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1. Introduction 

The magnetostrictive materials are one of common smart 

materials that used as actuators and sensors, where it has the 

properties of being change its distances in response to the magnetic 

field. Examples of magnetostrictive materials are cobalt, iron, 

nickel, ferrite, and Terfenol-D. A magnetostrictive material able to 

product strains up to 2500 μm and high energy density 2.5 ×
104 J/m3 in reaction to stresses of the applied magnetic field [1]. 

Therefore, the magnetostrictive materials are used to control of 

systems vibration. In this part, some articles are introduced to 

know about this topic’s background. 

The design and theoretical researches about active control of 

laminated composite beams/plates including actuators of smart 

magnetostrictive materials have been investigated [2-17]. Pratt and 

Flatau [18] designed and analyzed a self-sensing magnetostrictive 

actuator according to the linear model of Terfenol-D 

magnetostrictive transduction. Anjanappa and Bi [19, 20] 

discussed the feasibility of smart structural applications that 

contain magnetostrictive mini actuators. Under effect of a 

magnetic field and an external follower force, Arani et al. [21] 

studied the magnetostrictive smart plate (MsP) vibration. Thick 

laminated composites with integrated sensors and actuators are 

studied based on the third-order plate theory of Reddy [22]. In 

addition, Koconis et al. [23] used actuators to control the 

composite plates and shells shape. Shankar [24] has studied the 

hygrothermal effect of delaminated composite plates embedded 

active fiber composite (AFC) sensor and actuators. Arani et al. 

[25] discussed the free vibration of rectangular magnetostrictive 

plate supported by elastic foundation with applying a feedback 

control system according to trigonometric shear deformation 
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theory of high order. Li et al. [26] investigated random vibration 

suppression for laminated composite plates with piezoelectric 

fiber reinforced composite layer on the top. Li and Narita [28] used 

the Piezoelectric-fiber-reinforced composites (PFRCs) patches as 

actuator and discussed the effect of the PFRCs patches on 

vibration suppression of laminated composites plate subjected to 

arbitrary boundary conditions. Song et al. [29] used smart 

actuators and sensors to control the E-glass/epoxy laminated 

composite beam. Kim et al. [30] analyzed the dynamic response of 

surface bonded macro fiber composite actuators for an end-capped 

cylindrical shell. 

In the present study, control of the laminated composite beam 

response that contain magnetostrictive material layers, which used 

as sensors or actuators, is studied using a shear deformation beam 

theory without require shear correction factor [27]. For actively 

control the dynamic reaction of the system, a simple velocity 

feedback control through a close-loop control is utilized. The 

governing equations of motion are derived through the principle 

of Hamilton and Navier's method is applied to obtain the solution. 

Some effects are investigated such as lamination scheme, modes, 

number of smart layers at the structure, location of the smart 

material layer and control gain coefficient on system vibration 

suppression. Farajpour [38] analyzed the nonlinear free vibration 

for magneto-electro-elastic nanoplates and studied various non-

classical plate theories. 

2. Formulation of the Problem  

Suppose that a sandwich-laminated beam with top and bottom 

smart magnetostrictive layers and the remaining (𝑘 − 2) layers 
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also embedded the 𝑚th and (𝑘 − 𝑚 + 1)th magnetostrictive 

material with Terfenol-D particles where 𝑚 ≠ 1, 𝑘 as shown in 

Figure 1. The remaining 𝑘 − 4 layers can be made using carbon 

fiber reinforced polymeric (CFRP) material. The problem of 

vibration suppression in these beams based on the shear 

deformation beam theory contains only two unknown functions 

where does not require shear correction factor. 

 
Figure 1. Schematic diagram of the beam 

 

The displacement field can be assumed as [27] 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  −𝑧
𝜕𝑤0

𝜕𝑥
+ ℎ1(𝑧)𝜑(𝑥, 𝑡),

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 0,

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡),

ℎ1(𝑧) = ℎ sinh (
𝑧

ℎ
) −

4𝑧3

3ℎ2 cosh (
1

2
) .

                                       (1) 

The simple sinusoidal beam theory [27, 31-37] is obtained 

when ℎ1(𝑧) = (ℎ/𝜋) sin(𝜋𝑧/ℎ) and the same results almost are 

given. In Eq. (1), 𝑤0(𝑥, 𝑡) indicates the transverse deflection while 

the function 𝜑(𝑥, 𝑡) represents the rotation about 𝑦-axis. Both 𝑤0 

and 𝜑 are unknown functions to be determined. 

The strain-displacement components are displayed as 

𝜀𝑥𝑥 = 𝑧𝜀𝑥𝑥
(1)

+ ℎ1(𝑧)𝜀𝑥𝑥
ℎ ,     𝛾𝑥𝑧 = ℎ2(𝑧)𝛾𝑥𝑧

ℎ ,                                      (2) 

where 

𝜀𝑥𝑥
(1)

= −
𝜕2𝑤0

𝜕𝑥2 , 𝜀𝑥𝑥
ℎ =

𝜕𝜑

𝜕𝑥
,

𝛾𝑥𝑧
ℎ = 𝜑, ℎ2(𝑧) = ℎ1

′ (𝑧).
                                                          (3) 

The stress-strain relations for a linear fiber-reinforced 𝑘th layer 

are represented as 

𝜎𝑥𝑥
(𝑘)

= 𝑄̅11
(𝑘)

𝜀𝑥𝑥 ,     𝜎𝑥𝑧
(𝑘)

= 𝑄̅55
(𝑘)

𝛾𝑥𝑧.                                                           (4) 

The stress-strain relations for a magnetostrictive layer is 

represented as 

𝜎𝑥𝑥
(𝑚)

=
1

𝑆11
(𝑚) (𝜀𝑥𝑥 − 𝑑31

(𝑚)
𝐻) ≡ 𝑄̅11

(𝑚)
𝜀𝑥𝑥  − 𝑒̅31

(𝑚)
𝐻,                           (5) 

where 𝐻 is the magnetic field intensity, 𝑑31
(𝑚)

 is the magneto-

mechanical coupling coefficient, 𝐸11
(𝑚)

 is the magnetostrictive 

layer modulus (𝑒̅31
(𝑚)

= 𝑄̅11
(𝑚)

𝑑31
(𝑚)

) and 𝑆11
(𝑚)

 denotes the 𝑚th 

magnetostrictive layer compliance 

𝑆11
(𝑚)

=
1

𝐸11
(𝑚) =

1

𝑄11
(𝑚),                                                                                   (6) 

In addition, the coefficients 𝑄̅𝑖𝑗
(𝑘)

 are given in Appendix A. 

3. Velocity Feedback Control and Governing Equations 

Suppose a simple velocity proportional closed-loop feedback 

control. The relationship between the magnetic field intensity 𝐻 

and coil current 𝐼 can be obtained as [2] 

𝐻(𝑥, 𝑡) = 𝑘𝑐𝐼(𝑥, 𝑡),

𝐼(𝑥, 𝑡) = 𝑐(𝑡)
𝜕𝑤0

𝜕𝑡
,
                                                                                    (7) 

where 𝑘𝑐 is the coil constant and 𝑐(𝑡) is the control gain. The 

relationship between the coil constant 𝑘𝑐, the coil width 𝑏𝑐, the coil 

radius 𝑟𝑐, and the turns number in the coil 𝑛𝑐 is expressed as 

𝑘𝑐 =
𝑛𝑐

√𝑏𝑐
2+4𝑟𝑐

2
.                                                                                                         (8) 

Equations of motion can be obtained due to Hamilton principle. 

That is 

0 = ∫ ∫ ∫ [𝜎𝑥𝑥(𝑧𝛿𝜀𝑥𝑥
(1)

+ ℎ1(𝑧)𝛿𝜀𝑥𝑥
ℎ ) +

 

𝐴

𝐿

0

𝑇

0

𝜎𝑥𝑧ℎ2(𝑧)𝛿𝛾𝑥𝑧
ℎ ]d𝐴d𝑥d𝑡 − ∫ ∫ ∫ 𝜌 [(−𝑧

𝜕𝑤̇0

𝜕𝑥
+

 

𝐴

𝐿

0

𝑇

0

ℎ1(𝑧)𝜑̇) (−𝑧
𝜕𝛿𝑤̇0

𝜕𝑥
+ ℎ1(𝑧)𝛿𝜑̇) + 𝑤̇0𝛿𝑤̇0] d𝐴d𝑥d𝑡 −

∫ ∫ 𝑞𝛿𝑤0d𝑥d𝑡
𝐿

0

𝑇

0
,                                                                                               (9) 

or 

0 = ∫ ∫ {(𝑀𝑥𝑥𝛿𝜀𝑥𝑥
(1)

+ 𝑆𝑥𝑥𝛿𝜀𝑥𝑥
ℎ ) + 𝑄ℎ𝛿𝛾𝑥𝑧

ℎ − 𝑞𝛿𝑤0
𝐿

0

𝑇

0
− [(𝐼2

𝜕𝑤̇0

𝜕𝑥
−

𝐼ℎ𝜑̇)
𝜕𝛿𝑤̇0

𝜕𝑥
+ (−𝐼ℎ

𝜕𝑤̇0

𝜕𝑥
+ 𝐼ℎℎ𝜑̇) 𝛿𝜑̇ + 𝐼0𝑤̇0𝛿𝑤̇0]} d𝑥d𝑡,             (10) 

or in the final form 

∫ ∫ {(−
𝜕2𝑀𝑥𝑥

𝜕𝑥2 − 𝑞 − 𝐼2
𝜕2𝑤̈0

𝜕𝑥2 + 𝐼ℎ
𝜕𝜑̈

𝜕𝑥
+ 𝐼0𝑤̈0) 𝛿𝑤0 + (−

𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝐿

0

𝑇

0

𝑄ℎ − 𝐼ℎ
𝜕𝑤̈0

𝜕𝑥
+ 𝐼ℎℎ𝜑̈) 𝛿𝜑} d𝑥d𝑡 + ∫ {−𝑀𝑥𝑥

𝜕𝛿𝑤̇0

𝜕𝑥
+ [

𝜕𝑀𝑥𝑥

𝜕𝑥
+

𝑇

0

𝐼2
𝜕𝑤̈0

𝜕𝑥
− 𝐼ℎ𝜑̈] 𝛿𝑤0 + 𝑆𝑥𝑥  𝛿𝜑}

0

𝐿

d𝑡 = 0.                                                  (11) 

The stress resultants 𝑀𝑥𝑥, 𝑆𝑥𝑥 and 𝑄ℎ are obtained by 

{
𝑀𝑥𝑥

𝑆𝑥𝑥
} = ∫ 𝜎𝑥𝑥 {

𝑧
ℎ1(𝑧)} d𝑧

 

𝐴
= [

𝐷11 𝐸11

𝐸11 𝐸11
ℎ ] {𝜀(1)

𝜀ℎ
} − {

𝑀11
𝑚

𝑆11
𝑚 } ,

𝑄ℎ = ∫ 𝜎𝑥𝑧 ℎ2(𝑧)d𝑧 = 𝐸55
ℎ γ𝑥𝑧

ℎ 

𝐴
,

        (12) 

in which 

{
𝑀11

𝑚

𝑆11
𝑚 } = 𝑘𝑐𝑐(𝑡) ∑ ∫ 𝑒̅31 {

𝑧
ℎ1(𝑧)} 𝐻𝑧 d𝑧

𝑧𝑘+1

𝑧𝑘
𝑘=𝑠 = {

𝛽
𝛾

} 
𝜕𝑤0

𝜕𝑡
,      𝑠 =

1, 𝑚, 𝑘 − 𝑚 + 1, 𝑘,                                                                       (13) 

and 

{

𝐷11

𝐸11

𝐸11
ℎ

} = ∫ 𝑄̅11
(𝑘)

{
𝑧2

𝑧ℎ1(𝑧)

[ℎ1(𝑧)]2

} d𝑧
ℎ

2
 

−
ℎ

2

, 𝐸55
ℎ = ∫ 𝑄̅55

(𝑘)[ℎ2(𝑧)]2d𝑧
ℎ

2
 

−
ℎ

2

.  (14) 

The mass inertias 𝐼0, 𝐼2, 𝐼ℎ and 𝐼ℎℎ are given as 
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{

𝐼0

𝐼2

𝐼ℎ

𝐼ℎℎ

} = ∫ 𝜌 {

1
𝑧2

𝑧ℎ1(𝑧)

[ℎ1(𝑧)]2

} d𝑧
ℎ

2
 

−
ℎ

2

.                                                                  (15) 

The governing equations of motion are represented as 

−
𝜕2𝑀𝑥𝑥

𝜕𝑥2 − 𝑞 − 𝐼2
𝜕2𝑤̈0

𝜕𝑥2 + 𝐼ℎ
𝜕𝜑̈

𝜕𝑥
+ 𝐼0𝑤̈0 = 0,                                 (16) 

−
𝜕𝑆𝑥𝑥

𝜕𝑥
+ 𝑄ℎ𝑥 − 𝐼ℎ

𝜕𝑤̈0

𝜕𝑥
+ 𝐼ℎℎ𝜑̈ = 0.                                                (17) 

By using Eqs. (12)-(15), the above system of governing 

equations became 

𝐷11
𝜕4𝑤0

𝜕𝑥4
− 𝐸11

𝜕3𝜑

𝜕𝑥3
+ 𝛽

𝜕3𝑤0

𝜕𝑥2𝜕𝑡
− 𝑞 − 𝐼2

𝜕2𝑤̈0

𝜕𝑥2
  

+𝐼ℎ
𝜕𝜑̈

𝜕𝑥
+ 𝐼0𝑤̈0 = 0,                                                                      (18) 

𝐸11
𝜕3𝑤0

𝜕𝑥3  − 𝐸11
ℎ 𝜕2𝜑

𝜕𝑥2 + 𝛾
𝜕2𝑤0

𝜕𝑥𝜕𝑡
+ 𝐸55

ℎ 𝜑 − 𝐼ℎ
𝜕𝑤̈0

𝜕𝑥
+ 𝐼ℎℎ𝜑̈ = 0.       (19) 

4. Solution of the Problem 

To solve the equations that describe the problem, the simply-

supported boundary conditions are applied and the analytical 

(Navier's) solution is used. The solution is supposed as 

𝑤0(𝑥, 𝑡) = 𝑊(𝑡) sin
𝑛𝜋𝑥

𝐿
,

𝜑(𝑥, 𝑡) = 𝑋(𝑡) cos
𝑛𝜋𝑥

𝐿
,

𝑞(𝑥, 𝑡) = 𝑄𝑛(𝑡) sin
𝑛𝜋𝑥

𝐿
.

                                                                  (20) 

Then, substituting into Eq. (18) and Eq. (19), the system can be 

written as 

[
𝑆̂11 𝑆̂12

𝑆̂21 𝑆̂22

] {
𝑊
𝑋

} + [
𝑀̂11 𝑀̂12

𝑀̂21 𝑀̂22

] {𝑊̇
𝑋̇

} 

+ [
𝐶̂11 𝐶̂12

𝐶̂21 𝐶̂22

] {𝑊̈
𝑋̈

} = {
−𝑄𝑛

0
}.                                                                     (21) 

Consider 𝑞 = 0 in Eq. (18) to achieve controlling of vibration. 

Suppose the solution of the system of equations in Eq. (20) as 

𝑊(𝑡) = 𝑊0e𝜆𝑡, 𝑋(𝑡) = 𝑋0e𝜆𝑡,                                                         (22) 

where 𝜆 denotes the eigenvalue and 𝑊0 and 𝑋0 are arbitrary 

parameters. We obtain 

|
𝑆1̅1 𝑆1̅2

𝑆2̅1 𝑆2̅2

| = 0,                                                                                               (23) 

where 

𝑆𝑖̅𝑗 = 𝑆̂𝑖𝑗 + 𝜆𝑀̂𝑖𝑗 + 𝜆2𝐶̂𝑖𝑗 ,     𝑖, 𝑗 = 1, 2,                                       (24) 

in which the coefficients 𝑆̂𝑖𝑗, 𝑀̂𝑖𝑗 and 𝐶̂𝑖𝑗 are written in Appendix 

B. Two sets of eigenvalues are obtained in Eq. (23) that represent 

the damping rate. The eigenvalue can be written as 𝜆 = −𝛼 + 𝑖𝜔𝑑 

and the damping ratio 𝜁𝑛 of mode 𝑛 is defined [26] as 

𝜁𝑛 =
−𝛼

√𝛼2+𝜔𝑑
2
.                                                                                                     (25) 

By applying the following initial conditions 

𝑤 (𝑥, 0) = 0, 𝑤 ̇ (𝑥, 0) = 1,

𝜑(𝑥, 0) = 0, 𝜑̇(𝑥, 0) = 0.
                                                         (26) 

The solution of equations of motion is given as 

𝑤 (𝑥, 𝑡) =
1

𝜔𝑑
e−𝛼𝑡 sin(𝜔𝑑𝑡) sin (

𝑛𝜋𝑥

𝐿
).                                                 (27) 

Also, the actuation stress is 

𝜎1(𝑥, 𝑡) = −𝑘𝑐𝑐(𝑡)𝑒̅31
(𝑚) 𝜕𝑤0

𝜕𝑡
.                                                    (28) 

5. Numerical Results 

The vibration suppression time in the uncontrolled motion 

imply the time require to reduce the vibration amplitude to one-

tenth. This work can be achieved by embedded the smart layers at 

laminated composite beam and using suitable control gain of 

magnetic field. The improvement in the displacement and the 

actuation stress is discussed according to the present theory. 

Numerical results for the displacement 𝑤 and the actuation stress 

𝜎1 are presented for laminated composite beam under simply-

supported boundary conditions. Some numerical values of the 

damping coefficients, damped natural frequencies, the suppression 

time, and the damping ratio for symmetric laminates and 

antisymmetric cross-ply laminates are investigated. Additional 

results of the effect of lamination schemes, modes, the control gain 

of the magnetic field intensity and magnetostrictive layers place 

from the mid-plane axis on vibration suppression time are 

illustrated. The results of the present models are compared with 

those in Ref. [2]. The plots of 𝑤(𝑥, 𝑡) and 𝜎1(𝑥, 𝑡) can be displyed 

in the intervals 0 ≤ 𝑥 ≤ 1 and −0.5 ≤ 𝑧 ≤ 0.5. The lamina 

properties of CFRP material and the magnetostrictive layer are 

given in Reddy and Barbosa [2] as 

CFRP material: 

𝐸11 = 138.6 GPa, 𝐸22 = 8.27 GPa,  

𝐺13 = 𝐺23 = 0.6 𝐸22, 𝐺12 = 4.12 GPa, 

𝑣12 = 0.26, 𝜌 = 1824 kg m−3. 

Magnetostrictive layer: 

𝐸𝑚 = 26.5 GPa, 𝜌𝑚 = 9250 kg, 

𝑑𝑘 = −1.67 × 10−8 m A−1, 𝑐(𝑡)𝑘𝑐 = 104, 

𝑣𝑚 = 0,     𝐿 = 1 m,     ℎ𝑘  =  1 mm, ℎ𝑚  =  1 mm. 

5.1. Symmetric angle-ply and cross-ply laminates 

The controlled and uncontrolled motion for symmetric angle-

ply and cross-ply laminates are studied. The damping ratio is 

tested, and the type of damping is determined in the system. The 

damping ratio is ranged in the interval 0 < 𝜁𝑛 < 1 thus the system 

is underdamped while 𝜁𝑛 = 0 means the motion is uncontrolled. 

The uncontrolled motion is no appearing in any corresponding 

model, but it is created to purpose of the comparing and to show 

the effect of 𝑐(𝑡)𝑘𝑐 coefficient on the vibration suppression of the 

system. The present results are compared with those that based on 

ECBT, TFBT and RHBT. Some variation is found between results 
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of the three theories ECBT, TFBT, RHBT, and the present theory, 

just in the higher modes. 

 

Figure 2. Maximum actuation stress (𝝈𝟏) at the midpoint for 

the smart layer of various lay-ups. 

 

The effect of the smart magnetostrictive layers location and 

various lamination schemes on the vibration control are displayed 

in Tables 1 and 2 at the first mode. It is noticeable that the value 

of the damping coefficient 𝛼 increases and the frequency decreases 

in the beams therefore the damping ratio is growing whenever the 

layer is placed away from the mid-plane (𝑥-axis). A lower 

damping ratio implies a lower decay rate, hence extremely 

underdamped (𝜁𝑛 < 1 ) systems vibrate for long times. In 

addition, the deflection has largest value at the composite 

laminated beam [𝑚/𝑚/904]𝑠 that up to 12.761 mm but it 

represents the faster case according to the value of damping ratio 

that is 𝜁𝑛 = 0.107. The smallest deflection value occurs at the 

composite laminated beam [𝑚/𝑚/04]𝑠, which equals to 7.858. 

Hence it can be considered that the last one is the strongest beam 

while the first one is the weakest beam. The maximum deflection 

and the axial stress are located at the center of beam. The two 

laminates have the same maximum value of actuation stress, which 

up to 4.4255 MPa for each smart layer. The actuation stress 

distribution 𝜎1 for various lay-ups is illustrated in Figure 2 at the 

first mode. 

 

Figure 3. Controlled motion of the [𝑚/45/𝑚/−45/0/90]𝑠 beam for 

various modes at the midpoint. 

 

The damping and frequency coefficients for symmetric angle-

ply laminated composite beam with lamination scheme [𝑚/45/
𝑚/−45/0/90]𝑠 are listed in Table 3 for transverse modes 𝑛 = 1 

to 5 based on some theories and it is shown based on the present 

theory in Figure 3. The higher modes give the largest value of 

damping rate as well it gives the largest value of the 𝜁𝑛 thus the 

faster vibration suppression and low deflection in beams are 

obtained as it is illustrated from the figure. 

 
Figure 4. Effect of smart layers number on the controlled motion at the 

midpoint. 

Figure 4 gives comparisons of the smart layer's number effect 

in the composite beam on the vibration control for different lay-

ups using the present theory when 𝑛 = 1. It illustrates faster 

vibration suppression in the beam whenever the magnetostrictive 

layers number is more. In Table 4 the new models are compared 

with those in Ref. [2] to understand the relationship between the 

number of smart layers in the structure and the vibration 

suppression time. It can be observed that the value of the damping 

coefficient 𝛼 is increasing, and the value of the frequency is 

decreasing in the present models. Hence, the damping ratio 

increases thus implies lower vibration suppression time. 

 

Figure 5. Effect of 𝒄(𝒕)𝒌𝒄 parameter on the motion of the [𝑚/𝑚/±45/0/
90]𝑠 beam at the midpoint. 

 

Figure 5 shows the controlled and uncontrolled motion 

response of the beam [𝑚/𝑚/±45/0/90]𝑠 to the control gain 

coefficient of the applied magnetic field at the first mode 

according to the present theory. It is observed that salient increases 

in the damping coefficient and salient decreases in the damping 

time whenever 𝑐(𝑡) 𝑘𝑐 parameter is grown. Therefore, the result is 

the suppression rapid for the system vibration, while the deflection 

increases slightly with the increase of the 𝑐(𝑡) 𝑘𝑐 parameter, for 

more illustration see Tables 1 and 5. 
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cross-section.

Table 1. Suppression time for various locations of magnetostrictive layers in laminates with 𝑐(𝑡)𝑘𝑐 = 104. 

Lamination −𝛼 ± 𝜔𝑑 𝑊max 𝑡(s) ζ𝑛 

[𝑚/±45/0/90/𝑚]𝑠 5.08±108.06 9.254 0.453 0.047 

[𝑚/±45/0/𝑚/90]𝑠 5.93±108.45 9.221 0.389 0.055 

[𝑚/±45/m/0/90]𝑠 6.77±100.24 9.976 0.340 0.067 

[𝑚/45/𝑚/−45/0/90]𝑠 7.62±98.41 10.162 0.302 0.077 

[𝑚/𝑚/±45/0/90]𝑠 8.46±95.91 10.426 0.272 0.088 

 

Table 2. Suppression time for various locations of magnetostrictive layers in cross-ply laminates  

with 𝑐(𝑡)𝑘𝑐 = 104
. 

Lamination −𝛼 ± 𝜔𝑑 𝑊max(mm) 𝑡(s) ζ𝑛 

[𝑚/0/90/𝑚/0/90]𝑠 6.77±127.30 7.856 0.340 0.053 

[𝑚/0/𝑚/90/0/90]𝑠 7.62±128.33 7.792 0.302 0.0593 

[𝑚/𝑚/0/90/0/90]𝑠 8.46±114.25 8.753 0.272 0.0739 

[𝑚/𝑚/904]𝑠 8.46±78.37 12.761 0.272 0.107 

[𝑚/𝑚/04]𝑠 8.46±127.26 7.858 0.272 0.066 

 

Table 3. Damping and frequency parameters of the transverse modes −𝛼 ± 𝜔𝑑 (rad s−1) for  

lay-up [𝑚/45/m/−45/0/90]𝑠. 

Mode ECBT TFBT RHBT Present 

1 7.62±98.44 7.61±98.41 7.61±98.39 7.62±98.41 

2 30.46±393.65 30.39±393.22 30.36±392.96 30.46±393.15 

3 68.47±885.33 68.13±883.17 67.96±881.88 68.47±882.83 

4 121.58±1572.98 120.53±1566.18 119.99±1562.16 121.58±1565.13 

5 189.67±2455.90 187.13±2439.43 185.85±2429.73 189.70±2436.89 

 

Table 4. Comparison for effect of the smart layer's number at the composite beam on the vibration control. 

Lamination −𝛼 ± 𝜔𝑑 𝑊max 𝑡(s) ζ𝑛 

[±45/0/𝑚/90]𝑠 [2] 1.98±116.85 8.558 1.163 0.017 

[±45/0/𝑚/90]𝑠 (present) 1.98±116.87 8.557 1.163 0.017 

[𝑚/±45/0/𝑚/90]𝑠 5.93±108.45 9.221 0.389 0.055 

[45/𝑚/−45/0/90]𝑠 [2] 4.62±102.15 9.790 0.498 0.045 

[45/𝑚/−45/0/90]𝑠 (present) 4.62±102.16 9.788 0.498 0.045 

[𝑚/45/𝑚/−45/0/90]𝑠 7.62±98.41 10.162 0.302 0.077 

[𝑚/±45/0/90]𝑠 [2] 5.94±98.42 10.161 0.388 0.060 

[𝑚/±45/0/90]𝑠 (present) 5.94±98.45 10.157 0.388 0.060 

[𝑚/𝑚/±45/0/90]𝑠 8.46±95.91 10.426 0.272 0.088 
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Table 5. Suppression time for various locations of magnetostrictive layers in laminates with 𝑐(𝑡)𝑘𝑐 = 103. 

Lamination −𝛼 ± 𝜔𝑑 𝑊max 𝑡(s) ζ𝑛 

[𝑚/±45/0/90/𝑚]𝑠 0.508±108.18 9.244 4.534 0.047 

[𝑚/±45/0/𝑚/90]𝑠 0.593±118.61 9.208 3.886 0.050 

[𝑚/±45/𝑚/0/90]𝑠 0.677±100.47 9.953 3.400 0.067 

[𝑚/45/𝑚/−45/0/90]𝑠 0.762±98.70 10.132 3.023 0.077 

[𝑚/𝑚/±45/0/90]𝑠 0.846±96.28 10.386 2.720 0.088 

 

Table 6. Suppression time and maximum deflection for various locations of magnetostrictive layers in 

 antisymmetric cross-ply laminates with 𝑐(𝑡)𝑘𝑐 = 104. 

Lamination −𝛼 ± 𝜔𝑑 𝑊max 𝑡(s) ζ𝑛 

[𝑚/90/0/90/0/𝑚/𝑚/90/0/90/0/𝑚] 5.08±122.50 8.163 0.453 0.0414 

[𝑚/90/0/90/𝑚/0/90/𝑚/0/90/0/𝑚] 5.93±120.90 8.271 0.389 0.0490 

[𝑚/90/0/𝑚/90/0/90/0/𝑚/90/0/𝑚] 6.77±117.66 8.498 0.340 0.0575 

[𝑚/90/𝑚/0/90/0/90/0/90/𝑚/0/𝑚] 7.62±112.68 8.873 0.302 0.0675 

[𝑚/𝑚/(90/0/90/0)2] 8.46±105.68 9.46 0.272 0.0798 

 

5.2. Antisymmetric cross-ply laminates 

The effect of magnetostrictive layers location in the 

antisymmetric cross-ply laminates is investigated. The damping 

coefficient, the frequency, the suppression time and the damping 

ratio numerical results are listed in Table 6 for the first transverse 

mode according to the present theory. The same result at the 

symmetric laminates is observed that the suppression process 

directly proportional to the distance of the smart layers from the 𝑥-

axis. The damping ratio increases whenever the magnetostrictive 

layers are located away from the mid-plane (𝑥-axis) as well the 

deflection inversely proportional to the place of the smart layers 

from the 𝑥-axis because the frequency decreases. 

6. Conclusions 

This article discusses the vibration suppression at laminated 

composite beam embedded Terfenol-D magnetostrictive material 

layers, which uses to aim damping at the beams with the velocity 

feedback control and constant gain distributed. The Naiver 

analytical solution approach is applied where the beam is subjected 

to the boundary conditions of simply-supported. The models in 

Ref. [2] is used in the comparison and discussions. It is observed 

that the composite laminated beam with lamination scheme 
[𝑚/𝑚/904]𝑠 represents the weakest but it the fastest, while the 

composite laminated beam with lamination scheme [𝑚/𝑚/04]𝑠 

represents the strongest one. In addition, the vibration suppression 

time is decreasing whenever the smart layers are increasing in the 

beam, as well the magnetostrictive layers must place far away from 

the 𝑥-axis to suppress vibration best. Moreover, the suppression 

time and deflection value are inversely proportional to the control 

gain coefficient 𝑐(𝑡)𝑘𝑐 of the applied magnetic field. 

7. Appendix A 

The coefficients 𝑄̅𝑖𝑗
(𝑘)

 appeared in Eqs. (4) and (5) are given by 

𝑄̅11
(𝑘)

= 𝑄11
(𝑘)

cos4 𝜃(𝑘) + 2(𝑄12
(𝑘)

+2𝑄66
(𝑘)

) cos2 𝜃(𝑘) sin2 𝜃(𝑘)

+ 𝑄22
(𝑘)

sin4 𝜃(𝑘), 

𝑄̅55
(𝑘)

= 𝑄55
(𝑘)

cos2 𝜃(𝑘) + 𝑄44
(𝑘)

sin2 𝜃(𝑘), 

𝑄̅13
(𝑘)

= 𝑄13
(𝑘)

cos2 𝜃(𝑘) + 𝑄23
(𝑘)

sin2 𝜃(𝑘), 

𝑄̅33
(𝑘)

= 𝑄33
(𝑘)

, 

𝑄11
(𝑘)

=
1 − ν23

(𝑘)
ν32

(𝑘)

𝐸22
(𝑘)

𝐸33
(𝑘)

∆
,  𝑄12

(𝑘)
=

ν21
(𝑘)

+ ν31
(𝑘)

ν23
(𝑘)

𝐸22
(𝑘)

𝐸33
(𝑘)

∆
=

ν12
(𝑘)

+ ν13
(𝑘)

ν32
(𝑘)

𝐸11
(𝑘)

𝐸33
(𝑘)

∆
, 

𝑄22
(𝑘)

=
1−ν13

(𝑘)
ν31

(𝑘)

𝐸11
(𝑘)

𝐸33
(𝑘)

∆
,     𝑄13

(𝑘)
=

ν31
(𝑘)

+ν21
(𝑘)

ν32
(𝑘)

𝐸22
(𝑘)

𝐸33
(𝑘)

∆
=

ν13
(𝑘)

+ν12
(𝑘)

ν23
(𝑘)

𝐸11
(𝑘)

𝐸22
(𝑘)

∆
,  

𝑄23
(𝑘)

=
ν32

(𝑘)
+ ν12

(𝑘)
ν31

(𝑘)

𝐸11
(𝑘)

𝐸33
(𝑘)

∆
=

ν32
(𝑘)

+ ν21
(𝑘)

ν13
(𝑘)

𝐸11
(𝑘)

𝐸33
(𝑘)

∆
,     𝑄33

(𝑘)
=

1 − ν12
(𝑘)

ν21
(𝑘)

𝐸11
(𝑘)

𝐸22
(𝑘)

∆
 , 

𝑄44
(𝑘)

= 𝐺23
(𝑘)

,     𝑄55
(𝑘)

= 𝐺31
(𝑘)

,     𝑄66
(𝑘)
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(𝑘)

, 
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(𝑘)
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(𝑘)
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(𝑘)
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(𝑘)
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(𝑘)
ᶹ31

(𝑘)
 − 2ν21
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(𝑘)
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(𝑘)
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(𝑘)
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(𝑘)

= ν12
(𝑘)

𝐸11
(𝑘)
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= ν13
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(𝑘)

𝐸22
(𝑘)

, 

where 𝐸𝑖 are Young’s moduli in the material principal directions, 

ν𝑖𝑗 are Poisson’s ratios and 𝐺𝑖𝑗 are the moduli of shear. 

8. Appendix B 

The components of the coefficients 𝑆̂𝑖𝑗, 𝑀̂𝑖𝑗 and 𝐶̂𝑖𝑗 (𝑖 = 1,2) 

appeared in Eq. (21) can be written as 

𝑆̂11 = 𝐷11 (
𝑛𝜋

𝐿
)

4

, 𝑆̂12 = −𝐸11 (
𝑛𝜋

𝐿
)

3

,  

𝑆̂21 = −𝐸11 (
𝑛𝜋

𝐿
)

3

, 𝑆̂22 = 𝐸11
h (

𝑛𝜋

𝐿
)

2

+ 𝐸55
h ,  
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𝑀̂11 = −𝛽 (
𝑛𝜋

𝐿
)

2

,     𝑀̂21 = 𝛾
𝑛𝜋

𝐿
,     𝑀̂12 = 0,     𝑀̂22 = 0,  

𝐶̂11 = 𝐼2 (
𝑛𝜋

𝐿
)

2

+ 𝐼0,     𝐶̂12 = −𝐼ℎ

𝑛𝜋

𝐿
,     𝐶̂22 = 𝐼ℎℎ. 
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