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1. Introduction 

The movement of the heat sources is the subject of transient 

heat transfer, which applies to problems, especially welding 

engineering.  In the early in the previous century, welding 

engineers began studying the sources of moving heat, both 

theoretically and empirically [1]. Depending on material 

properties and plate geometry, the solutions take three different 

forms: intermediate, semi-infinite, or thin plate. The distribution 

of temperature and cooling rates can be determined from 

theoretical solutions to the problem, allowing engineers to 

understand the significance of heat sources in the welding 
process and final product performance. 

Studying the effect of the magnetic field on thermoelastic 

medium is another interesting area. The field of study known as 

magneto thermoelasticity has many applications in several areas, 

especially in biomedical engineering, nuclear devices and 

geomagnetic investigations. Some works related to this area are 

in [2-9] 

The nonlocal theory of elasticity was used to study 

applications in Nano-mechanics, including the lattice dispersion 

of elastic waves, wave propagation in composites, dislocation 

mechanics, fracture mechanics, surface tension fluids, etc. Of all 

the nanostructures, the mechanical behavior of nanotubes and 

nanobeams have been most widely investigated. The models of 

the nonlocal beams expected increasing attention in the early few 

years. In 1972, Eringen introduced the theory of nonlocal 

continuum mechanics [10-12], in an effort to deal with the small-

scale structure problems. The theories of the nonlocal continuum 

consider the state of stress at a point as a function of the states of 

the strain of all points in the body while the classical continuum 

mechanics assume the state of stress at a certain point uniquely 

depends on the state of the strain on that same point.  

In this theory, the equilibrium laws contain non-local 

residues of fields and these residues are identified with the 

constitutive equations that form the basis for some requirements 

of stability and thermodynamic constraints. Constitutive 

equations and non-local residues are functional of deformation 

gradients and the motions of all points of the body.  

Inan and Eringen [13] investigated the thermoelastic wave 

propagation in plates based on the nonlocal theory of 

thermoelasticity. Wang and Dhaliwal [14] introduced the energy 

and the work equation in nonlocal generalized thermoelasticity 

and also proved that the initial and boundary value problems 

have a unique solution. Zenkour and Abouelregal [15] 

constructed a new model of nonlocal thermoelasticity with phase 

lags for beam theory due to a harmonically varying heat 

considering the thermal conductivity to be variable. 

Koutsoumaris et. al [16] expressed the nonlocal continuum 

theory, either integral or differential form which is widely used 

to explain size effect phenomena in micro and nanostructures. 

Liew et. al [17] introduced a literature review of recent research 
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studies on the applications of nonlocal elasticity theory in the 

modeling and simulation of grapheme sheets. Rajneesh et. al 

[18] investigated the transient analysis of nonolocal 

thermoelastic microstretch thick circular plate with phase lags. 

Solutions for various problems support this theory [19-27]. 

There are also some other problems that have been studied in 

this area as in [28-38]. 

This research presents a thermoelastic analysis of a rotating 

finite rod subjected to a moving heat source under Eringen 

nonlocal theory. An analytic technique is presented to display 

transient nonlocal thermal stresses in a rotating rod with constant 

angular velocity. The variations of temperature, displacement 

and stress distributions along the axial direction are investigated. 

The effects of the moving heat source speed, nonlocal parameter 

and the applied magnetic field on all studied fields are 

considered. 

2. Review of Nonlocal Thermoelasticity theory 

According to the nonlocal elasticity theory of Eringen [10-

12], the stress tensor at arbitrary points x  of a nano-material 

body not only depends on strain tensor at x  but also depends on 

all points of the body. The nonlocal elasticity basic equation for 

isotropic, elastic and homogeneous materials in the absence of 

body force is expressed as follows: 

 ( ) , ( )d ( )
V

V   τ x x x σ x x

  (1) 

 
1

( ) ,
2

T  ε u u

  (2) 

( ) 2 (div )    σ x ε u I I
  (3) 

By employing Eringens’ nonlocal formulation, the nonlocal 

stress tensor ( )τ x  can be expressed as: 

 2 21 ( ) ( )  τ x σ x
  (4) 

which takes into account the size effect on the response of 

nanostructures. 

The balance of linear momentum results in the following 

equation of motion 

  τ F u
 (5) 

where F  represents the external body force vector and   is the 

mass density. 

After using (4) and (5), the invariant form of nonlocal 

equation of motion can be derived as follows: 

   2 2 2 21 1        σ F u
  (6) 

Then, the equations of motion can be obtained in terms of the 

temperature and displacements as 

   

   

2

2 2 2 21 1

    

  

       

    

u u

F u   (7) 

One may see that when the internal characteristic length is 

neglected, i.e., the particles of a medium are considered to be 

continuously distributed,   is zero, and Eq. (4) reduces to the 

constitutive equation of classical local thermoelasticity.  

The modified Fourier's law of heat conduction extended by 

Lord and Shulman [27] is given by  

 0 0

2

1 divEC T Q
t t t

K


  



    
    

    

 

u

  (8) 

The Maxwell's electromagnetic field equations for a 

homogeneous and electrically conducting thermoelastic solid can 

be retrieved as [39]. 

 

0

0 0

, , 0,

,

t

t



 


      



   
       

  

h
J h E h

u
h u H J E H   (9) 

When rotated is rotating with an angular, velocity Ω , we 

establish the centripetal acceleration and Coriolis increasing 

speed as a two further terms in the equation of motion, which 

affects the thermoelastic response. If the thermoelastic medium 

rotating with uniform angular velocity  Ω n , ( n  will be a unit 

vector demonstrating the direction of the rotation axis) with 

isotropic, homogeneous electronic and thermoelastic properties, 

then Eq. (8) can be expressed as[30-33] 

     

   

2 2 2

2 2

1

1 2

     

 

          

        

u u F

u Ω Ω u Ω u   (10) 

For non-rotating media, the angular velocity 0Ω  and 

hence the Centripetal acceleration   Ω Ω u  and Coriolis 

acceleration 2 Ω u  do not appear in the equation of motion 

(10). 

In Eqs. (1)-(10), we have used the following symbolizations: 

 

 

3. Problem Formulation  

The problem to be considered is a homogeneous isotropic 

infinite nonlocal thermoelastic rod that is unstrained and 

unstressed initially, but has a uniform temperature distribution 

0T . We will take the x -axis as the axial direction of the rod. Let 

0x   characterizes the plane area over which the moving heat 

source  ,Q x t  is situated and propagating along x  direction. 

The dynamic problem of the rod can be treated as a one-

dimensional problem, all the physical variables considered 

depend only on the space variable x  and time variable t . In 

addition, it is assumed that the rod be rotated along z-axis with a 

uniform angular speed  0,0, Ω . 

For one-dimensional problems, the components of 

displacement have the form 

 , , 0x y zu u x t u u  
  (11) 
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It is assumed that the applying longitudinal magnetic field 

with constant intensity acts perpendicular to the axial direction 

of the rod  0, ,0xHΗ . 

Lorentz force  F J H  induced by the applying 

longitudinal magnetic field H  appearing in the motion Eq. (9) 

are given by 

  2

0 0, , ,0,0x y z x

u
f f f H

t
 

 
    

 
F

 (12) 

Equation (4) also gives  

 
2

2

2
1 2xx

u

x x
     

  
    

    (13) 

Substituting Eqs. (12) and (13) into Eq. (10), the following 

equation of motion can be obtained: 

 

2 2
2 2 2

0 02 2

2

2

1

2

x

u u
u H

x t t

u

x x
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
  

     
      

     

 
  

   (14) 

The heat conduction equation (8) is now given by 

2 2

0 0 2
1 E

u
C T Q K

t t t x x

 
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Considering the following dimensionless quantities 
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 
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
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
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  (16) 

Governing equations (13)-(15) may be finally written as 

(dropping the primes) 

2
2 2

2
1 xx

u
b

x x
   
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Where 

2
2 0 0 0

2

0

2
, , , .x

E o

T H
b g

C c

     
 

    


     (20)  

The homogeneous initial conditions are taken as 

0 0
0 0

( , ) ( , )
( , ) 0, ( , ) 0

t t
t t

u x t x t
u x t x t

t t




 
 

 
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 
 (21) 

We will assume the rod has a non-dimensional length  and 

the displacement ( , )u x t  and temperature ( , )x t  needs to 

satisfy the following four spatial boundary conditions 

0

( , )
( , )

x
x L

u x t
u x t

x






 (21) 

( , )
0 at  0,

x t
x L

x


 


 (22) 

The rod is subjected to a moving plane of the heat source of 

constant strength 
0Q , releasing its energy continuously while 

moving along the positive direction of x -axis with a constant 

velocity c . This moving heat source is assumed to be the 

following non-dimensional form [34] 

 0 on 0,Q Q x ct x L  
 (23) 

4. Solution of the problem in the Laplace transforms domain 

The closed form solution of the governing and constitutive 

equations can be possible by adapting the Laplace transformation 

technique. Taking the Laplace transform defined by the relation 

   
0

, , stf x s f x t e dt



 
 (24) 

to both sides of Eqs. (17)-(19) and using the homogeneous initial 

conditions (21), one gets the field equations in the Laplace 

transform space as 

2
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2

d d
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u
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 (27) 

Where 2 2

0 s s     . 

Elimination   from Eqs. (25) and (26), one obtains: 

4 2

1 2 34 2

d d
( )

d d

sx

cm m u x m e
x x

 
   

   (28) 

where the coefficients 1m , 2m  and 3m  are given by 
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   
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The solution of equations (28) can be represented as 

 
2

2 5

1

( ) e e

sx
k x k x

cn n
n n

n

u x C C C e






  
 (30) 

Where , ( 1,2,3,4)nC n   are parameters depending on  to be 

determined from the boundary conditions. 

In Eq. (30)  1k  and 2k  are the roots of the characteristic 

equation 
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4 2

1 2 0k m k m  
 (31) 

and the parameter 
5C  is given by 

3
5 4 2

1 2( / ) ( / )

m
C

s c m s c m


 
 (32) 

In the same way, eliminating  between Eqs. (25) and 

(26),we obtain  
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Where 
2

2 6 6
4 2

2

s
m

c

  


  . 

The solution of the differential equation (33) can be written 

as 

 
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where the compatibility between ( )x  and ( )u x  in Eq. (26), 

gives 
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Using Eqs. (30) and (34) in Eq. (25), the stress component 

( )xx x  can be determined as 

 
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1

( ) e e

sx
k x k x

cn n
xx n n n n

n

x C C C e  


 



     (36) 
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After using Laplace transform, the boundary conditions (21) 

and (22) take the forms 

0
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Substituting Eqs. (30) and (34) into the above boundary 

conditions, one obtains four linear equations 
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 (40) 

The solution of the above system of linear equations gives 

the unknown parameters , ( 1,2,3,4)nC n  . In order to determine 

the studied fields in the physical domain, the Riemann-sum 

approximation method is used to obtain the numerical results. 

The details of these methods can be found in Honig and Hirdes 

[46].  

5. Numerical results 

In order to illustrate and compare the analytic results 

obtained in the previous sections, we now demonstrate a 

numerical example, which represent the distributions of 

thermodynamic temperature ( , )x t , displacement ( , )u x t , and 

nonlocal stress component ( , )xx x t . For the purpose of 

numerical computations, the material is specified as copper. The 

relevant material parameters necessary to be known are given in 

Table 1 [23]. 

Table1: Mechanical and thermoelastic properties of the rod. 

( 0 293KT  ): 

Material properties Value 

Thermal conductivity 1 1(Wm K )K     386  

Young' modulus (GPa)E  128  

Density 3(Kgm )   8954  

Thermal expansion 1(K )t
  51.78 10  

Electric conductivity 1

0 (Fm )   910 /36  

Magnetic permeability 1

0 (Hm )   710 4   

Longitudinal magnetic field 
1(Am )xH 

 710 / 4  

Poisson's ratio   0.36  

Specific heat (J/KgK)EC   384.56  

The results are represented graphically in Figs. (1-16) at 

different positions x . The computations were carried out for the 

wide range of , (0 10)x x   at small value of time 0.2t  . For 

all numerical calculations Mathematica programming Language 

has been used. The field quantities such as the temperature, the 

strain, the nonlocal stress and the displacement distributions 

depend not only on the space coordinates x  and time t , but also 

depend on the nonlocal parameter  , moving heat source c , 

magnetic field xH , and the rotating parameter  . Numerical 

calculation is made for four cases. 
5.1. Influence of the rotation 

In this case, we take into consideration three different values of 

the rotation parameter 0,1,5  , while the other parameters 

have been taken as 0.1  , 1c  , and the parameter 1  . 

Figures 1-4 are drawn to give a comparison of the obtained 

results for the displacement ( , )u x t , strain ( , )e x t , nonlocal 

force stress ( , )xx x t , and temperature distribution ( , )x t  

against positions ( , )x t  in the cases of absence and presence of 

the rotation effect.  
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Figure 1: The temperature    with different rotation parameter  . 

 

From all these figures, it is evident that all curves coincident 

when x  tends to infinity, all physical fields satisfy the boundary 

conditions. Thus, the obtained solution is limited to a finite area 

of space and does not spread to infinity. This is not in the case of 

the coupled theory of thermoelasticity, where the solution 

extends to infinity rapidly, suggesting an infinite velocity in the 

propagation of waves. The rotating field has noticeable effects 

on all the profiles of the studied fields.  

 
Figure 2: The displacement u  with different rotation parameter  . 

 

Figures 1–4 show that the rotation parameter   acts to increase 

the nondimensional nonlocal stress ( , )xx x t , whereas acts to 

decrease displacement distribution ( , )u x t . In all cases, the 

displacement attains maximum values and gradually decreases 

continuously small negative values. The changes in the nonlocal 

parameter do not feel any effects on the temperature and the 

strain, and it remains unchanged with the changes in the nonlocal 

parameter. It is noticed the displacement and nonlocal stress 

shows an increase in nature to increase or decrease amplitude 

with respect to the distance x due to the presence of the rotation 

terms. This view applies to many authors as well as the author 

[47]. 

 

 
Figure 3: The nonlocal stress 

xx  distributions with different rotation 

parameter  . 

 

 
 

Figure 4: The strain distributions e  with different rotation parameter  . 

 
5.2. The effect of moving heat source velocity parameter 

The first case investigating how the non-dimensional 

displacement, temperature, and nonlocal stress vary with 

different values of the moving heat source velocity c  when the 

other parameters remain constant (see Figures 5−8).  

 

 

Figure 5: The temperature   with different values of the moving heat 

source velocity c . 

From the figures 5−8, it is observed that the nature of 

variations of all the field variables for moving heat source 

velocity parameter is significantly different. It can be observed 

that the heat source velocity  has a great effect on the 

displacement, temperature, strain and nonlocal stress 

distributions. The rate of increment of nonlocal stress ( , )xx x t  

is very slow with the speed of the heat source. For a fixed value 

of x , the displacement is decreased with increasing value of 

heat source velocity c , and these variations are fairly obvious.  

 

Figure 6: The displacement u  with different values of moving heat 

source velocity c . 
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Also, the temperature decreases as the moving heat source 

velocity increases. The thermodynamic temperature, is 

oscillatory in nature, but the amplitude of the oscillation is 

decreasing with increasing distance from the heat source is 

exactly the same as that of [45]. 

 

Figure 7: The nonlocal stress 
xx  with different values of moving heat 

source velocity c . 

 

Figure 8: The strain distributions e  with different values of moving 

heat source velocity c . 

 

5.3. The effect of the nonlocal parameter 

With a view toward describing the aim of this article, the 

distributions of temperature, displacement, and nonlocal stress 

for different values of nonlocal parameter   are introduced. In 

this case, we notice that when the nonlocal parameter   

vanishing ( 0  ) indicates the old situation (local model of 

elasticity) while other values indicate the nonlocal theories of 

elasticity and thermoelasticity. 

 

Figure 9: The temperature   with different values of nonlocal 

parameter  . 

 

Figure 10: The displacement u  with different values of nonlocal 

parameter  . 

 

 

Figure 11: The nonlocal stress 
xx  with different values of nonlocal 

parameter  . 

Figures (9−12) show that this parameter has a significant 

effect on all the fields. The waves reach the steady state 

depending on the value of the nonlocal parameter  . The 

concluding remarks from the Figures can be shortened as 

follows: 

 The changes in the nonlocal parameter do not feel any 

effects on the temperature, and it remains unchanged 

with the changes in the nonlocal parameter. 

 The temperature ( , )x t  small, depending on the 

variation of nonlocal parameter 1c  . 

 When moving heat source velocity is fixed ( 2c  ), the 

result of 0.1,0.2   agreeing well with that for 0  , 

that is, the nonlocal scale parameter has no effect on 

the temperature. 

 However, the nonlocal scale parameter 1c   greatly 

affects the distributions of displacement ( , )u x t  and 

nonlocal stress ( , )xx x t . 

 The displacement ( , )u x t  decrease when nonlocal 

parameter 1c   increases. 

 The nonlocal effect is a significant factor that could not 

be ignored in determining stress in sudden nano-scale 

heating problems source is the same as that of [6,8]. 
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Figure 12: The strain distributions e  with different values of nonlocal 

parameter  . 

 

5.4. The effect of the applied magnetic field 

This case illustrates how the field quantities vary with the 

different values of the applied magnetic field parameter 

( 0,1,2  ) with constant 2c  , and 0.1  . The numerical 

results are obtained and presented graphically in Figs. (13-16).  

Also, we can conclude that: 

 We can see the significant effect of the applied 

magnetic field   on the displacement ( , )u x t  and The 

nonlocal stress ( , )xx x t . 

 

 The increase in the value of the parameter   causes a 

decrease in the values of the lateral displacement which 

is very obvious in the peak points of the curves. This 

indicates that the magnetic field acts to damp the 

thermal expansion deformation of the rod. The results 

are exactly the same as those reported in [21] 

 

Figure 13: The variation of temperature   with the applied magnetic 

field. 

 

Figure 14: The variation of displacement u  with the applied magnetic 

field. 

 

 

Figure 15: The variation of nonlocal stress 
xx  with the applied 

magnetic field. 

 The increasing on the value of the parameter   causes 

increases in the values of the nonlocal stress field 

which is very obvious in the starting points of the 

curves. 

 The applied magnetic field has no effect on the 

variation of temperature is the same as given in [21]. 

 

 

 

 

Figure 16: The variation of strain distributions e  with the applied 

magnetic field. 

6. Conclusions 

In this work, nonlocal generalized thermoelasticity based on 

Eringen’s nonlocal elasticity is proposed. The paper presents an 

analytic solution for thermoelastic homogeneous rotating finite 

rod subjected to a periodic source is presented. The nonlocal 

governing equations of the problem were transferred by applying 

the Laplace transform and then were solved numerically by 

using Taylor’s expansion series. 

The results are displayed graphically to illustrate the effect of 

nonlocal parameter, magnetic field, the speed of the heat source 

and the rotating. Also, the results indicate that the field quantities 

such as the temperature, the strain, the nonlocal stress, and the 

displacement distributions depend not only on the space 

coordinate x  and time t , but also depend on the nonlocal 

parameter  , moving heat source, magnetic field xH , and the 

rotating parameter   . 

The results obtained in this work should be useful for researchers 

in nonlocal material science, low-temperature physicists, new 
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materials designers, as well as to those who are working on the 

development of the theory of nonlocal thermoelasticity. 

References 

[1] Sparagen W., Claussen G.E., 1937, Temperature 

distribution during welding, The Welding Journal 16: 4-

10. 

[2] Knopoff L., 1955, The interaction between elastic wave 

motion and a magnetic field in electrical conductors, 

Journal of Geophysical Research 60: 441-456. 

[3] Kaliski S., Petykiewicz J., 1959, Equation of motion 

coupled with the field of temperature in a magnetic field 

involving mechanical and electrical relaxation for 

anisotropic bodies, Proceedings of Vibration Problems 4: 

1-12. 

[4] Chadwick P., 1957, Elastic wave propagation in a 

magnetic field, in Proceedings of the International 

Congress of Applied Mechanics, Brussels, Belgium 7: 

143-153. 

[5] Nayfeh A.H., S. Nemat-Nasser, 1972, Electromagneto-

thermoelastic plane waves in solids with thermal 

relaxation, Journal of Applied Mechanics, Transactions 

ASME 39(1): 108-113. 

[6] Allam M.N., Elsibai K.A., Abouelregal A.E., 2010, 

Magnetothermoelasticity for an infinite body with a 

spherical cavity and variable material properties without 

energy dissipation, International Journal of Solids and 

Structures 47(20); 2631-2638. 

[7] Abouelregal A.E., Abo-Dahab S.M., 2012, Dual phase lag 

model on magneto-thermoelasticity infinite non-

homogeneous solid having a spherical cavity, Journal of 

Thermal Stresses 35(9): 820-841. 

[8] Abouelregal A.E., Abo-Dahab S.M., 2014, Dual-phase-lag 

diffusion model for Thomson’s phenomenon on 

electromagneto-thermoelastic an infinitely long solid 

cylinder, Journal of Computational and Theoretical 

Nanoscience 11(4) 1031-1039. 

[9] Zenkour A.M., Abouelregal A.E., 2016, Non-simple 

magnetothermoelastic solid cylinder with variable 

thermal conductivity due to harmonically varying heat, 

Earthquakes and Structures 10(3): 681-697.Eringen, A.C., 

1972, Nonlocal polar elastic continua, International 

Journal of Engineering Science 10: 1-16. 

[10] Eringen A.C., Edelen, D.G.B., 1972, On nonlocal 

elasticity, International Journal of Engineering Science 

10: 233-248. 

[11] Eringen A.C., 1983, On differential equations of nonlocal 

elasticity and solutions of screw dislocation and surface 

waves, Journal of Applied Physics 54: 4703-4710.  

[12] Inan E., Eringen A.C., 1991, Nonlocal theory of wave 

propagation in thermoelastic plates, International Journal 

of Engineering Science 29: 831-843. 

[13] Wang J., Dhaliwal, R.S., 1993, Uniqueness in generalized 

nonlocal thermoelasticity, Journal of Thermal Stresses 16: 

71-77. 

[14] Zenkour, A.M., Abouelregal, A.E., 2014, Nonlocal 

thermoelastic vibrations for variable thermal conductivity 

nanobeams due to harmonically varying heat, Journal of 

Vibroengineering 16: 3665-3678. 

[15] Koutsoumaris C., Eptaimeros K.G., Tsamasphyros G.J., 

2017, A different approach to Eringen.s nonlocal integral 

stress model with applications for beams, International 

Journal of Solid and Structures 112: 222-238.  

[16] Liew K.M., Zhang Y., Zhang, L.W., 2017, .Nonlocal 

elasticity theory for grapheme modeling and simulation : 

prospects and challenges, Journal of Modeling in 

Mechanics and Materials doi:10.1515/jmmm-2016-0159. 

[17] Rajneesh K., Aseem M. Rekha R., 2018, Transient 

analysis of nonolocal microstretch thermoelastic thick 

circular plate with phase lags, Mediterranean Journal of 

Modeling & Simulation 9: 025-042. 

[18] Abouelregal A.E., Mohamed B.O., 2018, Fractional order 

thermoelasticity for a functionally graded thermoelastic 

nanobeam induced by a sinusoidal pulse heating, Journal 

of Computational and Theoretical Nanoscience 15: 1233-

1242. 

[19] Khisaeva Z., Ostoja-Starzewski M., 2006, Thermoelastic 

damping in nanomechanical resonators with finite wave 

speeds", Journal of Thermal Stresses 29(3): 201-216. 

[20] Abouelregal A.E., Zenkour A.M., 2017, Thermoelastic 

response of nanobeam resonators subjected to exponential 

decaying time varying load, Journal of Theoretical and 

Applied Mechanics 55(3): 937-948. 

[21] Afzali, J., Alemipour Z. and Hesam, M., 2013, High 

resolution image with multi-wall carbon nanotube atomic 

force microscopy tip, International Journal of Engineering 

Science 26(6): 671-676. 

[22] Abouelregal A.E., Zenkour A.M., 2018, Nonlocal 

thermoelastic model for temperature-dependent thermal 

conductivity nanobeams due to dynamic varying loads, 

Microsystem Technologies 24(2): 1189-1199. 

[23] Zenkour A.M., Abouelregal A.E., 2016, Nonlinear effects 

of thermo-sensitive nanobeams via a nonlocal 

thermoelasticity model with relaxation time, Microsystem 

Technologies 22(10): 2407-2415.  

[24] Ribeiro P., 2016, Non-local effects on the non-linear 

modes of vibration of carbon nanotubes under 

electrostatic actuation, International Journal of Non-

Linear Mechanics 87: 1–20. 

[25] Zenkour A.M., Abouelregal A.E., 2015, Nonlocal 

thermoelastic nanobeam subjected to a sinusoidal pulse 

heating and temperature-dependent physical properties, 

Microsystem Technologies 21(8): 1767-1776. 

[26] Lord H.W., Shulman Y., 1967, A generalized dynamical 

theory of thermoelasticity, Journal of Mech. Phys. Solid 

15: 299-309. 

[27] Mohammadi M., Ghayour M., Farajpour A., 2013, Free 

transverse vibration analysis of circular and annular 

graphene sheets with various boundary conditions using 

the nonlocal continuum plate model, Composites Part B: 

Engineering 45(1): 32-42. 

[28] Danesh M., Farajpour A., Mohammadi M., 2012, Axial 

vibration analysis of a tapered nanorod based on nonlocal 

elasticity theory and differential quadrature method, 

Mechanics Research Communications 39(1): 23-27. 

[29] Farajpour A., Yazdi M.R.H., Rastgoo A., Loghmani M., 

Mohammadi M., 2016, Nonlocal nonlinear plate model for 

large amplitude vibration of magneto-electro-elastic 

nanoplates, Composite Structures 140: 323-336. 

[30] Mohammadi M., Safarabadi M., Rastgoo A., Farajpour A., 

2016, Hygro-mechanical vibration analysis of a rotating 

viscoelastic nanobeam embedded in a visco-Pasternak 

https://aip.scitation.org/journal/jap
https://link.springer.com/journal/542
https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041778
https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041778


Journal of Computational Applied Mechanics, Vol. 50, No. 1, June 2019 

126 

 

elastic medium and in a nonlinear thermal environment, 

Acta Mechanica, 227(8): 2207-2232. 

[31] Mohammadi M., Farajpour A., Moradi A., Ghayour M., 

2014, Shear buckling of orthotropic rectangular graphene 

sheet embedded in an elastic medium in thermal 

environment, Composites Part B: Engineering 56: 629-

637. 

[32] Moosavi H., Mohammadi M., Farajpour A., Shahidi S.H., 

2011, Vibration analysis of nanorings using nonlocal 

continuum mechanics and shear deformable ring theory, 

Physica E: Low-dimensional Systems and Nanostructures 

44(1): 135-140. 

[33] Goodarzi M., Mohammadi M., Farajpour A., Khooran M., 

2014, Investigation of the effect of pre-stressed on 

vibration frequency of rectangular nanoplate based on a 

visco-Pasternak foundation, Journal of Solid Mechanics 

6(1): 98-121. 

[34] Asemi S.R., Mohammadi M., Farajpour A., 2014, Study on 

the nonlinear stability of orthotropic single-layered 

graphene sheet based on nonlocal elasticity theory, Latin 

American Journal of Solids and Structures 11(9): 1515-

1540. 

[35] Mohammadi M., Farajpour A., Goodarzi M., Mohammadi 

H., 2013, Temperature effect on vibration analysis of 

annular graphene sheet embedded on visco-Pasternak 

foundation, Journal of Solid Mechanics 5(3): 305-323. 

[36] Mohammadi M., Goodarzi M., Ghayour M., Alivand S., 

2012, Small scale effect on the vibration of orthotropic 

plates embedded in an elastic medium and under biaxial in-

plane pre-load via nonlocal elasticity theory, Journal of 

Solid Mechanics 4(2): 128-143.  

[37] Mohammadi M., Farajpour A., Goodarzi M., 2014, 

Numerical study of the effect of shear in plane load on the 

vibration analysis of graphene sheet embedded in an elastic 

medium, Computational Materials Science 82: 510-520. 

[38] Wang H., Dong K., Men F., Yan Y.J., Wang X., 2010, 

Influences of longitudinal magnetic field on wave 

propagation in carbon nanotubes embedded in elastic 

matrix, Applied Mathematical Modelling 34: 878-889. 

[39] Mashat D.S., Zenkour A.M., Abouelregal A.E., 2017, 

Thermoelastic interactions in a rotating infinite orthotropic 

elastic body with a cylindrical hole and variable thermal 

conductivity, Archive of Mechanical Engineering 64(4): 

481-498. 

[40] Schoenberg M. Censor D., 1973, Elastic waves in rotating 

media, Quarterly of Applied Mathematics 31: 115-125. 

[41] Abouelregal A.E., Abo-Dahab S.M., 2018, A two-

dimensional problem of a mode-I crack in a rotating fibre-

reinforced isotropic thermoelastic medium under dual-

phase-lag model, Sådhanå 43:13, 

https://doi.org/10.1007/s12046-017-0769-7. 

[42] Roychoudhuri S.K., Mukhopadhyay S., 2000, Effect of 

rotation and relaxation times on plane waves in generalized 

thermo-viscoelasticity; International Journal of 

Mathematics and Mathematical Sciences 23: 497-505. 

[43] He T., Cao L., 2009, A problem of generalized 

magnetothermoelastic thin slim strip subjected to a moving 

heat source, Mathematical and Computer Modelling 49(7-

8), 1710-1720.  

[44] Honig G., and Hirdes U., 1984, A method for the numerical 

inversion of Laplace transforms, Journal of Computational 

and Applied Mathematics 10(1): 113-132. 

[45] Bayones F.S., Abd-Alla A.M., 2018, Eigenvalue approach 

to coupled thermoelasticity in a rotating isotropic medium, 

Results in Physics 8: 7-15. 

 

.

 

https://doi.org/10.1007/s12046-017-0769-7
https://www.researchgate.net/journal/1687-0425_International_Journal_of_Mathematics_and_Mathematical_Sciences
https://www.researchgate.net/journal/1687-0425_International_Journal_of_Mathematics_and_Mathematical_Sciences

