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1. Introduction 

Microelectromechanical and nanoelectromechanical devices 

involving small-scale resonators [1, 2], generators [3] and sensors 

[4-6] have been widely manufactured and analysed in recent years 

due to their fascinating functions and features. Various structural 

components (ultrasmall beams, plates and channels) [7-14] have 

been utilised in their manufacturing process. The mechanics of 

these components [15-19] has been an interesting topic for 

researchers and scientist all over the world as well [20-24]. 

Microfluidics-based devices are a novel class of 

microelectromechanical systems, which are used to control and 

manipulate fluid and particle behaviour at microscale levels [25, 

26]. These ultrasmall devices have a wide range of applications 

from biomedical systems [27, 28] to the synthesis of polymeric 

ultrasmall particles. Compared to traditional tools for 

manipulating and controlling fluids and particles, it has a number 

of advantages including reduced process time, less fabrication 

cost, small size, being portable, high precision and less 

maintenance cost [26]. Moreover, microfluidics-based devices 

have the potential to be connected to smart phones [29]. In this 
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way, for instance, there is no need for a laboratory and extra 

equipment to see the results of a biomedical test.   

Generally, there are two important classes of microfluidics-

based devices: 1) active, and 2) passive. In the first class (i.e. active 

devices), the device operates using an external applied force such 

as electrical and magnetic forces whereas in the second class, there 

is no external force, and the device works based on intrinsic forces. 

Among passive microfluidics-based devices, inertial microfluidics 

has attracted much attention owing to their advantages such as 

having a simple structure, high throughput, fast processing and low 

cost [26, 27]. This type of microscale systems plays a crucial role 

in focusing and separating particles and fluids at the scale of 

micrometres. In comparison with traditional microfluidic devices, 

where Reynolds number is less than one, meaning that the fluid 

velocity is very low and viscosity is large, inertial microfluidics 

has an intermediate Reynolds number. Inertial microfluidic 

devices can be used in biomechanical and biomedical applications 

such as detecting and diagnosing malaria, detaching circulating 

tumour cells and extracting blood plasma. 
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Inertial migration and secondary flow are the basis of inertial 

microfluidics. When particles flow in a straight channel, inertial 

lift forces cause particles to migrate laterally to the equilibrium 

position. There are two main kinds of inertial effects that act in an 

opposite manner. 1) Saffman and shear gradient forces, which 

cause particles to move away from the centre, and 2) wall-induced 

force, which repels particles away from the wall due to their 

interaction with the channel wall. These two inertial forces are 

balanced with each other, leading particles to the equilibrium 

position [30, 31]. The secondary flow, which is induced by the 

pressure gradient due to the fluid momentum difference between 

the centre and wall, is observed in straight channels as well as 

curved ones. The centre of the channel has a higher velocity 

compared to the regions near the wall. Therefore, when particles 

flow through the curved channel, they go towards the channel and 

then recirculates back, forming two different streams in the cross-

sectional plane of the channel (Dean vortex) [32, 33]. Moreover, 

dean drag force has been added to inertial lift forces, determining 

the equilibrium position. The ratio of the inertial lift force to dean 

drag force is important in differentiating and separating particles 

based on their size (see Fig. 1). In a straight channel, the inertial 

lift force is generated as particles flow in the fluid, leading to the 

lateral migration. In a curved channel, inertial lift forces together 

with dean drag force are generated, determining the final 

equilibrium position. Curved channels are able to separate 

particles based on their size while straight channels are not 

reasonable for this purpose. 

There are nonlinear forces in inertial microfluidics that have 

been used to manipulate microparticles. These forces include but 

not limited to viscous drag, diffusion, Magnus, Saffman and wall-

induced forces. When a particle/object moves in fluid, an external 

force acts on the particle, causing the viscous drag force. Random 

movements of ultrasmall particles in fluid create diffusion force. 

There is low diffusion process if the viscosity of fluid is high or 

particles are large. Magnus force is associated with a rotating 

object in fluid. It is due to pressure difference because of the 

spinning of the object in fluid. Furthermore, because of channel 

walls, a velocity gradient is generated, causing a lift force 

(Saffman force). Finally, the wall-induced force, which acts on 

particles near boundaries, together with Magnus and Saffman 

forces, cause the lateral migration of particles. In this paper, all of 

these important forces are formulated and discussed in detail. This 

is a comprehensive paper which deals with a high number of 

intrinsic forces in inertial microfluidics-based devices. In addition 

to mathematical formulation of intrinsic forces, the influences of 

particle size on the drag force, drag coefficient, particle Reynolds 

number, diffusion coefficient and Peclet number as well as 

Magnus, Saffman and wall-induced forces are examined and 

discussed.  

2. Drag force 

When particles move in a fluid, a force is required to carry the 

fluid molecules away from the path of particles. This force is 

technically called viscous drag force. Let us take into account a 

particle of a spherical shape which moves in a fluid. In this case, 

the drag force (FD) can be expressed as [34] 


  2 ,

4
D D D PF c S c d             (1) 

where cD, S, and dP stand for the darg coefficient, particle cross-

sectional area and diameter, respectively. cD depends on the 

particle Reynolds number (ReP), which is defined by 




Re .f P r

P

f

d V
             (2) 

Here  f
,  f

 and Vr are, respectively, the fluid density, fluid 

viscosity and the relative speed of the particle with respect to the 

fluid. The influences of being scale-dependent are neglected in this 

force analysis. The scale influences are usually captured for 

nanoscale structures [35-42].  

 
Fig. 1. (a) Inlet and (b) outlet of an inertial microfluidics-based 

device for CTC separation.  

There are several ranges of Reynolds number for determining the 

drag coefficient, and then consequently for obtaining the drag 

force as follows: 

1) 10-4 < ReP < 0.2: 


12 ,f r

D

P

V
c

d
             (3) 

and 

 3 ,D f r PF V d              (4) 

The drag force in this case, is commonly known as the Stokes drag. 

Stokes drag happens if the relative speed of particles to fluid is 

sufficiently small. The second range is [34] 

2) 0.2 < ReP < 500 1000: 

 


  
 

0.687
12 1 0.15 Re ,f r

D P

P

V
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                   (5) 

and 

    
 

0.687
3 1 0.15 Re ,D P f r PF V d            (6) 

3) 500 1000 < ReP < 2105: 

 
2

0.22 ,D f rc V             (7) 

and 

 
2 20.055 .D f r PF V d             (8) 

In inertial microfluidics-based channels, there are two drag 

force components: 1) mainstream drag force, and 2) secondary 

flow drag force. The former is caused by the movement of particles 

along the direction of the channel whereas the latter is induced due 

to the secondary flow of particles. The mainstream drag force acts 

on the particle along the channel direction while the secondary 

flow darg force exists in the cross-sectional plane. It should be 

noticed that in inertial microfluidics, we have intermediate 

Reynolds numbers (i.e. 1 < ReP < 100) for the main stream, 

and thus the corresponding drag coefficient and force are obtained 

from Eqs. (5) and (6), respectively.  

3. Diffusion force 

The diffusion force, which acts on particles suspended in a 

fluid, is caused by the Brownian motion. Due to the frequent 

collision between suspended particles and fluid molecules, random 
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motions are observed, which are known as Brownian motions. 

Based on the Einstein-Smoluchowski relation, we have [43] 

2 6 .diff diffr c t               (9) 

Here rdiff, cdiff and t denote the mean diffusion distance, diffusion 

coefficient and time, respectively. rdiff represents the mean distance 

which particles diffuse inside a fluid.  Using the Stokes-Einstein 

assumption, cdiff can be written as 

 
 

 ,
3

diff

P f

kT
c

d
            (10) 

where k and T stand for Boltzmann’s coefficient and absolute 

temperature, respectively. Boltzmann’s coefficient is 

1.3806485×10−23 J/K. To compare advection (main flow) to 

diffusion, a dimensionless number is given by 

 
advection rate

Pe ,
diffusion rate

f c

diff

V L

c
          (11) 

in which Pe, Vf and Lc are the Peclet number, fluid velocity and 

channel characteristic length, respectively [44]. When the Peclet 

number is small, the diffusion has an important effect on the 

motion of particles. In inertial microfluidics-based devices, the 

Peclet number is large, meaning that the effect of diffusion can be 

neglected.   

 

4. Magnus force 

When a particle rotates with angular speed P  inside a flowing 

fluid with speed 
fV , a lift force, which is known as Magnus force, 

is created (see Fig. 2). In fact, the fluid speed is lower near the 

point where the particle speed is in the opposite direction to that of 

the flow, and thus the pressure is higher (Bernoulli principle). This 

difference in the pressure results in the Magnus force. For a 

rotating spherical particle, one obtains [45] 

    31
,

8
M P f f PF d V            (12) 

in which MF  is the Magnus force. When the rotating spherical 

particle moves inside the fluid with speed PV , the Magnus force is 

determined as 

     31
.

8
M P f f P PF d V V         (13) 

The above-stated relations are true for irrotational fluid flow with 

low Reynolds numbers. When there is a rotational flow field for 

the fluid, we have     

     31
,

8
M P f f P RF d V V         (14) 

where  

   
1

,
2

R P fV          (15) 

in which R
 is the relative angular velocity.  

 

5. Saffman force 

In general, there are two wall effects in a microfluidic channel: 

1) a fluid speed gradient (shear rate) induced by the wall, and 2) 

retardation of the particle motion due to the presence of the wall. 

The lateral lift force caused by the first wall effect is known as 

Saffman force. One of important phenomena in inertial 

microfluidics is inertial migration, in which all particles of one 

type migrate to a particular distance from the channel centre after 

a certain length. For instance, for a straight tube of average radius 

R, particles migrate to the distance 0.6R from the centre. It should 

be noticed that this phenomenon is greatly affected by all wall 

effects.    

 
Fig. 2. (a) Magnus force, (b) Saffman force, (c) wall-induced force 

when the microparticle moves perpendicularly to the wall, and (d) 

wall-induced force when the microparticle moves parallel. 

Let us take into account a particle in a simple shear flow, in 

which the shear rate is constant. Employing a matched asymptotic 

expansion technique, the transverse lift force on the particle of 

spherical shape is obtained as [46] 

 


 
  

 

1

2
21

,
4

g

S f P r

c
F K d V           (16) 

where FS, K, Vr, cg and   are, respectively, the Saffman force, a 

constant coefficient, relative speed, shear rate (velocity gradient) 

and kinetic viscosity. The constant K is commonly set to 81.2. The 

kinetic viscosity is related to the dynamic one as    f
. The 

direction of Saffman force is determined based on the magnitude 

of the relative speed (see Fig. 2). This force acts on the particle 

towards the place where the magnitude of Vr is larger. The relative 

speed of the particle can be expressed as 

  ,r P fV V V             (17) 

where 
PV  and 

fV  denote the particle and fluid speeds, 

respectively.  

 

6. Wall-induced force 

As mentioned in the previous section, there are two distinct 

effects induced by the presence of the wall. The first one is the 

fluid velocity gradient, and the second effect is the retardation of 

particle motions. The later effect is studied in detail in this section. 

To remove the influences of the fluid velocity gradient (the first 

wall effect), it is assumed that the fluid is stagnant. Generally, to 

investigate the wall retardation effect, two overall cases are taken 

into consideration: 

I) The motion of the particle is affected by a single wall. This 

assumption is true when the particle characteristic size is much 

smaller than that of the channel.  

II) The particle motion is subject to all boundaries. In other words, 

the effects of all wall are important and cannot be neglected. This 

case happens when the particle characteristic size is in the range 

of the channel characteristic dimension.  

First of all, it is assumed that the motion of particles in the 

stagnant fluid is under the effects of only one wall (i.e. case I). 
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There are two possibilities in this case: 1) the particle moves 

towards the wall, and 2) the particle moves parallel to the wall 

(Fig. 2). We will investigate these two possibilities in the 

following step by step. When the direction of the particle motion 

is perpendicular to the wall, a force is exerted on the particle in the 

opposite direction, retarding its motion (Fig. 2). It leads to an 

increase in the drag force. For a spherical particle approaching 

perpendicularly to a wall, the corrected drag force is [47] 

   


  2 4 ,
4

D D P P f rwall wall
F c d d V          (18) 

where 

 



16

,f r
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P

V
c

d
           (19) 

and 
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 
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in which f  and   are defined as 

 
      

      

 


 

  

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22 2
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4sinh 0.5 2 1 sinh

m m
f m
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       (21) 

     1, cosh 2 ,w Pf m d           (22) 

where 
w

 represents the distance between the particle centre and 

the wall.  

In the case of an immersed spherical particle moving parallel 

to the wall, a lateral migration in the opposite direction of the wall 

is imposed on the particle. The speed of this migration is obtained 

as [48] 

 
  

 

23 11
1 Re ,

64 32
m w s sV h V            (23) 

where 

 

 
 Re ,  .f P s f w s

s w

f f

d V V
h           (24) 

Here Res
and 

sV  are, respectively, the sedimentation Reynolds 

number and velocity. Equation (23) is valid only for small values 

of 
wh  (i.e. 1wh ). Taking into account this condition, one can 

further simplify the migration velocity as follows  

 
3

Re .
64

m s sV V            (25) 

From the above relation, it is found that the migration velocity of 

particles is constant near the wall. Conducting experiment, it was 

indicated that Eq. (25) is valid up to Res=3. For large values of 
wh  

(i.e. 1wh ), we have  

 
   

 
2 5

3 1 1
2.219 Re .

16
m s s

w w

V V
h h

          (26) 

When the particle moves parallel to the wall, there are two 

different forces. The first force causes the particle to migrate 

laterally while the second one acts as a drag force against the 

sedimentation motion. Near the wall, this force is obtained by the 

following relation  


 

   
 

3 9
3 1 Re ,      

8 32

1
    1 .

2 Re

P
D f P s s

w

P

w s

d
F d V

d
for

        (27) 

In addition, for particles that moves at distances comparatively far 

from the wall, one obtains  



 
      

  
 

3

3 1
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1
     1.

2 Re
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w s

P
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d
F d V

d
for

      (28) 

For the case II in which the particle is subject to the wall effects 

of all boundaries, the sedimentation motion is significantly 

influenced. This case is found when the spherical particle 

characteristic size such as its diameter has more or less the same 

order as that of microchannel. The drag force acting on a rigid 

spherical particle in a cylindrical tube full of stagnant fluid is 

determined as    

 3 ,D wall f P sF d V             (29) 

where wall
 is a coefficient associated with geometrical properties, 

which is obtained as [44] 

 

    

  

 


  

 

3

15 6

1 2.014 2.089

6.948 1.372 ,

wall b b

b b

          (30) 

in which b
 indicates the blockage ratio, which is given by 

 b P Cd d . Here dC is the channel dimeter. It is worth mentioning 

that the blockage ratio (b
) must be less than 1 in order to avoid 

blockage.   

7. Results and discussion  

In the following, a comprehensive force analysis is conducted 

to compare and recognise which types of forces are dominant in 

an inertial microfluidics-based device. Let us consider a spherical 

rigid microparticle of diameter dP in a microchannel with flowing 

fluid of density 1000 kg/m3 and viscosity 8.9010-4 Pa  s. The 

value of the particle diameter varies from 5 to 75 micrometres. The 

fluid itself is supposed to be Newtonian and incompressible. These 

values are assumed for the particle and fluid throughout this 

section, unless otherwise stated.  

Figure 3 is plotted to illustrate the influences of particle size on 

the drag force in an inertial microfluidics-based device. The 

relative speed between the microparticle and fluid is set to 1 m/s. 

It is found that as the diameter of the microparticle plays a crucial 

role in the drag force in an inertial microfluidics-based device. As 

the particle diameter increases, the drag force substantially 

increases. In addition, the drag coefficient for the microparticle, 

which moves in an inertial microfluidics-based device, is shown in 

Fig. 4. The value of the particle diameter varies from 5 to 75 

micrometres. It is interesting that unlike the drag force, the drag 

coefficient substantially decreases when the particle size increases. 

The particle Reynolds number is also indicated in Fig. 5 to make 

sure it is in the common range in which inertial microfluidics-

based devices operate. It should be noticed that the drag force 
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analysed here is the mainstream drag force, but not the one induced 

by the secondary flow.  

 

 
Fig. 3. Drag force acting on a microparticle in a microchannel versus 

the particle diameter.  

 

Fig. 4. Drag coefficient for a microparticle in a microchannel versus 

the particle diameter.  

 

Fig. 5. Particle Reynolds number (ReP) versus the particle diameter.  

To investigate the influences of diffusion on microparticles in 

an inertial microfluidics-based device, Figs. 6 and 7 are plotted, 

showing the diffusion coefficient and Peclet number, respectively. 

The temperature inside the device is assumed to be 25 0C. 

Furthermore, the fluid velocity is set to 10 m/s. These figures are 

plotted for time t=1 s and channel dimeter LC=300 micrometers. 

From Figs. 6 and 7, it is seen that the diffusion coefficient is very 

small whereas the Peclet number is very high. Therefore, from 

these results, it can be concluded that the effects of diffusion can 

be neglected in an inertial microfluidics-based device. In fact, 

when the Peclet number is very high, the ratio of advection to 

diffusion is large, and consequently diffusion is negligible 

compared to the mainstream flow. 

 
Fig. 6. Diffusion coefficient for a microparticle in a microchannel 

obtained via Stokes-Einstein relation. 

 
Fig. 7. Peclet number for a microparticle in a microchannel. 

Figure 8 illustrates the Magnus force acting on a rigid spherical 

microparticle in an inertial microfluidics-based device. The fluid 

velocity and angular speed of the microparticle are taken as 1 m/s 

and 1 rad/s, respectively. The Magnus force and microparticle 

diameter are plotted in terms of nanonewton and micrometre, 

respectively. It is found that this force gradually increases when 

the microparticle diameter is increased from 5 to 75 micrometres. 

Comparing Fig. 3 and Fig. 8 indicates that the Magnus force is 

very small compared to the drag force in inertial microfluidics. It 

should be noticed that the drag force is plotted in terms of 

micronewton while the Magnus force is calculated in terms of 

nanonewton. 

The influences of the microparticle size on the Saffman and 

wall-induced forces in an inertial microfluidics-based device are 

shown in Figs. 9 and 10, respectively. It is worth mentioning that 

the microparticle is rigid and spherical; moreover, the 

microchannel is a cylindrical microtube. In Fig. 10, it is assumed 

that the whole boundary has an influence on the microparticle. It 
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is observed that the particle diameter plays a crucial role in both 

Saffman and wall-induced forces. Both of these forces remarkably 

increase when the particle diameter is increased. In addition, it is 

found that generally, the wall-induced force in inertial 

microfluidics is around ten times higher than the Saffman force. 

However, both forces are much higher than the Magnus and 

diffusion forces.  

 
Fig. 8. Magnus force acting on a microparticle in a microchannel 

versus the particle diameter. 

 
Fig. 9. Saffman force acting on a microparticle in a microchannel 

versus the particle diameter. 

 
Fig. 10. Wall-induced lift force acting on a rigid spherical 

microparticle in a cylindrical microtube versus the particle diameter. 

 

8. Conclusions  

The dynamic behaviour of microparticles in an inertial 

microfluidics-based device has been investigated based on fluid 

mechanics. Various intrinsic forces such as drag, Magnus, 

Saffman, diffusion and wall-induced forces, which act on particles 

in the device, were theoretically formulated. In addition, explicit 

relations were proposed for the drag coefficient in a wide range of 

particle Reynolds numbers. Moreover, the diffusion coefficient 

and Peclet number for a spherical microparticle in the channel of 

the device were investigated. The influences of particle size on 

various forces as well as the diffusion and drag coefficients were 

also analysed. It was concluded that compared to drag, Saffman 

and wall-induced forces, forces due to the diffusion and Magnus 

force can be ignored. Furthermore, it was found that the drag force 

increases with increasing the particle diameter while the drag 

coefficient substantially decreases when the diameter of the 

particle increases. The Peclet number is very high for 

microparticles in an inertial microfluidics-based device, indicating 

that the effects of diffusion are negligible. In addition, as the size 

of the particle grows, both Saffman and wall-induced forces 

dramatically increase. 
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