonlinear behavior for the adhesive, 

Selahi and Kadivar [21], presented a novel formulation, in 
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conjunction with a numerical solution, to study the effects of edge 

loads on stress distribution in an adhesively bonded SLJ, with 

symmetric and asymmetric multilayer composite adherends. 
Talmon l’Armée et al. [22] introduced a new method for 

determination of bending moments and shear forces in SLJs with 

composite adherends that allowed the analysis of joints with 

asymmetrically laminated adherends exhibiting bending-

extensional coupling. Their model was applicable to various types 

of boundary conditions (simply supported ends, fixed ends, strap 
repair, and bonded doubler). 

The work of Delale and Erdogan [23] may be introduced as one 

of the first studies focusing on the viscoelastic analysis of 

adhesively SLJs. They analyzed an adhesively bonded lap joint 

based on three different external loads while assuming the 

isotropic adherends are elastic and the adhesive behaves as a linear 
viscoelastic material. Using a three-parameter viscoelastic solid 

model, they obtained the shear and peel stress distributions within 

the adhesive layer. Pandy et al. [24] performed a nonlinear finite 

element analysis on adhesively bonded joints considering the 

elasto-viscoplastic behavior for the adhesive material while taking 

into account joint the finite rotation. Nagaraja and Alwar [25] 
investigated the stress distribution in a viscoelastic adhesively 

bonded plane lap joint using the finite element method (FEM). 

Moreover, the viscoelastic analysis algorithm for bonded 

connections, based on finite element method (FEM), was 

presented by Yadagiri et al. [26] as well as Carpenter [27]. 

Utilizing FEM, Groth [28] investigated the stress distribution in 
SLJs both with and without a crack, considering separate 

viscoelastic and viscoplastic behaviors for the adhesive layer. 

However, Sato [29], analytically solved for the residual stresses in 

the adhesive layer, encapsulated by two adherends with different 

curvatures, while assuming the adherends behave as linear elastic 

beams and the adhesive layer behaving as linear viscoelastic 
springs. Shishesaz and Reza [30], studied the effect of 

viscoelasticity of the adhesive layer on the shear stress distribution 

in an adhesively bonded SLJ with isotropic adherends under a 

tensile load. In another study, they [31] investigated the effect of 

a break in the laminated composite adherends on stress 

distribution in the adhesive layer, assuming a viscoelastic 
behavior for the adhesive and matrix. They concluded that 

viscoelastic behavior decreases the peak stress near the break. 

They also examined the effect of size and location of the break, as 

well as the effect of volume fraction of fibers, on stress 

distribution in the adhesive layer. Reza et al. [32] studied the 

effect of viscoelasticity of epoxy adhesive, on the creep behavior 
of the adhesive layer, in a double-lap joint. Moreover, the 

viscoelastic effect of the matrix used in polymeric composites on 

transient stress concentration in the intact fibers and the joint, due 

to a sudden break in the fibers, was the main issue in [33]. Here, 

the authors (Reza and Shishesaz) showed that assuming a 

viscoelastic behavior for the matrix decreases the peak stress 
concentration. 

   Recently, many studies have been conducted in the field of 

functionally graded (FG) adhesively bonded SLJs. It has been 
shown that varying Young’s modulus of the adhesive along the 

overlap region results in more uniform stress distribution in the 
adhesive layer, and hence, reduces the stress concentration [34-

37]. Apalak and Gonz [38, 39] investigated the 3D elastic stress 
state of adhesively bonded SLJs with FG adherends under the 

tensile and flexural loads. They used a layered shell finite element, 
based on classical laminated and higher-order theories, to analyze 

the stress distribution in composite plates. They concluded that the 
number of layers and the compositional gradient exponent of the 

FG adherends highly affect the through-thickness profiles and the 

magnitudes of critical stress components in the adherends, as well 
as the adhesive layer. Guin and Wang [40] analyzed the stress 

distribution in adhesively bonded SLJs with FG adherends, using 
the three-parametric elastic foundation model for the adhesive 

layer. Amidi and Wang [41] introduced a viscoelastic analytical 
model for the adhesively bonded SLJs with FG adherends, in 

which the adhesive layer was modeled as a three-parameter 

viscoelastic foundation using a standard linear solid model. They 
showed that the FG adherend configuration and the mechanical 

properties of the adhesive layers play important roles in the 
uniformity of shear stress distribution along the overlap length. A 

theoretical framework for stress analysis of longitudinally 
material-tailored adhesively SLJs subjected to tensile load was 

presented by Khan et al. [42]. They developed a 2D elastic 
sandwich model for an unbalanced SLJ with compliance-tailored 

adherends and adhesive, allowing a power-law variation in the 
modulus along the longitudinal direction. They showed that in 

joints with subcritical and critical bond lengths, the material-
tailoring of the adherends/adhesive reduces the peak stresses in the 

adhesive layer. 
    Considering the searched literature works, the present study 

concentrates on the adhesive shear and peel stress relaxation in an 
adhesively bonded SLJ with FG adherends under a tensile load. In 

the previous related studies ([40, 41]), only one profile for the 
through-thickness material composition of a balanced joint with 

the FG adherends was selected. This research aims to study the 
effect of different profiles for the FG adherend on the adhesive 

time-dependent stress distribution in the balanced and unbalanced 
SLJs. For this purpose, the Reddy model with the capability of 

changing the composition profile of functionally graded materials 
(FGMs) is used. The standard linear solid model (Zener model) is 

used to simulate the viscoelastic behavior of the adhesive layer. 
The finite element method is used to verify the analytical results. 

The solution which is obtained based on the application of a rather 
simple semi-analytical method allows for the comprehensive 

stress analysis in the joint while taking into account the effect of 

different parameters, especially the change in the material 
composition of the adherends. This method can lead to the correct 

selection of the components in a balanced and/or unbalanced 
adhesively bonded SLJ. 

 

2. Initial assumptions and derivation of equations 

2.1. Initial assumptions 

   The proposed 2D model of the SLJ considered in this work is 
consisted of two adherends joined by a thin layer of adhesive 

layer, uniform in thickness, as shown in Fig. 1. Additionally, the 
adherends are made of FG materials that are graded through their 

thicknesses and experience a tensile load T.  It is assumed that they 
behave as linear elastic materials and encapsulate a thin linear 

viscoelastic adhesive layer. The variations in stresses along the 
adhesive thickness are ignored while the effects of axial and 

bending moment in the adhesive layer are neglected, due to its 
weak elastic modulus compared with those of the adherends. The 

x and z axes start from the middle of the adhesive layer, 
perpendicular to the joint edges, and in line with the joint loading. 

The adherend thicknesses are considered to be t1 (top adherend, or 
adherend 1) and t2 (bottom adherend, or adherend 2), respectively. 

The adhesive layer thickness, as well as the length of overlap 
region (joint), are assumed to be ta and 2l, respectively (see Fig. 

1). 
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Figure 1. 2D view of an unbalanced single-lap joint with FG adherends. 

 

   The lower surfaces of both adherends are assumed to be made 
of metal while the upper surfaces are taken to be of pure ceramic. 

Furthermore, the material properties of both adherends are 
allowed to vary smoothly and continuously from metal to ceramic 

in the thickness direction. For the balanced joint, two different 
arrangements are postulated as follow (see Fig. 2): 

   Arrangement I: A balanced joint with the metal surfaces 
touching the adhesive layer.  

   Arrangement II: A balanced joint with the ceramic surfaces 
touching the adhesive layer. 

   The purpose of these arrangements is to attain the best 

configuration for tailoring the stress distribution in the joint and to 
achieve the optimal joint configuration with greater load capacity. 

Moreover, the use of the adhesive layer is to give additional 
insights to the pervious works in which the viscoelastic behavior 

of the adhesive layer and other parameters have been neglected. 

 
(a) 

 
(b) 

Figure 2. Two arrangement types for a balanced single-lap joint with FG 

adherends: (a) Arrangement I, (b) Arrangement II. 
 

2.2. Derivation of equations 

The Reddy model is adopted to derive the basic equations. 

Based on this model, the ceramic volume fraction 𝑉𝑐 and the metal 

volume fraction 𝑉𝑚of the ith adherend change in the thickness 

direction (i.e. 𝑧𝑖), measured from the mid-plane of the ith adherend, 
according to the following equations. 

(1) 𝑖 = 1, 2  𝑉𝑐 (𝑧𝑖) = (
1

2
+

𝑧𝑖

𝑡𝑖
)𝑛  ,     𝑉𝑚(𝑧𝑖) = 1 − 𝑉𝑐 (𝑧𝑖) 

In this equation, n (as the volume fraction exponent) dictates 

the material variation profile through the thickness. Subscripts 1 

and 2 correspond to the adherends 1 and 2, respectively. As n 

approaches zero, each adherend tends to behave as of pure 
ceramic. On the contrary, for n approaching infinity, each 

adherend behaves as a pure metal. 

Furthermore, Young’s moduli of the adherends along their 

thicknesses are expressed as follows: 

(2) 𝑖 = 1, 2  𝐸𝑖(𝑧𝑖) = (
1

2
+

𝑧𝑖

𝑡𝑖
)𝑛 (𝐸𝑐 –𝐸𝑚 ) + 𝐸𝑚  

Here, Ec and Em are the elasticity moduli of the ceramic and 

metal respectively, with 𝐸𝑖 being the elasticity modulus of the ith 

adherend. Moreover, the changes in Poisson’s ratios across the 
thicknesses of both adherends are neglected due to the small 

changes in their magnitude. 

It is necessary to mention that for better presentation of the 

deduced results and showing the effect of n on the joint behavior, 

instead of using n as a variable in the relevant figures/discussions 

(i. e. Fig. 14), parameter Vct and Vmt, defined in Eq. (3) are used to 
show the exact values of ceramic and metal volume fractions (in 

each adherend) for any specific value of n. These parameters are 

obtained by integrating Eqs. (1) along the thickness, while using  

𝑉𝑐𝑡  and 𝑉𝑚𝑡 for the volume fraction of the ceramic and metal 

phases, respectively. 

(3) 𝑖 = 1, 2  𝑉𝑐𝑡 =
100

𝑛+1
           ,            𝑉𝑚𝑡 = 1 − 𝑉𝑐𝑡  

In accordance with the first-order shear deformation theory, 

longitudinal and transverse displacement for both adherends are 

expressed as: 

(4) 𝑖 = 1, 2  𝑈𝑖 = 𝑢𝑖 + 𝑧𝑖 𝜑𝑖  
 𝑊𝑖 = 𝑤𝑖 

where, Ui and Wi are the axial and transverse displacements of 

a point in the ith adherend and are functions of x, z, and time t. 

Additionally, ui and wi are the axial and transverse displacements 
of the mid-plane and 𝜑𝑖 is the cross-sectional rotation of the ith 

adherend (see Fig. 3). These parameters are functions of x and t. 

 
Figure 3. Undeformed and deformed geometries of the adherend edge 

under the assumption of first-order shear deformation theory. 

Using the above first-order shear deformation equations for the 

FG adherends, we now try to derive the governing differential 

equations in the adhesive layer, which will then be transferred into 

the Laplace domain. On solving these equations and using the 

proper boundary conditions, the shear and peel stress distributions 
will be obtained in the adhesive layer. The desired results will be 

extracted in the time domain using a numerical inverse Laplace 

transform method. For this purpose, the strain-displacement 

equations for the two adherends are written as: 

 

(5) 

 

𝑖 = 1, 2 𝜀
𝑖𝑥
=
𝜕𝑢𝑖
𝜕𝑥

+ 𝑧𝑖
𝜕𝜑𝑖
𝜕𝑥

 

 𝛾𝑖𝑥𝑧 = 𝜑𝑖 +
𝜕𝑤𝑖
𝜕𝑥

 

where, 𝜀
𝑖𝑥

 and 𝛾𝑖𝑥𝑧 are the axial and shear strains related to the 

ith adherend. Moreover, the axial force (Ni), transverse shear force 
(Qi), and the bending moment (Mi) for each adherend are 

expressed as: 
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 (6) 

                

𝑖 = 1, 2 𝑁𝑖 = 𝐴11
(𝑖) 𝜕𝑢𝑖
𝜕𝑥

+ 𝐵11
(𝑖) 𝜕𝜑𝑖
𝜕𝑥

𝑀𝑖 = 𝐵11
(𝑖) 𝜕𝑢𝑖
𝜕𝑥

+ 𝐷11
(𝑖) 𝜕𝜑𝑖
𝜕𝑥

 

(7) 𝑖 = 1, 2 
𝑄𝑖 = 𝑘𝑠𝐴55

(𝑖)
(𝜑𝑖 +

𝜕𝑤𝑖
𝜕𝑥

) 

In Eq. (7), ks is the shear correction factor (coefficient) which 

is used in the first-order shear deformation theory and is equal to 

5/6. Additionally,  𝐴11
(𝑖)

, 𝐵11
(𝑖)

 and 𝐷11
(𝑖)

 represent the extensional, 

coupling, and bending stiffness matrix elements for the ith 
adherend and are obtained as follow: 

 

(8) 

 
 

𝑖 = 1, 2 

[𝐴11
(𝑖)
 , 𝐵11

(𝑖)
 , 𝐷11

(𝑖)
]

=
1

1 − 𝑣𝑖
2∫ 𝐸𝑖

𝑡𝑖
2⁄

−
𝑡𝑖
2⁄

(𝑧𝑖)[1 , 𝑧𝑖 , 𝑧𝑖
2]𝑑𝑧𝑖 

 

(9) 

 
 

𝑖 = 1, 2 𝐴55
(𝑖)
=

1

2(1 + 𝑣𝑖)
∫ 𝐸𝑖

𝑡𝑖
2⁄

−
𝑡𝑖
2⁄

(𝑧𝑖)𝑑𝑧𝑖 =
1 − 𝑣𝑖
2

 𝐴11
(𝑖)

 

where 𝑣𝑖 is the Poisson’s ratio of the ith adherend. 

Consequently, Eqs. (6) and (7) are recast as: 

 

(10) 

 

𝑖 = 1, 2 
 

{
 
 

 
 
𝜕𝑢𝑖

𝜕𝑥
= 𝑎𝑖𝑁𝑖 + 𝑏𝑖𝑀𝑖

𝜕𝜑𝑖

𝜕𝑥
= 𝑏𝑖𝑁𝑖 + 𝑑𝑖𝑀𝑖

𝜕𝑤𝑖

𝜕𝑥
= 𝑐𝑖𝑄𝑖 −𝜑𝑖

 

The coefficients of 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 are given in Appendix A. 

Figure 4 shows the Free-body diagram of an infinitesimal 

element of the joint with length dx. In this figure, 𝜏 and 𝜎 are the 

shear and peel stresses in the adhesive layer, respectively.  

Compared to the adherends, the adhesive thickness is small and 

hence the changes in these two stress components along the 

adhesive thickness are ignored. In other words, the two stress 
components are assumed to be only functions of x and t. 

Furthermore, as mentioned before, due to a weak elastic modulus 

of the adhesive layer (compared to the adherend), the longitudinal 

and transverse loads in this component are discarded. Moreover, 

the resultant loads on each individual adherend and adhesive layer 

are selected at their mid-layers, since this notation is customary in 
all drawings used in the literature (i. e. Ref. [43] and many others 

dealing with FG adherends) and appears to produce accurate 

results. 

 
Figure 4. Free-body diagram of an infinitesimal element in the overlap 

region. 

Now, to derive the equilibrium equations, referring to Fig. 4, 

based on the forces and moments equilibrium for each adherend 

(and a portion of its neighboring adhesive layer), and considering 
ℎ1 =

𝑡1

2
 , ℎ2 =

𝑡2

2
  and  ℎ𝑎 =

𝑡𝑎

2
, it is concluded that: 

 
 

(11) 

𝜕𝑁1
𝜕𝑥

= 𝜏                                 , 
 𝜕𝑁2
𝜕𝑥

= −𝜏 

𝜕𝑄1
𝜕𝑥

= 𝜎                                ,  
𝜕𝑄2
𝜕𝑥

= −𝜎  

𝜕𝑀1

𝜕𝑥
= 𝑄1 − 𝜏 (ℎ1 + ℎ𝑎)  , 

𝜕𝑀2

𝜕𝑥
= 𝑄2 − 𝜏 (ℎ2 + ℎ𝑎)    

 

The longitudinal normal strain 𝜀𝑥 , the transverse normal strain 

𝜀𝑧, and the shear strain 𝛾𝑥𝑧 in the adhesive layer can be written in 

terms of the displacements and rotations as: 

(12)  
 𝜀𝑥 =

1

2
(
𝜕𝑢1

𝜕𝑥
− ℎ1

𝜕𝜑1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑥
+ ℎ2

𝜕𝜑2

𝜕𝑥
) 

(13)  
 𝜀𝑧 =

1

𝑡𝑎
(𝑤1 −𝑤2) 

(14)  
𝛾𝑥𝑧 =

1

𝑡𝑎
(𝑢1 − ℎ1𝜑1 − 𝑢2 − ℎ2𝜑2) 

Assuming a viscoelastic behavior for the adhesive layer, based 

on the three-parameter solid model (the Zener model), the stress-

strain relationships for adhesive layer in Laplace domain are 

written as follows: 

(15) 𝜎 = �̅�1𝜀�̅� + �̅�2𝜀�̅�   

(16) �̅� = �̅�3�̅�𝑥𝑧 

where ‘ ̅ ’, represents any specific parameter in the Laplace 

domain. The coefficients �̅�1, �̅�2, and �̅�3 are given in Appendix B. 

Performing math operations on Eqs. (15) and (16) which are given 

in Appendix C, the two governing differential equations for 

stresses in the adhesive layer (in the Laplace domain) are obtained 

as: 

(17) 
 
 

(18) {
 

 
𝜕4�̅�

𝜕𝑥4
+ 𝛼1

𝜕3�̅�

𝜕𝑥3
+ 𝛼2

𝜕2�̅�

𝜕𝑥2
+ 𝛼3

𝜕�̅�

𝜕𝑥
+ 𝛼4�̅� = 0 

𝜕3�̅�

𝜕𝑥3
+ 𝛽1

𝜕�̅�

𝜕𝑥
+ 𝛽2𝜎 = 0                                   

 

The coefficients 𝛼𝑖(𝑖 = 1, … ,4) and 𝛽𝑖(𝑖 = 1,2) are given in 

terms of other parameters in Appendix C. For the unbalanced 

joint, all coefficients 𝛼𝑖 and 𝛽𝑖  are nonzero. On solving Eq. (18) 

for 𝜎 and substituting the result back into Eq. (17), the seventh-

order linear differential equation for the shear stress is obtained 

as: 

(19) 𝜕7�̅�

𝜕𝑥7
+ 𝛾1

𝜕5�̅�

𝜕𝑥5
+ 𝛾2

𝜕3�̅�

𝜕𝑥3
+ 𝛾3

𝜕�̅�

𝜕𝑥
= 0 

where the coefficients 𝛾𝑖(𝑖 = 1,… ,3) are expressed in Eq. (20); 

 

(20) 
𝛾1 = 𝛼1 + 𝛽1  
𝛾2 = 𝛼2 + 𝛼1𝛽1 − 𝛼3𝛽2   
𝛾3 = 𝛼2𝛽1 − 𝛼4𝛽2 

On solving Eq. (19), the adhesive shear stress distribution in 

the Laplace domain is expressed as: 

(21) 
�̅� = ∑ [𝐹𝑖 𝑠𝑖𝑛 ℎ λ𝑖𝑥 + 𝐻𝑖 cosℎ λ𝑖𝑥]

3

𝑖=1

+ 𝐶  

Equation (21) is the general solution to Eq. (19) and it can be 

found in any related math book. Also, substituting Eq. (21) into 
Eq. (18) and solving for 𝜎, the peel stress distribution in the 

adhesive layer (in the Laplace domain) is expressed as: 



Journal of Computational Applied Mechanics, Vol. 50, No. 2, December 2019 

 

345 

 

(22) 
𝜎 = −

1

𝛽2
∑ {λ𝑖(λ𝑖

2 + 𝛽1)[𝐹𝑖 cos ℎ λ𝑖𝑥 + 𝐻𝑖 sin ℎ λ𝑖𝑥]}
3

𝑖=1
 

Equation (22) is simply obtained by substituting Eq. (21) into 

(18) and simplifying the result. In Eqs. (21) and (22), 𝐹𝑖(𝑖 =
1, … ,3), 𝐻𝑖(𝑖 = 1, … ,3), and C are the integration constants yet to 

be determined and are functions of ‘s’ (Laplace variable). On 

application of boundary conditions defined in Appendix D, these 

constants are determined and substituted back in the shear and peel 
stress expressions given in the Laplace domain. In these equations, 

𝜆𝑖(𝑖 = 1, … ,3) are defined as: 

(23) λ
1
= √𝑟1      ,      λ2 = √𝑟2     ,     λ3 = √𝑟3 

where ri (𝑖 = 1,… ,3)  are the roots of the following 

characteristic equation: 

(24) r3 + 𝛾1r
2 + 𝛾2r + 𝛾3 = 0 

Taking the inverse Laplace transform of Eqs. (21) and (22) 

through a numerical scheme, the shear and peel stresses (as a 

function of time) in the overlap region are obtained using the 

MATLAB software program. 

For a balanced joint, since 𝑎2 = 𝑎1, 𝑏2 = −𝑏1, 𝑐2 =
𝑐1, 𝑎𝑛𝑑  𝑑2 = 𝑑1, then one can conclude that  𝛼1 = 𝛼3 = 𝛽2 = 0. 

Therefore, equations for the peel and shear stresses in a balanced 

joint are recast as: 

(25) 
 

(26) 
 {

𝜕4�̅�

𝜕𝑥4
+ 𝛼2

𝜕2�̅�

𝜕𝑥2
+ 𝛼4�̅� = 0 

𝜕3�̅�

𝜕𝑥3
+ 𝛽1

𝜕�̅�

𝜕𝑥
= 0                

 

As observed, the two governing equations are now uncoupled 
and can be solved individually. Coefficients 𝛼2, 𝛼4, and 𝛽1 for the 

balanced joint are given in Appendix E. Considering the 

symmetry, distribution of shear and peel stresses in the adhesive 

layer for the balanced joint are expressed as: 

(27) 𝜎 = 𝑅1 cosℎ λ1𝑥 + 𝑅2 cosℎ λ2𝑥 

(28) �̅� = 𝑅3 cosℎ λ3𝑥 + 𝑅4  

In these two equations, the unknown coefficients 𝑅𝑖(𝑖 =
1, … ,4) are a function of ‘s’ and can be determined on proper 

application of boundary conditions. Moreover, in these two 

equations, 𝜆𝑖(𝑖 = 1,… ,3) are expressed by the following 

relations: 

(29) λ
1
= √𝑟1       ,     λ2 = √𝑟2    ,      λ3 = √−𝛽1  

where ri(𝑖 = 1, 2) are the roots of the following characteristic 

equation: 

(30) r2 + 𝛼2r + 𝛼4 = 0 

Taking the inverse Laplace transform of Eqs. (27) and (28) 
through a numerical scheme, the shear and peel stresses (as a 

function of time) in the overlap region are obtained, using the 

MATLAB software program. 

3. Numerical results and discussions 

In this section, the numerical results are deduced for further 

discussion. Moreover, a 2D finite element analysis of the joint was 

performed to further verify the analytical results, using ANSYS 

v14 software program. The generated finite element model was 

based on the initial assumptions given before (see Fig. 5). The 
element used to mesh the model (both for the adhesive and 

adherends) was the 2D solid Quad 4 node 182 in the plane strain 

state. The mesh was refined near the overlap ends to obtain more 

accurate results at these locations (see Fig. 5). To model the 

functional behavior of the adherends, their thicknesses were 

divided evenly into eleven distinct homogenous isotropic layers 
with different mechanical properties. The material of each layer 

was selected based on the FG adherend properties. Also, to 

implement the viscoelastic properties of the adhesive layer, the 

Prony series option in the ANSYS software was invoked. The 

material and dimensional properties of the joint are given in Table 

1. In this Table, 𝐸𝑎 and 𝑣𝑎 are the elastic modulus and Poisson’s 
ratio of the adhesive at time zero, respectively. Also, 𝐺0 and 𝐺∞ 

correspond to the adhesive shear moduli at times zero and infinity, 

respectively (G0=Ea/2(1+νa)). The joint was assumed to be simply 

supported by a hinge located at the left end of the assembly while 

simply supported on the other end. The size of elements was 

changed up to a point where convergence in results was obtained.

 
Figure 5. Assumed supporting conditions and meshing configuration of the finite element model. 

Table 1. Joint geometry and mechanical properties of adhesive and adherends. 

 Mechanical Properties Thickness Length 

FG Adherend 1 

𝐸𝑐 = 380 𝐺𝑃𝑎 

𝐸𝑚 = 70 𝐺𝑃𝑎  

n=2 

 

𝜈1 = 0.3 

 

 

𝑡1 = 1 𝑚𝑚 

 

 

𝐿1 + 2𝑙 = 100 𝑚𝑚 

 

FG Adherend 2 

𝐸𝑐 = 380 𝐺𝑃𝑎 

𝐸𝑚 = 70 𝐺𝑃𝑎  

n=2 

 

𝜈2 = 0.3 

 

𝑡2 = 1 𝑚𝑚 

 

𝐿2 + 2𝑙 = 100 𝑚𝑚 

 

Viscoelastic 

Adhesive 

𝐸𝑎 = 3.2 𝐺𝑃𝑎  

𝐺∞ = 0.2 𝐺0  

Relaxation time=5 hours 

 

𝜈𝑎 = 0.4 

 

𝑡𝑎 = 0.1 𝑚𝑚 

 

2𝑙 = 20 𝑚𝑚 
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To investigating the time effect of viscoelastic properties of 

the adhesive layer on the shear and peel stress distributions in 

an unbalanced joint, the two stress components were plotted in 
Figs. 6(a), (b), (c), and (d).  The deduced results in the first two 

figures are based on time t = 0, while the latter two (Figs. 6(c) 

and 6(d)) show the corresponding distributions after t = 10 

hours. For further comparison and verification of the numerical 

results, the finite element findings are superimposed. Similar 

results for a balanced joint (Arrangement I) are shown in Fig. 7. 
Moreover, the finite element results are superimposed on Fig. 7 

to further verify and backup the numerical results of the 

balanced model. These results are based on the analyses 

performed in the mid-surface of the adhesive layer. According 
to both figures, the unbalanced joint produces smaller peak 

shear and peeling stresses in the joint (adhesive layer). This 

effect is more prominent in the case of shear stresses. However, 

with any pass in time, the shear stress in the middle of the bond 

line increases, resulting in a more gradual change in its 

magnitude. Obviously, this effect cannot be predicted by any 
elastic analyses of such joints. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Comparison of the present semi-analytical method on the shear and peel stress distribution with those of FEM findings in an unbalanced SLJ with 

FG adherends under tensile load of T = 100 N at t = 0 ((a) and (b)), and t = 10 hours ((c) and (d)). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison of the present semi-analytical method on the shear and peel stress distribution with those of FEM findings in a balanced SLJ 

(Arrangement I) with FG adherends under tensile load of T = 100 N at t = 0 ((a) and (b)), and t = 10 hours ((c) and (d)). 

In the sequel, the effect of viscoelastic parameters and 

relaxation time on the distribution of stresses in the overlap 

region, forces, moments, and other parameters will be studied 

and discussed. For this purpose, the standard linear solid model 

parameters (𝜂1, 𝐺1, and 𝐺0) that are defined in Appendix B were 

used to simulate the behavior of postulated viscoelastic model 
in the adhesive layer. The results are shown in Figs. 8(a), 8(b), 

and 8(c), for different values of 𝜂1, 𝐺1, and 𝐺0. According to 

Fig. 8(a), as 𝜂1 increases, the relaxation time increases while the 

peak values of shear stress remain intact at times zero and 

infinity. However, 𝐺1 affects both the relaxation time and the 

corresponding values of shear stresses. As shown in Fig. 8(b), 
any rise in 𝐺1 reduces the relaxation time while increasing the 

relaxed values of shear stresses without affecting their peak 

values at time zero. Moreover, according to Fig. 8(c), the effect 

of 𝐺0 on the peak shear stresses is manifold. As 𝐺0 increases, 

the initial and final states of the shear at times zero and infinity 

increase without a considerable effect on the relaxation time. 
    Figure 9 shows the changes in force and moment resultants 

(N, Q, and M) in the adherend 1 along the overlap region for 

three different time periods. As shown, the values of these 

parameters at the two ends of the overlap region exactly satisfy 

the boundary conditions. It is also observed that although the 

values of transverse shear Q1 do not seem to be much dependent 

on the time (for the time interval shown), the changes in normal 

load N1 and the bending moment M1 in adherend1 become more 

gradual, as the time passes from zero to fifty hours. Similar 

results are obtained in adherend 2 (results are not shown). 

Through-thickness distributions of the transverse shear 

stress in adherend 1 at the beginning and mid-section of the 
overlap region are shown in Figs. 10(a) and 10(b) at x = -l and 

x = 0, respectively. Three different time spans of 0t  , 10, and 

50 hours were used. As shown in both figures, the zero shear 

stress boundary condition (𝜏𝑥𝑧 = 0 at z = 0.5 mm) is met at the 

top free surface of adherend 1 (t1 = 1.0 mm). This figure also 

indicates that the values of transverse shear stress (𝜏𝑥𝑧) at the 
middle of the overlap region (x = 0) are much smaller than those 

appearing at the left end of the bond ( )x l   and are almost 

negligible compared to the others. With the pass of time, the 

maximum transverse shear stresses in the through-thickness 

direction of the adherend decrease and approach values closer 

to zero.  
Figure 11 shows the through-thickness distribution of axial 

displacement u in the adherend 1 at the mid-section of the 

overlap (x = 0) for the three different time periods. As shown, 

the slope of adherend’s edge (φ) (which is constant for all values 

of z at any location, i.e. x = 0) decreases while the axial 

displacement of the adherend midplane increases with time. The 
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changes in both parameters do not seem to be much over a time 

period of 50 hours. 

(a) 

 
 (b) 

 
 (c) 

Figure 8. The effect of the standard linear solid model parameters on 

the maximum shear stress in adhesive layer of a balanced SLJ (Arrangement 

I) with FG adherends under a tensile load of T = 100 N. (a)  𝜂1 parameter, 

(b) 𝐺1  parameter, and (c) 𝐺0  parameter. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Forces and moment distribution in FG adherends 1 along the 

overlap region of the balanced SLJ (Arrangement I) under a tensile load of 

T = 100 N at t = 0, 10, 50 hours: (a) axial force, (b) transverse force, and (c) 

bending moment. 
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(a) 

 

(b) 

Figure 10. Through-thickness distribution of the transverse shear stress 

in the FG adherends 1 of the balanced SLJ (Arrangement I) under a tensile 

load of T = 100 N at t = 0, 10, 50 hours: (a) at the beginning of the overlap 

region, (b) at the middle of the overlap region. 

Further influences of other mechanical and geometric 

parameters on the shear and peel stress distributions are 

discussed separately in the following sections. Additional 

analyses are performed on the balanced and unbalanced 
adhesively bonded SLJs with FG adherends to deduce these 

results. The material and geometric properties given in Table 1 

are used throughout corresponding calculations; unless 

otherwise stated. Additionally, as mentioned before, instead of 

using ‘n’ as the volume fraction exponent, its equivalent 

counterpart, namely the total volume fraction Vct, is used for a 

better presentation of the results. 

 
Figure 11. Transverse distribution of axial displacement and the 

rotation angle of section for FG adherends 1 in the middle of the overlap 

rejoin (at x = 0) in a balanced SLJ (Arrangement I) under a tensile load of T 

= 100 N at t = 0, 10, and 50 hours. 

3.1. Effect of volume fraction exponent n 

In this section, the effect of material composition of the FG 

adherends on the adhesive stress distributions in the SLJ is 

investigated for three different time periods of t = 0, 10, and 50 

hours. For this purpose, three different ceramic-rich (n = 0.1), 
metal-rich (n = 10) and linear material composition (n = 1) are 

selected for the FG adherends. The results for the unbalanced 

and balanced (arrangement I) joints are presented in Figs. 12 

and 13, respectively. It is observed that for any time period, 

reducing the value of parameter n (increasing the ceramic phase 

Vct in the FG adherends) causes a significant reduction in the 
peak shear stresses developed in the adhesive layer (in both 

balanced and unbalanced joints). These stresses occur at the left 

end (unbalanced joint) or both ends (balanced joint) of the 

overlap region. Furthermore, the amount of shear stress in the 

middle of the joint increases slightly with any pass in time. 

Similar behavior is observed for the peel stress component 
except that the effects of time and n seem to be less prominent 

on this stress component. Moreover, as expected, the two stress 

components decrease at both ends of the overlap region while 

increasing in the mid-length, due to viscoelastic properties of 

the adhesive layer. This behavior is observed for all values of 

volume fraction exponent n. Moreover, results in Fig. 12 
indicate that for any selected time period, the peak shear and 

peeling stresses that occur at the left end of the overlap region 

for an unbalanced joint are higher than those produced in a 

balanced joint (see Fig. 13) with similar geometric and 

mechanical properties of constituents. 
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(a) 

             
(b) 

 
(c) 

 
(d) 

                                                                                                       
(e)  

(f) 

Figure 12. Normalized time-dependent adhesive shear and peel stress distributions for various Reddy model index in an unbalanced SLJ with FG adherends 

under a tensile load of T = 100 N at t = 0 ((a) and (b)), t = 10 ((c) and (d)), and t = 50 hours ((e) and (f)). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

Figure 13. Normalized time-dependent adhesive stress distributions based on three different Reddy model indices in a balanced SLJ (Arrangement I) with 

FG adherends under a tensile load of T = 100 N at t = 0 ((a) and (b)), t = 10 ((c) and (d)), and t = 50 hours ((e) and (f)). 

3.2. Effect of joint configuration 

Previous studies have reported that stress concentration in the 
adhesive layer of a balanced joint with FG adherends is smaller 

when the stiffer material is placed nearest to the adhesive layer. 

This result has been achieved only for one profile of adherends 

material composition. In this section, the effect of FG adherends 

configurations on the adhesive stresses concentration is 

investigated for different adherends composition profiles. For 

this purpose, the maximum shear and peel stresses are plotted 

versus Vct for the two arrangements of I and II, in a balanced 

adhesively SLJ, for the three different times periods mentioned 

before. Material properties and joint geometry are selected 

according to Table 1; except for n that is considered to be a 

variable. 

As shown in Figs. 14a and 14b, although the maximum 

stresses in the two arrangements I and II are relaxed over time, 
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arrangement II always exhibits lower values of stresses 

compared with those in arrangement I, for 0<Vct<100. However, 
the differences in shear stresses for the two arrangements, at any 

time period, decrease with any increase in Vct (lower values of 

n, corresponding to higher concentration of ceramic phase). 

Similar behavior is observed for the differences in peel stresses 

in both arrangements. The highest differences in the maximum 

shear and peel stresses (for the two arrangements) that occur at 
Vct ≈25% are equal to 34% and 43%, respectively. It is worth to 

mention that Vct = 0% and Vct =100% correspond to the 

adherends with complete homogeneous metallic and ceramic 

properties, respectively. Additionally, according to the results in 

both figures, for arrangement I, the effect of ceramic phase 

volume fraction on reducing the maximum values of these 
stresses (see section 3.1 or Figs. 12 and 13) is higher for Vct 

>25%. 

 

(a) 

 

(b) 

Figure 14. Comparison of maximum normalized adhesive peel and 

shear stresses in a balanced adhesively SLJ with FG adherends for 

arrangements I and II (0 ≤ 𝑉𝑐𝑡 ≤ 100), under a tensile load of T = 100 N 

for different time periods of t = 0, 10, and 50 hours: (a) shear stress, and 

(b) peel stress. 

3.3. Effect of thickness and stiffness of the adhesive layer 

In this section, the effects of thickness and stiffness (in elastic 

state or time zero) of the adhesive layer on the maximum values 
of shear and peel stresses in the viscoelastic adhesive layer are 

investigated. For this purpose, two FG adherends in a balanced 

state (arrangement I) and properties given in Table 1 are selected 

to perform the analysis. In each run, a different composition for 

the FG adherends (ceramic-rich and metal-rich) was selected to 
seek the effects of adhesive thickness (in conjunction with the 

material composition of the adherend) on the two forgoing stress 

distributions (see Figs. 15(a) and 15 (b)). Two different values 

of 𝑡𝑎=0.1 mm and 0.2 mm were selected for the adhesive 

thickness. Similar plots are also generated to investigate the 

effects of adhesive Young’s modulus on the peel and shear 
stresses developed in the adhesive layer (see Figs. 16(a) and 

16(b)). 

 

(a) 

 

(b) 

Figure 15. The effect of adhesive thickness on the maximum 

normalized shear and peel stresses in the adhesive layer during the time, 

for two different values of n in the balanced SLJ (Arrangement I) with FG 

adherends under tensile load: (a) shear stress and (b) peel stress. 

As shown in these figures, stress concentrations in the joint 

are reduced by an increase in the adhesive thickness or a 

reduction in Young’s modulus of the adhesive layer. This 

behavior is observed for both limiting values of FG adherends 

compositions (ceramic-rich with n = 0.1 and metal-rich with n 
= 10), with/without considering the adhesive viscoelastic 

behavior. It is also noticed that the stress relaxation value for the 

peel stress (about 9%) is much smaller than that of the shear 

stress (about 55%). Additionally, according to both figures, the 

stress stabilization time for peeling stress is about 21 hours and 

that for the shear stress is about 36 hours. 
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(a) 

(b) 

Figure 16. Impact of adhesive stiffness on the maximum normalized 

stresses in the adhesive layer during the time, for the two different values 

of n in the balanced SLJ (Arrangement I) with FG adherends under tensile 

load: (a) shear stress and (b) peel stress.  

4. Conclusions 

In this study, the adhesive time-dependent stress distribution 

in a SLJ with FG adherends, possessing variable through-

thickness material composition profiles was analytically and 

numerically investigated. For this purpose, the Reddy model 

was applied to the two elastic FG adherends and the standard 
linear solid model (Zener model) was used to express the 

viscoelastic behavior of the adhesive layer. The numerical 

scheme was used to solve the equilibrium equations and find 

solutions for the shear and peel stress distributions in the 

adhesive layer over time. The numerical results on shear and 

peel stress distributions were compared with those of finite 
element solution. Very good agreements were observed between 

the results of both methods. The SLJ model considered in this 

study included balanced and unbalanced joints, bending-

extensional coupling in the adherends and different material 

composition profiles in the FG adherends. The obtained results 

showed that viscoelastic behavior of the adhesive layer plays an 
important role in reducing the stress concentrations that occur at 

the left end (unbalanced joint) or both ends (balanced joint) of 

the overlap region. The parametric study of the joint behavior 

showed that the material composition profile of the FG 

adherends plays an important role on reducing the stress 

concentration in the adhesive layer. Accordingly, selecting a 

stiffer material (phase) for each FG adherend reduces the stress 

concentration significantly. This leads to more uniform shear 

stress distribution in the joint. Additionally, proper set up of the 

adherends in a balanced joint affects the stress concentration (at 

any time) in a way that if the stiffer material is placed adjacent 

to the adhesive, the stress concentration is decreased 
significantly. The intensity of this effect depends on the material 

composition profile of the adherends and is largest at Vct≈25%. 

However, this effect is decreased over the time span. In addition, 

according to the results, stress concentrations in the joint can be 

reduced by an increase in the adhesive thickness or a reduction 

in its Young’s modulus. 

Appendix A 

The coefficients ai, bi, ci, and di in Eq. (10) are given as 

follow: 

 
 
 
 
 

(A1) 

 
 
 
 
 

 𝑖 = 1, 2  
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𝐷11
(𝑖)
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Appendix B 

To model the viscoelastic behavior of the adhesive layer, a 

linear viscoelastic three-parameter solid model (the Zener 

model) was used (see Fig. B-1). 

 
Figure B-1. Standard linear solid model (Zener model). 

This model expresses the adhesive shear modulus over time 
in which G0, G1, and 𝜂1 are constants used to determine the 

viscoelastic behavior of the adhesive layer. According to this 

model, G0 is equal to Ga (the adhesive elastic shear modulus) or 

the adhesive shear modulus at t = 0. Accordingly, considering 

the deviatoric-volumetric component of the strain and stress 

tensor, the stress-strain relations for the viscoelastic adhesive 
layer are written as follow: 

(B1) 𝑖,𝑗 = 1, 2, 3  (𝑃)𝑠𝑖𝑗 = (𝑄)𝑒𝑖𝑗  

(B2)  
(�̃�)�̃� = (�̃�)�̃� 

In these equations, 𝑃, 𝑄, �̃� and �̃� are the differential 

operators; 𝑠𝑖𝑗  and 𝑒𝑖𝑗 (𝑖,𝑗 = 1, 2, 3) are the deviatoric 

components of the stress and strain tensor, respectively; while �̃� 
and �̃� are orderly the hydrostatic stress and strain. The 

differential operators in Eqs. (B1) and (B2) can be expressed 

as: 

(B3) 
𝑃 = 1 + 𝑝1

𝜕

𝜕𝑡
            ,             𝑄 =  𝑞0 + 𝑞1

𝜕

𝜕𝑡
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(B4) �̃� = 1                           ,             �̃� = 3𝐾 

Here, 𝐾 is the adhesive balk modulus in the elastic state. The 

changes in bulk modulus (K=EaGa/3(3Ga-Ea)) over time are 

assumed to be small. 

Moreover, in Eq. (B3): 
 

 
 

(B5) 

                
 𝑝1 =

𝜂1
𝐺0 +𝐺1

 

𝑞0 =
𝐺0𝐺1
𝐺0 + 𝐺1

 

𝑞1 =
𝜂1𝐺0
𝐺0 + 𝐺1

 

The deviatoric strain and stress tensors for the plane strain 

condition (𝜀𝑦 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0), are as follow: 

 
 

 

(B6) 

                
 
 

𝑖. 𝑗
= 1, 2.3 

[𝑒𝑖𝑗] = [
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         = [
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2⁄

0 −�̃� 0
𝛾𝑥𝑧
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𝑖. 𝑗
= 1, 2.3 

[𝑠𝑖𝑗] = [

𝜎𝑥 0 𝜏𝑥𝑧
0 𝜎𝑦 0

𝜏𝑥𝑧 0 𝜎𝑧

] − [
�̃� 0 0
0 �̃� 0
0 0 �̃�

] 

         = [

𝜎𝑥 − �̃� 0 𝜏𝑥𝑧
0 𝜎𝑦 − �̃� 0

𝜏𝑥𝑧 0 𝜎𝑧 − �̃�
] 

Where, �̃� and �̃� are the hydrostatic strain and stress. For 

plane-strain condition one can write: 

(B8) 
�̃� =

1

3
( 𝜀𝑥 + 𝜀𝑧) 

(B9) 
�̃� =

1

3
( 𝜎𝑥 + 𝜎𝑧 + 𝜎𝑦) 

Inserting Eqs. (B6) to (B9) into Eqs. (B1) and (B2) and 

eliminating 𝜎𝑥  and 𝜎𝑦, the result will be: 

(B10) (3𝑃)𝜎 − (3𝐾𝑃+ 2𝑄)𝜀𝑧 − (3𝐾𝑃 −𝑄)𝜀𝑥 = 0 

(B11) 
(𝑃)𝜏 = (

1

2
𝑄)𝛾𝑥𝑦  

For simplicity, the shear stress 𝜏𝑥𝑧, and the peel stress 𝜎𝑧 in 

the adhesive are shown by τ and σ, respectively. Equation (B10) 
can be recast as: 

 

(B12) (𝑐1 + 𝑐2
𝜕

𝜕𝑡
)𝜎 − (𝑐3 + 𝑐4

𝜕

𝜕𝑡
) 𝜀𝑧 − (𝑐5 + 𝑐6

𝜕

𝜕𝑡
) 𝜀𝑥 = 0 

In which coefficients 𝑐1 to 𝑐6 are as follow: 

 𝑐1 = 3                            ,           𝑐2 = 3𝑝1  

(B13) 𝑐3 = 3𝐾 + 2𝑞0            ,           𝑐4 = 3𝐾𝑝1 + 2𝑞1  

 𝑐5 = 3𝐾 − 𝑞0              ,           𝑐6 = 3𝐾𝑝1 − 𝑞1  

Moreover, according to Eq. (B11) one can write: 

(B14) 
(1 + 𝑝1

𝜕

𝜕𝑡
)𝜏 =

1

2
(𝑞0 + 𝑞1

𝜕

𝜕𝑡
)𝛾𝑥𝑦  

Applying Laplace transform on both sides of Eqs. (B12) and 

(B14), they are converted to simple forms that are given as Eqs. 

(15) and (16) in section 2 of the manuscript. The coefficients 

introduced in these two equations are: 

 
 

 

(B15) 

�̅�1 =
(𝑐3 + 𝑐4𝑠)

(𝑐1 + 𝑐2𝑠)
  

�̅�2 =
(𝑐5 + 𝑐6𝑠)

(𝑐1 + 𝑐2𝑠)
 

�̅�3 =
(𝑞0 + 𝑞1𝑠)

2(1 + 𝑝1𝑠)
  

where ‘s’ is the Laplace parameter and is called the complex 
variable. 

Appendix C 

Applying Laplace transform on both sides of Eqs. (12) and 

(13) and substituting the results back into Eq. (15), one can 
write: 

 

 

(C1) 

𝜎 =
�̅�1
𝑡𝑎
(�̅�1 − �̅�2) 

                +
�̅�2
2
(
𝜕�̅�1
𝜕𝑥

− ℎ1
𝜕�̅�1
𝜕𝑥

+
𝜕�̅�2
𝜕𝑥

+ ℎ2
𝜕�̅�2
𝜕𝑥

) 

Furthermore, substitution of the Laplace transformed form of 

Eq. (10) into Eq. (C1), yields: 

 
 

(C2) 

𝜎 =
�̅�1
𝑡𝑎
(�̅�1 − �̅�2) 

           +
�̅�2
2
[(𝑎1 − ℎ1𝑏1)𝑁1 + (𝑎2 + ℎ2𝑏2)�̅�2 

                           +(𝑏1 − ℎ1𝑑1)�̅�1 + (𝑏2 + ℎ2𝑑2)�̅�2]  

Similarly, applying a Laplace transform on both sides of Eq. 

(14) and substituting the result back into Eq. (16), gives: 

 

(C3) �̅� =
�̅�3
𝑡𝑎
(�̅�1 − ℎ1�̅�1 − �̅�2 − ℎ2�̅�2) 

On sequential differentiation of Eqs. (C2) and (C3) with 

respect to x, and using the Laplace transformed form of Eqs. (10) 

and (11), Eqs. (17) and (18) in section 2 are determined. The 
coefficients in Eqs. (17) and (18) are: 

 

(C4) 𝛼1 =
�̅�2
2
[(𝑏2 + ℎ2𝑑2)(ℎ2 + ℎ𝑎) + (𝑎2 + ℎ2𝑏2) 

               +(𝑏1 − ℎ1𝑑1)(ℎ1 + ℎ𝑎) − (𝑎1 − ℎ1𝑏1)] 
 

 

(C5) 𝛼2 =
�̅�2
2
[(𝑏2 + ℎ2𝑑2) − (𝑏1 − ℎ1𝑑1)] −

�̅�1
𝑡𝑎
(𝑐1 + 𝑐2) 

 

(C6) 𝛼3 =
�̅�1
𝑡𝑎
[(𝑏1 + 𝑏2) + 𝑑2(ℎ2 + ℎ𝑎) − 𝑑1(ℎ1 + ℎ𝑎)] 

 

(C7) 𝛼4 =
�̅�1
𝑡𝑎
(𝑑1 + 𝑑2) 

 
 

(C8) 

𝛽1 =
�̅�3
𝑡𝑎
[(𝑏1 − ℎ1𝑑1)(ℎ1 + ℎ𝑎) − (𝑎1 − ℎ1𝑏1) 

              −(𝑏2 + ℎ2𝑑2)(ℎ2 + ℎ𝑎) − (𝑎2 + ℎ2𝑏2)] 

 

(C9) 𝛽2 = −
�̅�3
𝑡𝑎
[(𝑏1 − ℎ1𝑑1) + (𝑏2 + ℎ2𝑑2)] 

Appendix D 

he boundary conditions of the joint (overlap) region can be 

written as: 

 

(D1) 
∫ 𝜏̅(𝑥. 𝑠)𝑑𝑥 = 𝑁2⌋𝑥=−𝑙

𝑙

−𝑙

− 𝑁2⌋𝑥=𝑙  

 

(D2) 
∫ �̅�(𝑥. 𝑠)𝑑𝑥 = �̅�2⌋𝑥=−𝑙

𝑙

−𝑙

− �̅�2⌋𝑥=𝑙  

 

(D3) 
∫ �̅�(𝑥. 𝑠)𝑥𝑑𝑥 = (�̅�2⌋𝑥=𝑙

𝑙

−𝑙

− �̅�2⌋𝑥=−𝑙) − 𝑙 (�̅�2⌋𝑥=𝑙 + �̅�2⌋𝑥=−𝑙)

− (ℎ2 + ℎ𝑎)(𝑁2⌋𝑥=𝑙 − 𝑁2⌋𝑥=−𝑙) 
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(D4) 

𝜕2�̅�

𝜕𝑥2
|
𝑥=𝑙

+𝛼1
𝜕𝜏̅

𝜕𝑥
|
𝑥=𝑙

+ 𝛼2�̅�|𝑥=𝑙  

            =
𝐴̅1

𝑡𝑎
[(𝑏2𝑁2|𝑥=𝑙 + 𝑑2�̅�2|𝑥=𝑙) − (𝑏1𝑁1|𝑥=𝑙 + 𝑑1�̅�1|𝑥=𝑙)]  

 

 

(D5) 

𝜕3�̅�

𝜕𝑥3
|
𝑥=𝑙

+𝛼1
𝜕2𝜏̅

𝜕𝑥2
|
𝑥=𝑙 

+ 𝛼2
𝜕�̅�

𝜕𝑥
|
𝑥=𝑙

+ 𝛼3𝜏̅|𝑥=𝑙     

=
𝐴̅1

𝑡𝑎
(𝑑2�̅�2|𝑥=𝑙 − 𝑑1�̅�1|𝑥=𝑙) 

 

(D6) 
𝜕𝜏̅

𝜕𝑥
|
𝑥=𝑙

=
𝐴̅3

𝑡𝑎
 {[(𝑎1 − ℎ1𝑏1)𝑁1|𝑥=𝑙 + (𝑏1 − ℎ1𝑑1)�̅�1|𝑥=𝑙] 

                       −[(𝑎2 + ℎ2𝑏2)𝑁2|𝑥=𝑙 + (𝑏2 + ℎ2𝑑2)�̅�2|𝑥=𝑙]} 

 

(D7) 
𝜕2𝜏̅

𝜕𝑥2
|
𝑥=𝑙

+ 𝛽1𝜏̅|𝑥=𝑙 =
𝐴̅3

𝑡𝑎
 [(𝑏1 − ℎ1𝑑1)�̅�1|𝑥=𝑙

− (𝑏2 + ℎ2𝑑2)�̅�2|𝑥=𝑙] 

Note: Eqs. (D1) to (D3) are determined based on the forces and 
moment equilibrium (see Fig. D-1). Moreover, owing to the fact 

that these equations are written in Laplace domain, with regard 

to Eq. (D1), since at    x=-l, 𝑁2 = 𝑁2
∗ = 0 (�̅�2

∗ = 0, free end), 

and at x=-l, 𝑁2 = 𝑁2
∗ = �̅� (please refer to Eq. (D10)), the 

expression 𝑁2⌋𝑥=−𝑙 −𝑁2⌋𝑥=𝑙 has the same physical meaning as 

being equal to �̅� in Laplace domain (or T in physical domain, as 
shown in Fig. 1).  

Additionally, Eq. (D2) is based on the equilibrium of forces 

stemming the from the boundary conditions (please note that at 

x = -l, �̅�2⌋𝑥=−𝑙 = 0 (𝑜𝑟 𝑄2⌋𝑥=−𝑙 = 0, outside the Laplace 
domain). However, to write Eq. (D3), the proposed model 

postulated in Ref. [43] was used (also used by many others). 

This model was deduced based on the fact that for the joint to 

be in shear, the moment created by the applied forces at the two 

ends of the assembly must be equal to zero. As a result, the 

applied forces at the two extreme ends are assumed to be 
collinear, forming an angle α=(t1+t2+2ta)/2(L1+L2+2l) with 

respect to the horizontal direction. This produces a total moment 

of zero on the whole structure. Such applied forces produce 

horizontal and vertical components T and αT, at each end (see 

Fig. 5). Doing so, the two vertical forces created at the two 

extreme ends of the structure create a moment that 
counterbalance the moment due to tensile force T. Obviously, 

these forces will be present in the corresponding free body 

diagrams (see Figs. D-1 and D-2) used to derive the governing 

equations. 

 
Figure D-1. The free-body diagram of the adherend 2 in the overlap 

region. 

According to the boundary conditions at the two ends of the 

overlap region (see Fig. D-2), one can write: 

 

(D8) 
@   𝑥 = −𝑙  ∶    𝑁1 = 𝑁1

∗   ,    �̅�1 = −�̅�1
∗  ,   �̅�1 = �̅�1

∗  
                                 𝑁2 = �̅�2 = �̅�2 = 0 

 

(D9) 
@   𝑥 = 𝑙  ∶       𝑁1 = �̅�1 = �̅�1 = 0 
                             �̅�2 = 𝑁2

∗   ,    �̅�2 = �̅�2
∗      ,   �̅�2 = �̅�2

∗  

 
Figure D-2. The boundary conditions at two ends of joint region. 

Equations (D8) and (D9) are written based on the 
boundary conditions. They can be easily extracted by a 
glance at the geometry of the joint (Fig. 1) or Fig. D-2. where, 

𝑁1
∗, 𝑄1

∗, 𝑀1
∗ and 𝑁2

∗, 𝑄2
∗, 𝑀2

∗ are the boundary loads at the two 

ends of the overlap region. According to Fig. D-2, as well as the 

loading condition given for the SLJ, one can write [43]: 

 
 

(D10) 

𝑁1
∗ = �̅�         ,          �̅�2

∗ = �̅�  

 �̅�1
∗ = �̅�2

∗ =
(1− 𝑘1

∗ − 𝑘2
∗)(ℎ1 + ℎ2)�̅�

2𝑙
  

�̅�1
∗ = 𝑘1

∗(ℎ1 + ℎ2)�̅�           ,         �̅�2
∗ = 𝑘2

∗(ℎ1 + ℎ2)�̅� 

Here, 𝑘1
∗ and 𝑘2

∗ are the edge moments correction factors for 

the SLJ and are defined as [43]: 

(D11) 𝑘1
∗ = 𝜉2 (𝜉1 + 2𝜉1𝜉2𝑙 + 𝜉2)⁄  
𝑘2
∗ = 𝜉1 (𝜉1 + 2𝜉1𝜉2𝑙 + 𝜉2)⁄  

where: 

 

(D12) 𝜉1 = √𝑑1�̅�       ,        𝜉2 = √𝑑2�̅�      ,        �̅� =
𝑇

𝑠
 

It is worth to mention that Eq. (D12) has been extracted from 

Ref. [43]. Please refer to Eqs. (18) and (19) in this Reference for 

more details.  

It is assumed that the tensile load is constant and the transient 

effects of the initial loading are ignored. On proper substitution 
of Eqs. (21) and (22) in the boundary conditions (Eqs. (D1) to 

(D7)), a set of equations are obtained. Solving these equations, 

the unknown coefficients in Eqs. (21) and (22) can be 

determined. 

Appendix E 

The coefficients in Eqs. (25) and (26) are as follow: 

(E1) 
𝛼2 = −(�̅�2(𝑏1 − ℎ1𝑑1) +

�̅�1
ℎ𝑎
(𝑐1))  ,  𝛼4 =

�̅�1
ℎ𝑎
(𝑑1) 

(E2) 
 𝛽1 =

�̅�3
ℎ𝑎
[(𝑏1 − ℎ1𝑑1)(ℎ1 + ℎ𝑎) − (𝑎1 − ℎ1𝑏1)] 
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