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1. Introduction 

Pipelines are used as a common method to transfer fluids in 

industry. In some cases, the flow in horizontal pipes is a two phase 

liquid-gas fluid with a stratified flow pattern. Due to viscous flow 

in the pipe, the pipe flow is susceptible to instability with 

increasing velocity [1]. Most of prior studies were about 
investigation of flow instability in the channels [2]. Hydrodynamic 

linear theories are used to analyze flow instability. Instability 

analysis of interface layer between two stratified inviscid flow has 

been studied by Kelvin- Helmholtz [3]. Yih studied instability of 

two phase viscous flow in the channel [1]. Thin film of two phase 

flow instability analysis in the channel has been studied by 
Boomkamp [2] and Miesen et al [4]. Hinch [5] investigated 

mechanism of the instability at the interface between two shearing 

fluids. Flow disturbances and their growth cause instability of the 

flow. Flow stability is described by Orr Sommerfeld equation. For 

shear flows with homogeneous boundary conditions, the Orr 

Sommerfeld equation is of eigenvalue type. There are several 
methods to solve these equations including shooting methods [2]. 

However, the Chebyshev Tau polynomial algorithm is used since 

these methods require a good initial prediction of an eigenvalue [2, 

6-7]. 

 

2. Geometry and governing equations for flow stability 

Flow stability in a horizontal pipe containing a two-phase 

liquid-gas fluid is investigated in this study. The stable and 

unstable flow patterns of the stratified flow are shown in Figs. 1a 

& 1b [8], respectively. 

 

a)  b)  

Figure 1. a) The flow pattern of the stable stratified flow in the pipe, b) 

The flow pattern of the unstable stratified flow (wavy) in the pipe 
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It is first necessary to obtain the velocity profiles of the liquid 

and gas phases in the pipe to derive the governing equations for 

flow stability. 

2.1. The velocity profiles of the main phases 

The three-dimensional velocity profiles of liquid and gas 

phases in the pipe are obtained for the case where half of the pipe 
is filled with liquid and the other half is filled with the gas phase. 

To this end, the simple two-dimensional relationships provided by 

Malik are expanded by defining 0.05g
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 The equation for the liquid velocity profile (lower layer) is written 
as follows: 
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(2) 

 

    The overall velocity profile of the pipe flow for both phases will 

be as follows: 

 

Figure 2. The velocity profiles of the liquid and gas phases in the pipe 

 

3. Stability analysis of three-dimensional disturbances of 
viscous fluid flow 

First, we assume a two-dimensional incompressible viscous flow 

which is moving along the x-axis. The boundaries are located at a 
height of y = ± 1 and z is considered perpendicular to the flow [10] 

[11]: 

(3)    ,      0 ,      0          u U y v w    

where u,v,w are velocity components in the direction of three main 

axes. It is assumed that U(y) is a continuous and differentiable 

function in y. If a small disturbance is applied to the velocities 𝑢1, 

𝑣1 and 𝑤1  and the velocities are inserted in the continuity and 

momentum equations, neglecting the body forces and high-order 

terms as well as pressure terms, then we have: 
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It is assumed that the disturbances are applied alternately and 
defined as below: 

(8) 

   1 .exp                  u u y i jx kz t    

   1 .exp          v v y i jx kz t    

   1 .exp                 w w y i jx kz t    

where k and j are positive real number, but σ is a complex number 
in general. Inserting in equations (4) to (7), we can write: 

0        iju Dv ikw    (9) 

   2 2 2 0        D j K i ijU Dw ikv ijU w        
 

  (10) 
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 

  (11) 

   2 2 2 0    D j K i ijU ijv Du ikU w U v         

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 (12) 

 

where R, V, cU0, β, α, y are non-dimensionalized as y/b, jb, kb, σ/j, 

U/U0 and U0b/v. Accordingly, the wave-lengths of disturbances 

along the x and z axes equals 2π/α and 2π/β, respectively. 

Therefore, the above equations can be rewritten as follows: 

(13) 0            i u Dv i w     

(14)   . 0       Dw i v iR V w       

(15)   . 0        i u i w iR V v        

(16)   . 0        i v Du iR V w RV v       

 

where the operator Δ is defined as    2 2 2D iR V c        . 

Due to the lack of disturbances on the boundaries, the boundary 
conditions on the walls are defined as follows: 

 0        u v w    

If V (y) is given for the main flow, equations (13) to (16) with the 

relevant boundary conditions will be sufficient to calculate c 

corresponding to the values of the independent quantities R, α and 

β. In general, this is a complex quantity with a negative imaginary 

part at low Reynolds numbers R indicating a stable flow. As the 

Reynolds number increases, c becomes a real number. In this case, 

R is called the critical Reynolds number. If R exceeds the critical 

Reynolds number, the flow will become unstable. 

By eliminating u and w from equations (13) to (15) using the 

associative property of D and Δ operators, equation (16) is written 

as follows: 

(17) . 0                D w i v     

 

By eliminating U in equations (13) and (14), then we have: 
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(18)    2 2 . . 0 i w D iR V v          

By subtracting equation (17) from equation (18), the term Δw is 

eliminated. Thus: 

(19)    2 2. . . .  D D iR DV v v        

For v, we can write: 

 (20)  2 2 2. . . . .         D iR V D iR DV v v          
 

 

By replacing the operator Δ with that defined above, we can write: 

   
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2
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 (21) 

Given the boundary conditions, u, v, and w will be eliminated on 

the boundaries. It is clear from equation (13) that Dv should also 

be eliminated on the boundaries for this purpose. Therefore, v will 

be obtained by solving the fourth order differential equation (21) 

with four boundary conditions. If v is obtained from equation (21), 

then w should be obtained from a second-order differential 

equation (equation (20)) and y = ± 1 will be eliminated from the 

boundary conditions. If v and w are constant, u will be obtained 

from equation (13) and Dv and w will be zero on the walls. 

     The flow stability for disturbances of this type can be limited to 

examining equation (21) with boundary conditions that satisfy v. 

    Equation (21) is equivalent to the equations obtained for flow 

with two-dimensional disturbances. To complete this equivalence, 

we make the following replacements: 

(22) 
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   The above equation is the same as the differential equation for 

two-dimensional disturbances with a wavelength of 2   and 

R  is the Reynolds number. 

Based on the equivalence provided by Squire, it can be concluded 

that the three-dimensional disturbances defined in [8] are exactly 
similar to two-dimensional disturbances with a wavelength of 

2  and a Reynolds number of R . In the case where R should 

be less than R, any three dimensional instability is displayed as a 

two-dimensional instability with a lower Reynolds number. 

Therefore, the study of two-dimensional disturbances is sufficient 

for flow stability analysis. The flow will be stable if the two-

dimensional disturbances do not grow. 

 

4. Governing equations for the two-phase parallel flow in the 
pipe 

     Based on the Yih [10] and Squire [11] theory outlined in 

Section 3, the stability analysis for three-dimensional flows can be 

performed two-dimensionally on a plane with the maximum 

Reynolds number. The two-phase flow in the pipe is one-

directional and symmetrical relative to the plane perpendicular to 

the pipe along the main axis (as shown in Fig. 3). According to the 

velocity profiles of the liquid and gas phases in sections with the 

maximum velocity, the maximum Reynolds number is observed 

on this plane. Given the above discussion, instability in the pipe 

flow begins in the middle of the pipe perpendicular to the flow 

direction. A two-dimensional flow is considered for flow stability 

analysis [1]. 

 

Figure 3. Two dimensional flow of the two-phase liquid-gas fluid on the 

plane 

As shown in Fig. 3, the liquid film is considered in the bottom layer 

in the pipe with the gas phase on the upper layer. The gas flow 

exerts the shear stress, τ, on the surface of the liquid. The indices 

1 and 2 respectively show the lower liquid phase and upper gas 

phase, d1 represents the thickness of the liquid layer and μ and ρ 

respectively show the viscosity and density. 

As shown in Fig. 3, the coordinate components X and Y are in the 

direction of flow and perpendicular to the flow in the pipe 

respectively and the origin is considered at liquid-gas interface. 

Taking into account the velocity components u and v, the 

governing stability equations (Orr Sommerfeld) are obtained. The 

flow is assumed two-dimensional and incompressible. The 

continuity and momentum equations are written as follows after 

non-dimensionalization by 

 
 

 
 

2
1 1

ˆˆ
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, ,ˆ , ,
u v X Y p

u v x y P
V d U

   , and 
1

tV

d
  it can 

be write [12] , [3], [13], [14], [15], [16]: 

(24)  
21ˆˆ

ˆ
Du P

u
Dt x R


   


 

 
21ˆˆ

ˆ
Dv P

v
Dt y R


   


 

where R represents the Reynolds number and is defined as 1 1

1

Vd



By applying the disturbance terms to the fluid motion equations 

and given that there is no velocity component along the y axis, we 

can write: 

(25) 

1
ˆ 'u U u   

'v v  

ˆ 'p P p  .  

Taking into account the flow function, the velocity disturbances 

are defined as follows: 
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(26) 
' yu    

' xv             

Defining the Tollmien–Schlichting waves, the flow function can 

be written as follows: 

(27) 
     

, ,
i x c

j jx y t y e
 

 


  

     
' , ,

i x c
p x y t f y e

 
 .  

where    i  the imaginary part and α is the real wave number and c is 

the complex wave velocity which is defined as  c = cr + ici. The 

real part of c represents the fuzzy velocity of the wave while the 

imaginary part, αc, shows the growth rate of the wave (in other 

words, when Im (αc)> 0, the wave is not damped and the flow will 

be unstable). If equations (25) to (27) are inserted in equation (24), 

neglecting the high-order disturbance terms, we can write after 

simplification: 

(28)     ' ' 1 ''' 2 '
1 1 1 1 1 1i U c U i f R             

(29)    2 '' 2
1 1 1 1

i
c U f

R


    





    

 
 

In the above equations, the prime on φ and U indicates 

differentiation relative to y. By differentiating equation (28) and 

obtaining f’ and inserting the result in equation (29), the Orr 

Sommerfeld equation for the function φ1(y) is obtained as follows: 

   

2 '' 4
1 1 1

'' 2 ''
1 1 1 1 1

2  iv

i R U c U

    

    

  

  
 (30) 

The above equation will determine the flow stability based on 

boundary conditions. This equation is used for the lower layer 

(liquid phase). The index 2 is used to write the governing equation 

for the upper layer (gas phase). Applying disturbances, equations 

(25) will be written as follows after non-dimensionalization: 

(31)     ' ' ''' 2 '
2 2 2 2 2 2

m
i R U c U i f

R
            

(32)    2 '' 2
2 2 2 2

i m
r c U f

R


    

 
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 
 

By eliminating the function f in equations (31) and (32), the Orr 

Sommerfeld equation for the gas phase is written as follow: 

   2 '' 4 '' 2 ''
2 2 2 2 2 2 2 22iv i Rr

U c U
m


        

 
      

 
 (34) 

It should be noted that in this case, the liquid is located at the height 

(-1 <y <0) and gas phase at the height (0 <y <1). In equations (33) 

and (30), r is the density ratio of fluids and m is the viscosity ratio 

which are respectively defined as r = ρ2/ρ1 and m = μ2 /μ1. Further, 

1 1

1

U d
R 


 and c is the complex wave velocity. Boundary 

conditions governing this problem for the liquid phase include wall 

impermeability and no-slip condition. So we have: 

(34) 
 1 1 0         

 '
1 1 0    

Given the insignificant disturbances at large distances, the 

boundary condition for the gas phase is as follows: 

(35) 
 2 1 0 

       

 '
2 1 0   

The boundary conditions on the interface include continuity of 

velocity components and equilibrium of stress components in 

tangential and vertical directions. From the continuity of v' and u', 

we will have: 

(36) 
   1 20 0         

(37) 
           ' ' ' '

1 1 1 2 2 20 0 0 /   0 0 0 /U c U c                    

Equations (36) and (37) show the continuity of velocities of two 

phases at interface. The equations for the tangential and vertical 

components of stress on the interface are as follow: 

     

      

'' 2 ''
2 2 2 2

'' 2 ''
1 1 1 1

0 0 0 /

0 0 0 /

U c

m U c

   

   

  

 
 (38) 

           

           

 

''' 2 ' ' '
2 2 2 2 2

''' 2 ' ' '
1 1 1 1 1

2
1

0 3 0 0 0 0

1 1
0 3 0 0 0 0

1
/ ) 0

m
c U

irR

c U
irR r

F S c
r

    


    


 

   

  

  

 (39) 

where 
2

1 1 1

S
U d




 is inverse of Weber number and 

 1 1 2

2
1 1

d g
F

U

 




 is the inverse of Froude number which are 

related to surface tension, σ, and gravity acceleration, g. 

    The differential equations (30) and (33) along with conditions 

on the boundaries and the interface in equations (36) to (39) 

describe flow stability as an eigenvalue problem. The wave 

velocity, c, must have a certain value to obtain a non-zero solution 

for this system. 

5. Chebyshev polynomial numerical solution 

Spectral methods have had a significant impact on the accurate 

discretization of both initial value and eigenvalue problems. 

Especially in a bounded domain, the use of Chebyshev 

polynomials has been advantageous. Most of the stability 

calculations have been obtained by a Chebyshev discretization of 

the inhomogeneous coordinate direction. Below we will present 

the most useful relations for the discretization of derivatives and 
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integrals. Chebyshev polynomials can be defined in many ways, 

for example, in terms of trigonometric functions [6], [17], [18], 

[19]: 

    1 nT y cos n cos y  
(40) 

as solutions of the singular Sturm-Liouville problem 

   
2

2

2
1 0

1
n n

d d n
y T y T y

dy dy y

 
   

  
 

(41) 

in terms of a recurrence relation 

 

 

     

0

1

1 1

1,

,   

.

.

.

2n n n

T y

T y y

T y yT y T y 





 

 (42) 

We will approximate the dependent variables by a Chebyshev 

expansion 

   
0

N

n n

n

f y a T y



  
(43) 

and evaluate the Chebyshev polynomials at the extrema of the  

N -th Chebyshev polynomial given as 

cosj

j
y

N

 
  

 
 

(44) 

These locations are also known as the Gauss-Lobatto points. When 

discretizing ordinary or partial differential equations, derivatives 

of the solution are needed as well. These derivatives have to be 

expressed in terms of Chebyshev polynomials and the following 

recurrence relation between Chebyshev polynomials and their 

derivatives are used. 
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with the superscript 1k  denoting the order of differentiation. 

Now Chebyshev Discretization presents as a spectral collocation 

method based and apply it to the Orr-Sommerfeld equation. This 

method has been used extensively to compute the stability 

characteristics of shear flows. The Orr-Sommerfeld equation for 

single phase flow presented as [7], [18], [19]: 
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with the boundary conditions 

   1 1 0D      (48) 

By expanding the eigen-functions in a Chebyshev series 
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(49) 

The derivatives of the eigen-functions are obtained by 

differentiating the expansion above. We obtain for the second 

derivative, for example, 
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(50) 

and similarly for the fourth derivative. Upon substitution into the 

Orr-Sommerfeld equation we get 
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(51) 

We then require this equation to be satisfied at the Gauss-Lobatto 

collocation points  cosjy j N  .This allows us to use the 

recurrence relations (45) & (46) to evaluate the derivatives of the 

Chebyshev polynomials. The discretized boundary conditions read 
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The final result is a generalized eigenvalue problem of the form 

Aa cBa  (53) 

with the right-hand side 

 
 

   

 

 

   

   
 
 

   
 
 

1
0

0

0 1
1

2 2
0 2 0 2 1 2 1 2 2

2 2
2

0 2 0 2 1 2 1 2

1
0 1

0 1

11 ...

1 1 ...

...

. . . .

. . . .

. . . .

...

1 1 ...

1 1 ...

N
N N N N

N

N

cBa

TT
a

T T
a

T y k T y T y k T y a

c

aT y k T y T y k T y

aT T

aT T


   





 
  

   
  

     
  
  
  
  
  
  

    
   
 
   

 





 

(54) 

 

and similarly for the left-hand side Aa. We have chosen to use the 

first, second, last and next-to-last row of B to implement the four 
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boundary conditions. The same rows in the matrix A can be chosen 

as a complex multiple of the corresponding rows in B. in this study 

two Orr-Sommerfeld equation (for two phases) has been solved 

simultaneously by Chebyshev polynomial. For validation of 

Chebyshev Tau- QZ polynomial numerical method for solving 

instability eigenvalue problems, this method had been used for 

solving and evaluating single phase instability equations in the 

pipe by authors [18].  

 

6. Results 

By simultaneous solution of equations with the boundary 

conditions of D2 Chebyshev polynomial, the stability of the 

stratified two-phase flow in the pipe can be examined. Neglecting 

gravitational effects and assuming 1 0F  and taking into 

account N=100, r=0.001, α=1, m=0.05, R=1500, the eigenvalue 

spectra are obtained as follows: 

 

(a) 

 

(b) 

Figure 4. Flow stability for (a) gas phase and (b) liquid phase in the case 

where N=100, r=0.001, α=1, m=0.05, R=1500 

 
Figure 5. The stability plot for the two-phase flow (air-water) 

 

If Ci <0, the flow is stable disturbances in the flow are damped. In 

contrast, if the imaginary part of the wave number is greater than 

zero (Ci> 0), the flow is unstable and flow disturbances grow. 

Figure 4a shows the flow stability for the gas phase. As seen, all 

Ci values are negative and thus the gas phase is stable. As seen in 

Fig.4b for the liquid phase, Ci values are positive showing the 

growth of disturbances in the liquid phase and thus an unstable 

liquid phase. If the stability curve is plotted for both gas and liquid 

phases for r = 0.001, m= 0.05 and We=100, Figure 5 is obtained: 

As seen, the liquid phase flow is unstable at very low Reynolds 

numbers (approximately R=50). However, the gas phase becomes 

unstable at higher Reynolds numbers (approximately R=1400). 

Furthermore, α has a higher impact on instability of the liquid 

phase than the gas phase. The gas phase stable curve is located 

within the liquid phase curve. This means that if the gas phase is 

unstable, the liquid phase is already unstable. 

If αci is plotted versus α for m=0.05, r=0.001, R=2000 and 

We=100, Figure 6 is obtained for the liquid phase. 

 
Figure 6. αci versus α for m=0.05, r=0.001, R=2000 and We=100 

 

As seen, all ic values are positive. In other words, the liquid phase 

flow is unstable in this region. On the other hand ic for the liquid 

phase is maximum in the range of 0.4 <α <1 where ic max exists. 

The gas phase is unstable in this range. In other words, the 

instability of the gas phase leads to maximum instability in the 

liquid phase. Therefore, both phases are unstable in the range of 

0.4 <α <1. 

7. Conclusion 

It was observed that the Chebyshev Tau polynomial algorithm is a 

powerful tool capable of solving the eigenvalue equations of 

stability problems. In this study, the stability of the stratified two-

phase liquid-phase pipe flow was investigated. According to the 

results, the liquid phase flow is unstable at very low Reynolds 

numbers (Re ≈ 50). However, the gas phase flow becomes unstable 

at Re ≈ 1400. Therefore, one can conclude that the two-phase pipe 

flow becomes unstable at Re ≈ 1400. At 50 <R <1400 where both 

liquid and gas phases are unstable, disturbances grow in the liquid 

phase, but are damped in the gas phase. 

ic is maximum in the range of 0.4 <α<1 so the gas phase 

becomes more unstable in this region than any other region. In 

other words, when gas phase is unstable, the liquid phase is 

unstable too, but unstable flow of liquid phase is not a condition 

for gas phase instability. 
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