Magneto-Thermo mechanical vibration analysis of FG nanoplate embedded on Visco Pasternak foundation
Abbas Moradia,*, Amin Yaghootiana, Mehdi Jalalvandb, Afshin Ghanbarzadeha
a Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
b Department of Mathematics and Computer Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

1. Introduction
Functionally graded materials (FGMs) are inhomogeneous composites that can be described as the gradually variation of material microstructure from one material to another material. FGMs have recently attracted much attention due to its merits including improved stress distribution, higher fracture toughness and reduced stress intensity factors, enhanced the thermal resistance. With the development of advance material science and technology, FGMs have been utilized in various engineering fields such as micro/Nano electro mechanical systems, thin films in the form of shape memory, alloys biomedical materials, and atomic force microscopy (AFM), space vehicles, reactor vessels, semiconductor industry and general structural elements in high thermal environments [1-9]. Therefore, considering static and dynamic behavior of functionally graded structures under different actuation is very significant.

As experiments on nanoscale objects are often fraught with uncertainty due to the difficulty of fabricating and manipulating these objects at length scales below \(\approx 10 \) nm [10], size dependent continuum theories have been commonly used to simulate material discontinuities in micro/nano-scales. To predict the responses of nanostructures under different loading conditions, theoretical analysis have been more noteworthy because the experimental methods are encountered in difficulties when the size of physical systems is scaled down into the nanoscale. There are several size-dependent continuum theories such as couple stress...
theory(CST) [11], strain gradient elasticity theory(SGT), modified couple stress theory(MCST) [12] and nonlocal elasticity theory [13-16]. From among these theories, modified strain gradient theory (MSGT) is one of the most practical theoretical techniques for the studying of MEMS/NEMS devices due to their computational efficiency and accuracy compared with to the atomistic model ones. Numerous works have been conducted on the mechanical performance of functionally graded material structures, including buckling and dynamic stability, bending, free vibration. The linear free and forced vibration of FGM circular plates and annular sectorial plates was studied by Nie and Zhong [17] using the DQ method, respectively. The nonlinear vibration of functionally graded beams based on Euler-Bernoulli beam theory and von Kármán geometric nonlinearity was investigated by Ke et al. [18] using the direct numerical integration method and Runge-Kutta method. Xia and Shen [19] considered vibration analysis for compressively loaded and thermally loaded postbuckled FGM plates with piezoelectric fiber reinforced composite (PFRC) actuators based on a third order shear deformation plate theory and the general von Kármán-type equation. The free vibration of edge cracked cantilever microscale FGM beams was investigated by Akbas [20] based on the modified couple stress theory (MCST). The free vibration of nanocomposite beams reinforced by single-walled carbon nanotubes was discussed by Lin and Xiang [21]. The free vibration analysis of radially FGM circular and annular sector thin plates of variable thickness, resting on the Pasternak elastic foundation was studied by Hosseini-Hashemi et al. [22], Shamekhi and Nai [23] investigated the buckling analysis of radially-loaded circular FGM plate with variable thickness based on Love-Kikhoff hypothesis and the mesh-free method. The elastic solutions of an FGM disk with variable thickness subjected to a rotating load was provided by Bayat et al. [24]. The free vibration problem of sandwich FGM shell structures with variable thickness using the DQ method was considered by Tornabene et al. [25]. Wang et al. [26] studied Timoshenko Nano-beams formulations based on the modified strain gradient theory. Ansari et al. [27,28] analyzed the linear and nonlinear vibration characteristics of functionally graded microbeams based on SGT and Timoshenko beam theories. They illustrated that the value of material property gradient index plays a more important role in the vibrational response of the functionally graded microbeams with lower slenderness ratios. Recently, the free vibration response of functionally graded higher-order shear deformable microplates was investigated by Sahmani and Ansari [29] based on strain gradient elasticity theory. Ghasiwy et al studied [30] the nonlinear forced vibrations of a microbeam employing strain gradient elasticity theory.

The buckling of rectangular nanoplate under shear in-plane load and thermal environment was analyzed by Mohammadi et al [31]. They found that the critical shear buckling load of rectangular nanoplate is strongly dependent on the small scale coefficient. Civalek and Akgoz [32] investigated the vibration behavior of micro-scaled sector shaped graphene surrounded by an elastic matrix. Employing the nonlocal elasticity theory to study the vibration of rectangular single layered graphene sheets (SLGSs) resting on an elastic foundation was considered by Murmu and Pradhan [33]. They have employed both Winkler-type and Pasternak-type models for simulate the interaction of the graphene sheets with a surrounding elastic foundation. The results showed that the natural frequencies of SLGSs are strongly dependent on the small scale coefficients. Pradhan and Phadikar [34] analyzed the vibration of multilayered graphene sheets (MLGS) based on nonlocal continuum models. They have shown that the nonlocal effect is quite significant and needs to be included in the continuum model of graphene sheet. Wang et al. [35] studied thermal effects on vibration properties of double-layered nanoplates at small scales. Reddy et al, [36] investigated the equilibrium configuration and continuum elastic properties of finite sized graphene. Aksener and Aydogdu [37] proposed levy type solution for vibration and buckling of nanoplate. In this paper, they considered rectangular nanoplate with isotropic property without effect of elastic medium. Malekzadeh et al. [38] employed the differential quadrature method (DQM) to investigate the thermal buckling of a quadrilateral nanoplates resting on an elastic medium. Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics and two variable refined plate theory was considered by Satish et al. [39]. They represented vibration frequency of rectangular nanoplate just only for simply supported boundary conditions and they didn’t represent vibration frequency for other boundary conditions. Prasanna Kumar et al. [40] studied thermal vibration analysis of monolayer graphene sheet with isotropic property embedded in an elastic medium via nonlocal continuum theory axisymmetric buckling of the circular graphene sheets with the nonlocal von Kármán plate model was represented by Faragpour et al. [41]. Moreover, they studied the buckling behavior of circular nanoplates under uniform radial compression. They showed that nonlocal effects play an important role in the buckling of circular nanoplates and the results predicted by nonlocal theory are in exact match with MD results. The vibration analysis of circular and annular graphene sheet was studied by Mohammadi et al [42] using the nonlocal plate theory. The results revealed that the scale effect is less prominent in lower vibration mode numbers and is highly prominent in higher mode numbers.

The magneto-thermo-mechanical response of a FGM annular rotating disc with variable thickness was investigated by Bayat et al [43]. They observed that unlike the positive radial stresses developed in a mechanically loaded FGM disk, the radial stresses due to magneto-thermal load can be both tensile and compressive. Behravan Rad and Shariyat [44] studied a porous circular FG plate with variable thickness subjected to non-axisymmetric and non-uniform shear along with a normal traction and a magnetic actuation. The plate was supported on a non-uniform Kerr elastic foundation. They considered the effect of material, loading, boundary and elastic foundation on the resulting displacement, stress, Lorentz force, electromagnetic stress and magnetic perturbation quantities. Wang and Dai [45] derived analytical expressions for magneto dynamic stress and perturbation response of an axial magnetic field vector in an orthotropic cylinder under thermal and mechanical shock loads. They showed the response histories of dynamic stresses and the perturbation of the field vector. Nejad MZ, et al [46] investigated the buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory. The size dependent free vibration analysis of nanobeams made of functionally graded materials based on nonlocal elasticity theory with high order theories has been studied by Daneshmehr, Alireza et al [47], Zaragarpour, A., et al [48] presented the free vibration analysis of nanobeams made of functionally graded materials based on nonlocal elasticity theory using finite element method. Nejad, Mohammad Zamani, et al [49] employed the Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams. Hosseini, Mohammad, et al [50] proposed the stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. Nejad, M.Z., et al [51] presented Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams. Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory has been proposed by

It is obvious that the natural frequency is easily affected by the applied in-plane pre-load, magnetic field and temperature change. As a result, one of the practical interesting subjects is to study the effect of in-plane pre-load on the property of transverse vibration of functional graded circular and annular nanoplate. Researches that studied on the FG circular and annular nanoplate are very limited in number with respect to the case of rectangular nanoplate. Based on the available literature, this study tries to investigate the magneto-thermo elastic behavior of the FG circular and annular nanoplate embedded in a Visco-Pasternak elastic foundation based on the MCST. The governing equation of motion is deduced from Hamilton’s principle. The DQM is utilized to solve the governing equations of FG circular and annular nanoplate with simply supported, clamped boundary conditions and the other boundary conditions. The results showed some new and absorbing phenomena, which are useful to design nano-electro-mechanical system and micro electro-mechanical systems devices using FG circular and annular nanoplate.

2. Fundamental Formulations

Consider a radial magnetic field vector \(\vec{H} \) as shown in figure (1). The resulting Lorentz force \(f_z \) and the perturbation of electric field vector \(\vec{e} \) acts along \(z \) and \(\theta \) directions respectively. Now assume an annular circular plate with uniform transverse load \(P_0 \), acting on its top surface (see figure 2) is exposed to this magnetic field. As a result, the total transverse load acting on the plate, along \(z \) direction, would be, \(q_z = P_0 + f_z \). This will induce a displacement field vector \(\vec{u} \) in the plate. Assuming the magnetic permeability \(\mu(z) \) of the plate [46] is equal to the magnetic permeability of its surrounding, ignoring the displacement electric currents, the Maxwell’s electrodynamics equations for the plate may be described as Wang X et al [45].

3. Differential equations for nanoplate

A mono-layered circular and annular nanoplate resting on a Visco-Pasternak medium is shown in Fig.3, in which the geometrical parameters of outer radius, inner radius and thickness are also indicated by \(a, b \) and \(h \) respectively. In the present study, functionally graded materials made of metals and ceramics are studied. The bottom of the plate is assumed to be fully metallic while the top of the plate is fully ceramic. The variation of young’s modulus, Poisson’s ratio and density is assumed to vary by power law. The variations in the material properties are expressed as

\[
E(z) = E_m + (E_c - E_m) \left(\frac{2z + h}{2h} \right)^k,
\]

\[
\alpha(z) = \alpha_m + (\alpha_c - \alpha_m) \left(\frac{2z + h}{2h} \right)^k, \quad \frac{h}{2} \leq z \leq \frac{h}{2},
\]

\[
\nu(z) = \nu_m + (\nu_c - \nu_m) \left(\frac{2z + h}{2h} \right)^k,
\]

\[
\mu(z) = \mu_m + (\mu_c - \mu_m) \left(\frac{2z + h}{2h} \right)^k,
\]
Where, \(E(z) \), \(\alpha(z) \) and \(\nu(z) \) are the Young's module, the thermal expansion and the Poisson's ratio respectively. To study the mechanical behavior of FG annular and circular nanoplate in thermal environment and magnet field, the Kirchhoff plate theory is considered. On the basis of the Kirchhoff plate theory, the displacements at any material point in the plate are given by
\[
\mathbf{u} = -z \frac{\partial w}{\partial r} , \quad \mathbf{v} = 0 , \quad \mathbf{w} = w(r,t) \tag{9}
\]
Where \(w(r,t) \) is the displacement of the middle surface of the nanoplate at the point \((r, \Theta, 0)\).

The size-dependent theories are utilized to predict accurately the mechanical behavior of the engineering structures in the nanoscale. The classical continuum theory is independent on the structure size. Thus, the classical continuum theory has a weakness to analyses of the nanostructures. To overcome this weakness, the classical continuum theory is modified and the modern continuum theories are existed. In this work, the modified couple stress theory is employed to analyze the nonlinear vibration behavior of the circular plate and annular nanoplate. In comparison with the MCST, the MSGT contains two additional gradient tensors of the dilatation and the deviator stretch in addition to the symmetric rotation gradient tensor. Three independent material length scale parameters and two classical material constants for isotropic linear elastic materials are used to specify these tensors. For a continuum constructed by a linear elastic material occupying region \(\Omega \) with infinitesimal deformations, the stored strain energy \(U_m \) can be defined as:
\[
U_m = \frac{1}{2} \int \left(\sigma_{ij} \varepsilon_{ij} + p \gamma_i + \tau_{ijkl} \eta_{ijkl} + m_{ijkl} \chi_{ijkl} \right) \, dv \tag{10}
\]
in which the components of the strain tensor \(\varepsilon_{ij} \), the dilatation gradient tensor \(\gamma_i \), the deviator stretch gradient tensor \(\eta_{ijkl} \), and the symmetric rotation gradient tensor \(\chi_{ijkl} \) are given as \[43]\.

![Functionally graded circular and annular nanoplate embedded on a Visco-Pasternak foundation.](image)

The parameters \(\lambda \) and \(\mu \) denote the Lame constants, respectively which are given as Eq.\ref{11} \[44]\.
\[
\lambda(z) = \frac{E(z)}{(1-\nu(z))^2}, \quad \mu(z) = \frac{E(z)}{2(1+\nu(z))} \tag{11}
\]

By substituting the components of strain tensor, dilatation gradient tensor, deviator stretch gradient tensor, and symmetric rotation gradient tensor, the corresponding components of classical and nonclassical stresses can be evaluated. Therefore, the strain energy \(\Pi_0 \) and kinetic energy are as Eq.\ref{12}.

\[
\Pi_0 = \frac{1}{2} \int \left(-M_{,r,r} - M_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} + Y_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} - \frac{\partial^2 w}{\partial r^2} \right) \, dA
\]

\[
\Pi_1 = \frac{1}{2} \int \left(-M_{,r,r} - M_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} + Y_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} - \frac{\partial^2 w}{\partial r^2} \right) \, dA
\]

\[
W_{ext} = \int q w(r,t) + f(w(r,t)) \, dA
\]

\[
q = q_s + q_d
\]

Where \(A \) denotes the area occupied by the mid-plane of the circular FG nanoplate. Furthermore, \(I_1 \) and \(I_2 \) are represented as the following form.

\[
I_1 = \int_0^{h/2} \rho(z) \, dz, \quad I_2 = \int_{-h/2}^{h/2} \rho(z) \, z^2 \, dz \tag{13}
\]

In Eq. \ref{12}, couple moments, bending moments, other higher-order resultants force and higher-order moments caused by higher-order stresses effective on the section are introduced as \[55\] and supplementary materials.

The work done by external forces can be expressed as Eq.\ref{14}.

\[
\delta W = 0 \quad \text{or} \quad -M_{,r,r} - M_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} + Y_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} - \frac{\partial^2 w}{\partial r^2} = 0
\]

\[
-M_{,r,r} - M_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} + Y_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} - \frac{\partial^2 w}{\partial r^2} = 0
\]

\[
-M_{,r,t} + 2Y_{,r,t} = 0
\]

\[
-M_{,r,r} + 2Y_{,r,t} = 0
\]

\[
-M_{,r,t} + 2Y_{,r,t} = 0
\]

\[
\delta W = 0 \quad \text{or} \quad -M_{,r,r} - M_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} + Y_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} - \frac{\partial^2 w}{\partial r^2} = 0
\]

\[
-M_{,r,r} + 2Y_{,r,t} = 0
\]

\[
-M_{,r,t} + 2Y_{,r,t} = 0
\]

\[
-M_{,r,r} + 2Y_{,r,t} = 0
\]

\[
\delta W = 0 \quad \text{or} \quad -M_{,r,r} - M_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} + Y_{,r,t} \frac{1}{r} \frac{\partial w}{\partial r} - \frac{\partial^2 w}{\partial r^2} = 0
\]

\[
-M_{,r,r} + 2Y_{,r,t} = 0
\]
Where, \(A', B', \) and \(C' \) are represented as [55].

A FG visco-Pasternak elastic foundation. The geometric properties of the nanoplate are demonstrated by outer radius \(a \), inner radius \(b \), thickness \(h \). The following non-dimensional parameters are introduced for convenience and generality.

\[
W = \frac{w}{a}, \quad \xi = \frac{r}{a}, \quad \eta = \frac{r}{b}, \quad \beta = \frac{b}{a}, \quad \psi = \frac{l}{h},
\]

\[
\beta_0 = B_0^2 \frac{l}{C'}, \quad \beta_1 = B_1^2 \frac{l}{C'}, \quad \beta_2 = B_2^2 \frac{l}{C'}, \quad \bar{K}_w = K_w a^4 / C',
\]

\[
\bar{C} = \frac{C_0 a^2 \sqrt{C'}}{C'} \sqrt{D'}, \quad \bar{K}_G = \frac{K_G a^2}{C'}, \quad \bar{P} = \frac{N_0 a^2 C_0}{C'},
\]

\[
P^* = N_0 a^2 / C', \quad \lambda = A'/C', \quad \Omega^2 = D' \frac{\alpha^2 a^4}{C'}, \quad \chi^2 = E'/D'.
\]

Employing the above expressions, a non-dimensional differential equation for vibration of FG circular and annular nanoplate in thermal environment and magnet field can be obtained as Eq.19.

\[
\bar{K}_w W - C_d \frac{\partial^2 W}{\partial \xi^2} - \mu H^2 \frac{\partial}{\partial \eta} \left(\frac{w}{a} + \frac{\partial W}{\partial \eta} \right) = I_1 \frac{\partial^2 W}{\partial \eta^2} - I_2 \frac{\partial^2 W}{\partial \eta \partial r} = 0
\]

(17)

In the above equation, the matrices \([M],[c],[K]\) are the mass, damper and stiffness matrix, respectively. By defining the new freedom vector and general solution of the Eq. 19 as the following form Eq.21

\[
\{Q\} = \left\{ \begin{array}{c} \bar{d} \\ \bar{\dot{d}} \end{array} \right\}, \quad W(r, \tau) = \{Q\} e^{i \tau}
\]

(21)

Using the Eq. (21), we can rewrite the Eq. (20) as

\[
(\eta [A] + [B]) \{Q\} = 0, \quad [A] = \begin{bmatrix} [0] & [M] \\ [I] & [0] \end{bmatrix}, \quad [B] = \begin{bmatrix} [K] & [C] \\ [0] & -[I] \end{bmatrix}
\]

(22)

In the Eq.22, \(\gamma \) is a complex number and the vibration frequency of the FG circular and annular nanoplate is the imaginary part of the \(\gamma \). The elements of the stiffness, mass and damper matrix are given in [55].
4. Solution procedure

4.1. Solution FG circular nanoplate by Galerkin method

The Galerkin method has been widely used for the analysis of mechanical behavior of the structural elements at large and small scales, such as static, dynamic and stability problems [45, 46]. Since this numerical method provides simple formulation and low computational cost. Moreover, it is more general than the Rayleigh–Ritz method because no quadratic functional or virtual work principle is necessary. The Galerkin’s method is used to change the nonlinear partial differential equation to a nonlinear ordinary differential equation. To this end, one can easily obtain

$$\int_{\Omega} \sum_{j=1}^{n} A_j f_j(\xi) f_k(\xi) d\Omega$$

(23)

Where $f_j(\xi)$ \((j=1, 2, ..., n)\) are the basic functions which must satisfy all boundary conditions, but not necessarily satisfy the governing equation. A_j \((j=1, 2, ..., n)\) are unknown coefficients to be determined. The integration extends over the entire domain \(\Omega\). The symbol Q indicates a differential operator and is the right-hand side of Eq. (23). Here, the boundary conditions (BC) are assumed to be clamped at $\xi = 1$. The boundary conditions are written as w and it’s the first derivative are zero at $\xi = 1$. In the Galerkin method, the lateral deflection can be determined by a linear combination of the basic functions for the numerical solutions of the problem under investigation. The basic functions must satisfy all the above-mentioned boundary conditions. The chosen basic function for $W(\xi)$ are

$$f_j(\xi) = \xi^{2(j-1)}(1-\xi^2)^2$$

(24)

Using Eq. (23), Eq. (24) and (22), one can achieve the following system of linear algebraic equations.

$$[B^*] + \eta [A^*] \{Q\} = 0$$

$$A_{k,j}^* = \int_0^1 \xi^{2k-1} (1-\xi^2)^2 G_{p1} d\xi$$

$$G_{p1} = \begin{bmatrix} [0] & c_1 \\ c_2 & [0] \end{bmatrix}$$

$$c_1 = [M] \left(\xi^{2(j-1)} (1-\xi^2)^2 \right)$$

$$c_2 = [I] \left(\xi^{2(j-1)} (1-\xi^2)^2 \right)$$

$$B_{k,j}^* = \int_0^1 \xi^{2k-1} (1-\xi^2)^2 G_{p2} d\xi$$

$$G_{p2} = \begin{bmatrix} [h_1] & [h_2] \\ [0] & [h_3] \end{bmatrix}$$

$$h_1 = [K] \left(\xi^{2(j-1)} (1-\xi^2)^2 \right)$$

$$h_2 = [C] \left(\xi^{2(j-1)} (1-\xi^2)^2 \right)$$

$$h_3 = -[I] \left(\xi^{2(j-1)} (1-\xi^2)^2 \right)$$

(25)

Here M, C and I are differential operators, which are given in [50].

4.2. DQM Solution

In this study, the differential quadrature method (DQM) [55] method is used to calculate the spatial derivatives of field variables in the equilibrium equations. The differential quadrature method (DQM) is a more efficient method, with acceptable accuracy and using less grid points. DQ technique can be applied to deal with complicated problems reasonably well because its implementation is very simple. In this approach, the problem formulation becomes simpler and also low computational efforts are required to obtain acceptable solutions in comparison with other approximate numerical methods such as the finite element method (FEM), the finite difference method, the boundary element method and the mesh less methods. Moreover, DQ method is free of the shear locking phenomenon that occurs in the FEM because of discretizing the strong form of the governing equations and the related boundary conditions. Also, some other advantages and disadvantages of the DQ technique are reported in the review paper of Bert and Malik [56]. DQ approach has been utilized by many researchers for analyzing nanostructure elements, such as elastic buckling of single-layered graphene sheets. According to DQ method, the partial derivatives of a function $f(r)$ as an example, at the point (r_j) are expressed as [56].

$$\frac{d^s f(r)}{dr^s} \mid_{r_0} = \sum_{j=1}^{n} C_{ij} f(r_j), \quad i = 1, 2, ..., n$$

(26)

Here, the number of grid points in the I direction and the respective weighting coefficient related to the sth-order derivative are \bar{h} and \bar{C}_{ij} respectively. According to Shu and Richard rule [46].

How to select the grid points is a key point in the successful application of differential quadrature method. It has been shown that the grid point distributions which is based on well accepted Gauss-Chebyshev-Lobatto points, gives sufficiently accurate results. According to this grid point’s distribution, the grid point distribution in the ζ direction for annular and circular FG nanoplate are given in [56].

$$\zeta_i = \frac{1}{2} \left[1 - \cos \left(\frac{i-1}{n-1} \pi \right) \right], \quad i = 1, 2, ..., n$$

(27)

The non-dimensional computational domain of the nanoplate is $0 \leq \zeta \leq 1$.

By direct substitution boundary conditions into the discrete governing equation, they are incorporated in the analysis [55]. Moreover, the derivatives in the boundary conditions are discretized by the DQ procedure. After implementation of the boundary conditions, M, C and I can be written in the following form Eq.28.
\[[C] = -\bar{C} W_i \]
\[[M] = + \frac{I_2 a^2}{C'} \sum_{j=2}^{n-1} \tilde{C}_{ij}^2 W_j \]
\[[K] = \left\{ \begin{array}{l} 2 \psi_0^2 \kappa + \frac{4 \psi_1^2}{5} \kappa \sum_{j=2}^{n-1} \tilde{C}_{ij}^6 W_j \\ \frac{6 \psi_0^2 \kappa + 12 \psi_1^2 \kappa}{5 \xi} \sum_{j=2}^{n-1} \tilde{C}_{ij}^5 W_j \\ 1 + 2 \beta_2 + 2 \beta_0 \\ + \frac{2 \psi_1^2}{15 \xi^2} \kappa + \frac{8}{15} \beta_i \sum_{j=2}^{n-1} \tilde{C}_{ij}^4 W_j - \tilde{K}_w W_i \\ 2 + 2 \beta_2 + \frac{2}{\xi} \beta_0 + \frac{12 \psi_0^2}{\xi^3} \kappa \\ - \frac{16}{15 \xi} \beta_i + \frac{4 \psi_1^2}{15 \xi^3} \kappa \sum_{j=2}^{n-1} \tilde{C}_{ij}^3 W_j \\ + \frac{1}{\xi^2} + \frac{1}{\xi^2} \beta_2 - \frac{18 \psi_0^2}{\xi^4} \kappa + \frac{2}{\xi^2} \beta_0 \\ + \frac{8}{15 \xi^2} \beta_i + \bar{P} + \bar{P}' + \bar{K}_G \sum_{j=2}^{n-1} \tilde{C}_{ij}^2 W_j \\ - \frac{1}{\xi^3} - \frac{1}{\xi^3} \beta_2 + \frac{18 \psi_0^2}{\xi^4} \kappa - \frac{2}{\xi^3} \beta_0 \\ - \frac{8}{15 \xi^3} \beta_i + \frac{12 \psi_1^2}{15 \xi^4} \kappa + \frac{\bar{P}}{\xi} + \frac{\bar{P}'}{\xi} + \frac{\bar{K}_G}{\xi} \sum_{j=2}^{n-1} \tilde{C}_{ij} W_j \end{array} \right\} \]
\[
\Sigma_s = \sum_{j=2}^{n-1} \tilde{C}_{ij} W_j , \quad \tilde{C}_{ij} = C_{ij} - C_{ij}'C_{ij}/C_{nj}' \\
\text{for } i = 1, 2, ..., n \text{ and } s = 1, 2, ..., 6 \]
\[(\eta [A] + [B]) (Q) = 0 \]
\[\text{where } [A] \text{ and } [B] \text{ are } (n-2) \times (n-2) \text{ square matrices, which are easily extracted. Furthermore, the non-dimensional buckling load } \eta \text{ can be calculated from the eigenvalues of an algebraic equations system. This parameter is a complex number that the imaginary part is the vibration frequency of the FG circular and annular nanoplate.} \]

5. Result and discussions

Magnet-thermo vibration analysis of FG circular and annular nanoplate based on modified couple stress theory and modified strain gradient theory is discussed here according to the formulas obtained above. The effects of the main parameters including the small scale parameters, magnetic field, temperature change and their combinations on the natural frequencies are investigated. Properties of FG circular and annular nanoplate in this paper are considered as follows:

\[E_m = 70 \text{ GPa}, \quad \alpha_m = 23 \times 10^{-6}, \quad \rho_m = 2702 \text{ kg/m}^3 \]
\[\nu_m = 0.3, \quad \mu = 1.256665081E - 6 \left(\frac{H}{m} \right) \]
\[E = 427 \text{ GPa}, \quad \alpha = 7.4 \times 10^{-4}, \quad \rho = 3100 \text{ kg/m}^3 \]

The existing local plate model solutions are applied to verify the accuracy of circular and annular results. Following four boundary conditions have been considered in the vibration analysis of the annular graphene sheets.

SC: Annular graphene sheet with simply supported outer and clamped inner radius.

SS: Annular graphene sheet with simply supported outer and inner radius.

CC: Annular graphene sheet with clamped outer and inner radius.

CS: Annular graphene sheet with clamped outer and simply supported inner radius.

5.1 Validation of the work

In this section, the present work is compared with the reported results in the literature. To this end, in order to compare the numerical results, it is assumed that the nonlocal parameter is set to zero and the model can easily reduce to the classical circular and annular plate model. To confirm the reliability of the present formulation and results, comparison studies are conducted for the natural frequencies of the circular plate by ignoring size dependent parameters. The comparison of the vibration frequency parameters for circular plates is tabulated in table 1. It is observed that the present results are in excellent agreement with the classical results.

The comparison of natural frequency is presented in table 2 for the annular plates. The obtained results for nanoplate in table 2 are in good agreement with those non-dimensional natural frequency values by previous researchers [53, 56].

Although DQ method is a highly efficient method by using a small number of grid point, but it is not efficient when the number of grid points is large and it is also sensitive to grid point distribution. To establish the numerical algorithm as well as convergence of the present results, the non-dimensional natural frequencies of FG circular and annular nanoplate embedded in various elastic medium corresponding to different numbers of grid points are plotted in fig.4. The radius of nanoplate, size dependent parameter, the shear, Winkler and damping coefficients are 20 nm, 0.5 nm, 5, 80 and 5, respectively. According to the Fig.4, it is remarked that the number of grid points is considered as \((N_{\xi} = 41)\).

Since there are no published results available for annular nanoplates in open literature, the results of annular microplate are used for comparison. To obtain these results, the modified couple stress theory is utilized. From this table, one can see that the present results are in good agreement with the reported
Results in the literature. To obtain the natural frequencies of the FG annular plate, the boundary condition of annular microplate are assumed SS and CC. The other material properties of the annular microplate are reported by Ke et al. [57].

5.2 Numerical Results

Numerical analyses for the magneto-thermo-mechanical free vibrational characteristics of FG circular and annular nanoplates with various elastic foundations and boundary conditions are performed using the proposed MCST and NSGT plate model and presented solution methodology. It is intended to study the influences of important parameters such as the non-dimensional nonlocal parameter, temperature change, external magnetic potential and type of edge support on the natural frequency of FG circular and annular nanoplates. Fig. 5 shows the variation of vibration frequency versus compressive in-plane pre-load for FG annular nanoplate. The non-dimensional parameters of elastic foundation such as shear modulus parameter K_G, Winkler modulus parameter K_W and damping modulus of damper C for the surrounding polymer matrix are considered to 5, 80 and 5 respectively as well as the magnetic field parameters are considered based on [58]. The results show that the vibration frequency is sensitive to the modulus of the surrounding elastic medium and decreases by increasing the in-plane pre-load as well as increases by increasing the magnetic field effect. Furthermore, it is shown that the damping modulus gives rise to decrease the vibration frequency. Therefore, the FG nanoplate based on the Pasternak and Visco-Winkler medium have the greatest and the smallest vibration frequency, respectively. Moreover, the Fig. 6 shows the variation of vibration frequency with the aspect ratio for annular by various boundary conditions. The Fig. 7a and Fig. 7b illustrate the first vibration frequencies of the annular and circular FG nanoplate respectively. In this figure, for different temperature changes and magnetic field parameters, the dependency of vibration frequency versus the radius of annular FG nanoplate is observed. To obtain the results, it is supposed that the FG nanoplate resting on a visco-Pasternak medium and the shear elastic, Winkler elastic and external damping coefficient are considered to 5, 80 and 5, respectively. Moreover, the power index of FG material and the size dependent length of FG circular nanoplate are specified to 5, and 0.5h, respectively. By employing the modified strain gradient theory, the vibration frequencies of FG annular nanoplate are extracted. From the Fig. 7 it is obvious that the vibration frequency of FG circular nanoplate is strongly depend on the nanoplate radius and this dependency is more for the larger temperature change. Moreover, diminishing nanoplate radius causes to decrease the effects of temperature change. Also, the temperature changes have a decreasing effect on the vibration frequency of circular nanoplate. In contrast, the Magnetic field has an increasing effect on the vibration frequency of circular and annular nanoplate.
Table 1 Comparison of the present results with natural frequency parameters of classical plate theory \(\Omega = \sqrt{\rho h C} \omega^2 \)

|--------------------|------------------------|------------------------|------------|------------------|---------|

Table 2 Comparison of the present results with classical plate theory for the lowest six natural frequency parameters \(\Omega = \sqrt{\rho h C} \omega^2 \beta = b/a = 0.4 \)

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>Li and Li [61]</th>
<th>Zhou et al [62]</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>63.04</td>
<td>62.996</td>
<td>62.979</td>
</tr>
<tr>
<td>SS</td>
<td>30.09</td>
<td>30.079</td>
<td>30.084</td>
</tr>
<tr>
<td>SC</td>
<td>42.63</td>
<td>42.548</td>
<td>42.569</td>
</tr>
<tr>
<td>CS</td>
<td>46.74</td>
<td>46.735</td>
<td>46.743</td>
</tr>
</tbody>
</table>

According to the figure 7, the natural frequency is strongly depend to the radius of FG nanoplate and this parameter has a decreasing effect on the nanoplate natural frequency. Furthermore, as the vibration frequency becomes zero in a specific radius and temperature change in, there are a critically temperature and radius for FG nanoplate. Therefore, these specific radius and temperature change are called the critically parameters. It is necessary to note that the effect of magnetic field has an increasing effect on nondimensional natural frequency.

Depicted in fig.8a and fig8.b are the influence of nondimensional nonlocal parameter under magnetic field based on [58] and the temperature change of \(\Delta T = 50 \) by considering the modified couple stress and the modified strain gradient theory on the vibration response of FG circular and annular nanoplate with various power index parameter. It can be found that as the size dependent parameter increases, the non-dimensional frequency increases for all values of the power index parameter. The fig.8 show that for all values of power index parameters the difference between MCST and MSGT results increase as the values of size dependent parameter increase. Moreover, the vibration frequency decreases as the power index parameter increases. Furthermore, as can be seen from Fig. 8, the non-dimensional frequency is sensitive to the size dependent parameter for small values of power index parameter and increase by increasing the value of magnetic field.

![Fig. 7. Variation of vibration frequency with the radius of annular (a) and circular (b) FG nanoplate (Clamp-Clamp) under magnet field and various temperature changes.](image1)

![Fig. 8a. Variation of vibration frequency with the size dependent parameters of the FG circular (a) nanoplate for various power index parameter and two different elasticity](image2)
Fig. 8b. Variation of vibration frequency with the size dependent parameters of the FG annular (b) nanoplate for various power index parameter and two different elasticity

Fig. 9a and Fig. 9b highlight the influence of temperature changes on non-dimensional natural frequency with considering different power index, size effect parameters and magnetic field. The aspect ratio of nanoplate is considered 0.4. It is depicted that the non-dimensional frequency increases as the rigidity of the boundary condition for all lengths increases. Such vibration response is observed for other boundary conditions as well. Also, the results illustrate that low power index parameter leads to higher natural frequency of FG annular nanoplate in comparison with high power index parameter. Also, the value of nondimensional natural frequencies annular nanoplate under magnetic field is more than circular nanoplate. Moreover, it is shown that the effect of temperature change on the nondimensional frequency is significant for simply supported annular nanoplate with high power index parameter in comparison with the annular nanoplate with rigidity boundary condition and small power index parameter.

Fig. 9a. Variation of vibration frequency of the FG circular nanoplate for various power index parameter, radius and boundary conditions.

Fig. 9b. Variation of vibration frequency of the FG annular (b) nanoplate for various power index parameter, radius and boundary conditions.

6. Concluding remarks

The magneto-thermo-mechanical free vibration of FG circular and annular nanoplates with different boundary conditions was numerically studied. The FG circular and annular nanoplates were considered to be subjected to an applied magnetic potential and a uniform temperature change. The size-dependent mathematical formulation of FG circular and annular Nanoplate was extracted based on the modified couple stress theory and the modified strain gradient theory based on the Kirchhoff plate theory. The differential quadrature method and Galerkin method were utilized to calculate the natural frequencies of FG nanoplate. A parametric study was conducted to consider the influences of nondimensional nonlocal parameter, magnetic and thermal loadings and boundary conditions on the free vibration characteristics of FG circular and annular nanoplates. The importance of taking the small-scale effect into account was investigated by providing a direct comparison between the results predicted by the present nonlocal FG circular and annular nanoplate model with those by the classical continuum mechanics model. From the results, it was concluded that the nondimensional vibration frequency of FG circular and annular nanoplate is intensely depend on nanoplate radius and this dependency is more at high temperature change and magnetic field. Moreover, the non-dimensional natural frequency decreases at high temperature case. In contrast, the magnetic field has an increasing trend to non-dimensional natural frequency. Also, the effect of temperature change on nondimensional natural frequency is in contrast to low temperature case in comparison to high temperature. Furthermore, it is observed that the effect of power index parameter on the modified strain gradient theory is much more than the modified couple stress theory and also the power index parameter has a decreasing effect on the vibration frequency of FG circular and annular nanoplate. In addition, as the size dependent parameter increases, the differences between the vibration responses of the FG annular and circular nanoplate increase. Finally, changing the state of stress in both tangential and radial directions is caused by applying radial magnetic field to the top surface of the plate, which gives rise to change the natural frequency.
Acknowledgments

This research was supported by Shahid Chamran University, Faculty of mechanical engineering. We thank our colleagues from mechanical engineering of faculty who provided insight and expertise that greatly assisted the research.

References

Supplementary Material

The components of the strain tensor \(\varepsilon_{ij}\), the dilatation gradient tensor \(\gamma_i\), the deviator stretch gradient tensor \(\eta_{ijk}^{(1)}\), and the symmetric rotation gradient tensor \(\chi_{i}^{(s)}\) are given as [55].

\[
\begin{align*}
\chi_{i}^{(s)} &= \frac{1}{2} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right), \\
\gamma_r &= \frac{1}{2} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} - \frac{1}{r^2} \right), \\
\gamma_z &= \frac{1}{2} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right), \\
\eta_{rr}^{(1)} &= \frac{z}{5} \left(\frac{\partial^2 w}{\partial r^2} - \frac{1}{r^2} \frac{\partial w}{\partial r} - \frac{2}{r^3} \right), \\
\eta_{\theta \theta}^{(1)} &= \frac{1}{5} \left(\frac{\partial^2 w}{\partial \theta^2} + \frac{1}{r} \frac{\partial w}{\partial \theta} \right), \\
\eta_{rz}^{(1)} &= \frac{1}{15} \left(\frac{\partial^2 w}{\partial r \partial \theta} + \frac{1}{r} \frac{\partial w}{\partial \theta} \right) \\
\eta_{\theta z}^{(1)} &= \frac{1}{15} \left(\frac{\partial^2 w}{\partial \theta \partial r} + \frac{1}{r} \frac{\partial w}{\partial \theta} \right), \\
\eta_{zz}^{(1)} &= \frac{1}{15} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) \\
\eta_{zz}^{(1)} &= \frac{1}{5} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) \\
\end{align*}
\]