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1. Introduction 
 

1.1 Background 

The conventional strength of materials method of structural 

analysis assumes the structures behave like rigid bodies; and the 

deformation (elasticity) is neglected. The theory of elasticity method 

is an advanced method of structural analysis which accounts for the 

deformations of the structures. The objective of the theory of 

elasticity method, is the determination of stress, strain and 

displacement fields in structures due to applied loads or temperature 

changes. Theory of elasticity method of structural analysis has 

extensive applications in the areas of structural, mechanical, naval, 

marine, aeronautic and spacecraft engineering. The applications 

cover the fields of stress analysis, deformation analysis and the 

determination of internal force fields in the members of structural 

systems due to applied loads and/or temperature changes. 

The solution of elasticity problems in three dimensional (3D) 

space variables entails solving a system of fifteen differential 

equations, made up of three differential equations of equilibrium, six 

strain-displacement relations (kinematic relations) and six equations 

relating stresses and strains [1-10]. The solution is often very tedious. 

Simplifications have been offered by formulations of the governing 

equations using displacement based methods and stress based 

methods. In displacement formulations, the governing equations are 

obtained (expressed) in terms of displacement field components as 

the primary unknown variables by combining the stress equilibrium 

equations, the stress-strain laws and the kinematic relations. The 

governing equations of 3D elasticity in a displacement formulation 

reduce to a system of three partial differential equations in terms of 

three unknown displacement field components, and thus can be more 

easily solved [11-17]. In stress formulation, the governing equations 

are expressed in terms of the six unknown stress components as the 

primary unknowns . The compatibility of strains are used to generate 

additional equations. Stress compatibility equations are obtained 

from the strain compatibility equations by using the stress-strain 

relations. 

 

1.2 Literature review 

A review of literature shows there are two basic methods of 

formulating and solving problems of the theory of elasticity. They 

are the displacement potential function method and the stress 

potential function method. A third method called the mixed or hybrid 

method is not common; but involves a formulation of the problem 
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such that some displacement components and some stress 

components are the primary unknown variables. 

 

1.2.1 Displacement potential functions 

Displacement potential functions which are scalar fields 

(functions) of the space variables have been derived as solutions to 

the displacement equations of elasticity theory by Boussinesq, Green 

and Zerna [18]. The displacement functions have no obvious 

physical meaning other than their use in defining displacement 

components in terms of their derivatives [1]. 

 

Nwoji et al [16] used the Green and Zerna displacement potential 

function method to determine the stress, strain and displacement 

fields in an elastic half-space due to a point load at the origin. They 

obtained solutions which were identical to the solutions obtained by 

Boussinesq who used Boussinesq’s potentials to solve the problem. 

 

1.2.2 Stress potential functions 

Stress potential functions are scalar fields (functions) of the 

space variables that are solutions of the stress formulation of 

elasticity problems, from which the stresses could be derived [1]. 

Airy [19] presented the first stress function solution of the 

differential equations of equilibrium for two dimensional elasticity 

problems. Airy’s stress function is a single harmonic function of the 

two dimensional (2D) Cartesian coordinate variables for the problem 

from which equilibrating stress fields could be derived. Three 

dimensional generalizations of the stress functions of 3D elasticity 

were studied by Maxwell [20], Morera [21] and Beltrami [22]. 

Onah et al [23] used the Fourier transform method in an Airy’s 

stress based formulation to determine the Cartesian stress field 

components for an elastic half plane problem in the xz coordinate 

plane due to infinitely long line load and uniformly distributed strip 

load on the surface. 

 

Ike [24] used the exponential Fourier transform method, in an 

Airy’s stress function formulation to find stress fields in elastic half-

plane due to load acting on the boundary. 

 

Ike [12] used an axisymmetric stress function to solve the 

Boussinesq problem in the theory of elasticity applied to 

geotechnical problems. 

 

1.3 Research aim and objectives 

The general aim of this study is to present the Maxwell stress 

functions for solving three dimensional elasticity problems. The 

specific objectives are: 

(i) to derive the Maxwell’s stress functions from fundamental 

principles and show that they identically satisfy the differential 

equations of equilibrium when body forces are disregarded. 

(ii) to prove that the Maxwell’s stress functions satisfy the six 

Beltrami-Michell stress compatibility equations only if the 

functions are harmonic functions. 

(iii) to establish the relationship between the Maxwell stress 

potential functions of 3D elasticity and the Airy’s stress 

potential functions of 2D elasticity, and hence prove that the 

Airy’s stress functions are special cases of the Maxwell stress 

functions. 

(iv) to present some illustrative applications of the use of the 2D 

specializations of the Maxwell stress functions in the 

determination of stress fields in cantilever beams under point 

load at the free end and simply supported beam under uniformly 

distributed load. 

 

2. Theoretical framework 

Beltrami-Michell compatibility equations in terms of stress are: 
2
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where , ,xx yy zz    are nomal stresses, , ,xy xz yz    are shear 

stresses;   is the Poisson’s ratio, and Fx, Fy, and Fz are components 

of body forces in the x, y, and z Cartesian coordinate directions. 

When body forces are disregarded, Fx = Fy = Fz = 0, the Beltrami-

Michell compatibility equations are expressed in terms of stress by 

the following six scalar equations: 
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2  is the Laplacian. 
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Differential equations of equilibrium 

The differential equations of equilibrium for static cases are 

given by: 
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when body forces are disregarded, the differential equations are 

simplified as follows: 
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3. Methodology 

Stress formulation of problems of the theory of elasticity is 

suitable for use with elasticity problems given with traction boundary 

conditions. Once the stresses have been determined by solving the 

system of governing equations of the elasticity problem presented in 

terms of stresses, the corresponding strains can be found from the 

stress-strain laws (generalized Hooke’s law); and the displacement 

fields obtained from the strains using the strain-displacement 

equations. The system of governing differential equations presented 

in the stress formulation of elasticity problems is very complicated 

and complex; and solutions by integration of the equations are often 

impossible. Mathematically closed form solutions to the governing 

equations of elasticity presented in term of stress have been obtained 

by defining stress functions. 

Six stress functions 11( , , ),x y z  22( , , ),x y z  33( , , ),x y z  

12( , , ),x y z  23( , , ),x y z  31( , , )x y z where ( , , )ij x y z  and 

ij ji    that satisfy the differential equations of equilibrium and 

the Beltrami-Michell stress compatibility equations are given by 

Equations (20) – (25) as follows: 
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4.0 Results 

 

4.1 First principles derivation of Maxwell’s stress functions 

11( , , ),x y z  22( , , ),x y z  33( , , ),x y z  

 

Let the shear stress fields yz, zx and xy be derivable from the 

three Maxwell’s stress functions 11( , , ),x y z  22( , , ),x y z  

33( , , )x y z as follows: 
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Then for the Maxwell stress functions 11 22 33, ,    to satisfy the 

differential equations of equilibrium in the absence of body forces, 

the normal stresses xx, yy, zz can be found. Thus, by substitution 

of Equations (26 – 28) into the differential equations of equilibrium, 

Equations (17 – 19), we obtain: 
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Simplifying Equation (29) becomes: 
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Further simplification yields: 
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Using linearity properties of the partial differential operator, we 

obtain: 
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Integration of Equation (32) with respect to x yields: 
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By integration, Equation (33) is simplified to obtain: 
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Similarly, substitution of Equations (26) and (28) into Equation (18) 
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Use of linearity property of the partial differential operator gives: 
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Integrating with respect to y, we have: 
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By integration, Equation (39) becomes: 
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Further simplification of Equation (42) yields: 
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Use of the linearity property of the partial differential operator gives: 
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Integrating with respect to z, yields: 
2 2

22 11
2 2zz dz

z x y

    
   

   
               (45) 

By integration, Equation (45) becomes: 
2 2

22 11
2 2zz

x y

   
  

 
               (46) 

When the stress functions 12 23 31 0,       in Equations 

(20-25), we obtain the Maxwell’s stress functions 11( , , ),x y z  

22( , , ),x y z  33( , , )x y z  defined in terms of the stress fields by 

Equations (26-28), or alternatively, by Equations (34), (40) and (46). 

 

4.2 Proof that Maxwell’s stress functions are equilibrating 

stresses 

We prove that the Maxwell’s stress functions, defined in 

Equations (26) – (28), or alternatively as Equations (34), (40) and 

(46) identically satisfy the differential equations of equilibrium when 

body forces are disregarded. By integration of Equations (26) – (28), 

we obtain: 
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4.3 Proof that Beltrami-Michell’s stress compatibility equations 

are satisfied by Maxwell’s stress functions if the stress 

functions are harmonic (potential) functions 

 

By substitution of the Maxwell’s stress functions – Equations 

(34), (40) and (46) – into the Beltrami-Michell stress compatibility 

equations – Equations (7 – 13) – for the case where body forces are 

disregarded, we have: 
2 22 22

2 33 3322 22
2 2 2 2 2

1( )
z y x z y

        
       

      
  

 

2 2 2 2
33 11 11 22
2 2 2 2

0
x z y x

       
    

    
             (59) 

Simplifying, 
2 22 22

2 33 3322 22
2 2 2 2 2

1( )
y z x z y

        
       

      
  

 

2 2 2 2
33 11 11 22
2 2 2 2

0
x z y x

       
    

    
             (60) 

Simplifying, 
2 2 2 22

2 33 22 11 11
2 2 2 2 2

1( )
y z x y z

         
       

     
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2 22 2
33 3322 22

2 2 2 2
0

x z x y

      
    

    
             (61) 

Simplifying, 
2 2 2 2 2 22

2 33 22 11 11 11 22
2 2 2 2 2 2 2

1( )
y z x x y z x

             
         

       

  

2 2 22 2
33 33 3322 22

2 2 2 2 2y z x y z

        
    

    
 

22 2
3311 22

2 2 2
0

x y z

    
   

   
               (62) 

Simplifying, 


2 2 2

2 2 2 233 22
11 22 332 2 2

1( )
y z x

     
           

   
  

22 2
3311 22

2 2 2
0

x y z

    
   

   
               (63) 

Simplifying, 


2 2 2

2 233 22
11 22 332 2 2

1( ) ( )
y z x

     
           

   
  

22 2
3311 22

2 2 2
0

x y z

     
    

   
               (64) 

Simplifying, 


2 2 2

2 2 2
33 22 11 22 332 2 2

1( ) ( )
y z x

   
              

   
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (65) 

This Equation (65) is satisfied only if: 
2

11 0                                 (66) 

2
22 0                   (67) 

2
33 0                   (68) 

Similarly, Equation (8), upon substitution of the Maxwell stress 

functions becomes: 


22 2

2 23311
11 22 332 2 2

1( ) ( )
z x y

    
           

   
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (69) 

Equation (9), after substitution of the Maxwell stress functions 

becomes: 


2 2 2

2 222 11
11 22 332 2 2

1( ) ( )
x y z

     
           

   
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (70) 

So, the equations are satisfied if: 
2 22 2 2 22 2

33 3311 22 11 22
2 2 2 2 2 2 2 2x x y z y x y z

              
       

          

 

22 22
3311 22

2 2 2 2
0

z x y z

     
    
    

            (71) 

Expanding, 
4 44 4 4 4

33 3311 22 11 22
4 2 2 2 2 2 2 4 2 2x x y x z y x y y z

          
    

         

 

44 4
3311 22

2 2 2 2 4
0

z x z y z

    
   
    

             (72) 

From Equation (72), we obtain Equations (73) – (75) as follows: 
2 2 22

11 11 11
2 2 2 2

0
x x y z

      
   

    
              (73) 

 
2

2
222

0
y


  


                (74) 

 
2

2
332

0
z


  


                (75) 

Equation (10) is expressed in terms of the Maxwell stress 

functions as: 


2 2

2 233
11 22 331( ) ( )

x y x y

   
           

    
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (76) 

Simplifying, 
2

2 2
33 11 22 331( ) ( )

x y

 
           

  
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (77) 

Alternatively, 
2

2 2
33 11 22 331( ) ( )

x y

 
         

  
  

    

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (78) 

Equation (11) is given in terms of the Maxwell stress functions as: 


2 2

2 211
11 22 331( ) ( )

y z y z

   
           

    
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (79) 

Simplifying, 
2

2 2
11 11 22 331( ) ( )

y z

 
           

  
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (80) 

or 
2

2 2
11 11 22 331( ) ( )

y z

 
         

  
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22 2
3311 22

2 2 2
0

x y z

     
    

   
              (81) 

Equation (12) is given in terms of the Maxwell stress functions 

as: 


2 2

2 222
11 22 331( ) ( )

z x z x

   
           

    
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (82) 

Simplifying, 
2

2 2
22 11 22 331( ) ( )

z x

 
          

  
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
              (83) 

or 
2

2 2
22 11 22 331( ) ( )

z x

 
         

  
  

 

22 2
3311 22

2 2 2
0

x y z

     
    

   
                            (84) 

The conditions for the Beltrami-Michell stress compatibility 

equations to be satisfied is that the Maxwell stress functions are 

harmonic. 
 

4.4 Airy’s stress functions as a special case of Maxwell’s stress 

functions 
 

Let the Maxwell’s stress functions, 11 220 0, ,     and 

33( , )x y  where 33  does not depend on the z Cartesian coordinate 

variable, then the Maxwell’s stress functions Equations (26-31) 

reduce to: 
2

332
( , )xx x y

y


  


                (85) 

2

332
( , )yy x y

x


  


                (86) 

0zz                    (87) 

0yz                    (88) 

0zx                    (89) 

2
33

xy
x y

 
  

 
                 (90) 

The resulting stress function 33( , )x y  is identified as the Airy’s 

stress potential function in the two dimensional (plane) elasticity 

problem. We thus observe that the Airy’s stress harmonic functions 

are particular (special) cases of Maxwell’s stress functions when 

11 22 0,     and 33( , )x y  for Airy’s stress functions of 2D 

elasticity problems on the x, y Cartesian coordinate plane. 
 

4.5 Applications of the 2D Maxwell’s stress potential functions 

in solving 2D elasticity problems (Airy’s stress potential 

functions) 
 

4.5.1 Stress analysis for a cantilever beam having a rectangular 

cross-section of unit width and depth 2h subject to a point 

load Q at the free end 

 

 
Figure 4.5.1: Cantilever beam of rectangular cross-section (b  2h) 

subject to a point load Q at the free end 

The origin of coordinates is chosen as shown in Figure 4.5.1. The 

boundary conditions are: 

(i) 0( )xy xy h                   (91) 

(ii) The resultant shear force at a section is Q or 

0

h

xy

h

dy Q



                    (92) 

or, 
h

xy

h

dy Q



                    (93) 

(iii) 0( , )yy x y   for all x              (94) 

(iv) xy will not vary with x. 

 

The problem is solved by finding a suitable 2D Maxwell stress 

potential function (Airy’s stress potential function) ( , )x y  that 

satisfies all the boundary conditions. 

A suitable biharmonic stress potential function is chosen in 

polynomial form as: 
3

1 2( , )x y c xy c xy                   (95) 

where c1 and c2 are constants to be determined. 

Then, the stresses are found as: 
2 2

3
1 2 22 2

6( )xx c xy c xy c xy
y y

  
    

 
              (96) 

2 2
3

1 22 2
0( )yy c xy c xy

x x

  
    

 
              (97) 

2 2
3 2

1 2 1 23( ) ( )xy c xy c xy c c y
x y x y

  
     

   
            (98) 

Using the boundary condition Equation (91) in Equation (98), we 

obtain: 
2

1 23 0( )c c h                   (99) 

1
2 23

c
c

h

 
  

 
               (100) 

Hence, the stress function is expressed in terms of one unknown 

constant as: 
3

31
1 12 23 3

( , )
c xy

x y c xy xy c xy
h h

 
     

 
            (101) 

xy then becomes 
2

21
1 12 2

3 1
3

xy

c y
c y c

h h

    
          

     
            (102) 

Using the boundary condition Equation (93), we obtain: 

2

1 2
1

h

h

y
c dy Q

h


 
   

                (103) 
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3
1

12 3

h

h

c y
c y Q

h 

 
   

 
              (104) 

1

4

3

h
c Q
 
   
 

               (105) 

1

3

4

Q
c

h
                (106) 

Hence, we obtain the stress function as: 

3

3

3 3

4 12
( , )

Q Q
x y xy xy

h h
                (107) 

The stress field components become: 
2

2 3

3

2
( , )xx

Qxy Qxy
x y

Iy h

   
   


                           (108) 

  
My

I
               (109) 

where  
3 32 2

3 3

bh h
I                                (110) 

2 2 3

2 2 3

3 3
0

4 12
( , ) ( , )yy

Qxy Qxy
x y x y

hx x h

   
     

  
          (111) 

2 2 3

3

3 3

4 12

( , )
( , )xy

x y Qxy Qxy
x y

x y x y h h

   
    

    
  

  

2

2

3
1

4

Q y

h h

 
  

 
             (112) 

2 2
2 2

2 3

3 3

4 4
( , ) ( )xy

Q h y Q
x y h y

h h h

   
    

 
 

2 2

2
( )xy

Q
h y

I


                 (113) 

 

4.5.2 Stress analysis for a simply supported beam with a 

rectangular cross-section subject to a uniformly distributed 

load of intensity q(kN/m2) 

 

 

 
 

Figure 4.5.2: Simply supported beam with a  rectangular cross-

section subject to a uniformly distributed load of intensity q(kN/m2) 

 

A simply supported beam as shown in Figure 4.5.2, of span 2l 

with a rectangular cross-section of unit width end depth 2h carrying 

a uniformly distributed load of intensity q kN/m2 is considered. The 

origin of coordinates is chosen at the centre of the beam as shown in 

Figure 4.5.2. The boundary conditions are as follows: 

The loading conditions at the lower and upper edges of the beam 

are: 

0( , )xy x y h                  (114) 

0( , )yy x y h                 (115) 

( , )yy x y h q                   (116) 

at the ends, ,x l    

( , ) ,

h

xy

h

x l y dy q l



                 (117) 

0( , )

h

xx

h

x l y dy



                 (118) 

0( ) ( , )

h

xx xx

h

M x l x l y ydy



                   (119) 

A suitable biharmonic stress function can be considered in 

polynomial form as follows: 
2

2 3 2 3 532 4 4
1
2 2 6 6 30

( , )
aa a ax

x y a x y y x y y                (120) 

where a1, a2, a3 and a4 are the four unknown constants of the stress 

function which are found using the boundary conditions. 

 

The stresses are found from ( , )x y  as follows: 

2
2 3

3 42

2

3
( , )xx x y a y a x y y

y

   
     

 
            (121) 

2
34

1 22 3
( , )yy

a
x y a a y y

x

 
    


             (122) 

2
2

2 4xy a x a xy
x y

 
    

 
             (123) 

Using the boundary conditions, we obtain: using Equation (114), 
2

2 4 0( , )xy x y h a x a xh                    (124) 

Solving, we have: 
2

2 4 0a a h                 (125) 

3
4

1 2 0
3

( , )yy

a h
x y h a a h                   (126) 

3
4

1 2
3

( , )yy

a h
x y h a a h q           

 (127) 

From Equations (126) and (127) we obtain: 

12a q                 (128) 

1
2

q
a                  (129) 

Then, Equations (126) and (127) become: 
3

4
2 1

3 2

a h q
a h a                  (130) 

3
4

2 1
3 2 2

a h q q
a h q a q


                     (131) 

From Equation (125) 
2

2 4a a h                 (132) 

Then from Equation (130), we have: 

2 34
4

3 2

a q
a h h h                 (133) 
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3 3
3 4 4

4

2

3 3 2

a h a h q
a h


                 (134) 

4 3 3

3 3

2 2 4( )

q q
a

h h

 
               (135) 

2
2 4

3

4

q
a a h

h
                 (136) 

Then the stresses become: 

3

3

3

2 4 4
( , )yy

q q q
x y y y

h h


                               (137) 

2

3

3 3

4 4
( , )xy

q q
x y x xy

h h


                (138) 

2 3
3 3

3 2

34
( , )xx

q
x y a y x y y

h

 
    

 
            (139) 

Substitution of Equation (139) into the boundary condition Equation 

(119) yields: 

( , )

h

xx

h

x l y y dy



     2 3
3 4

2
0

3

h

h

a y a l y y y dy



  
    

     (140) 

2 2 2 4
3 4

2
0

3

h

h

a y a l y y dy



 
   

               (141) 

3 2 3 5
3

4

2
0

3 3 3 5

h

h

a y l y y
a



  
    

  
             (142) 

3 32 3 5 2 3 5
3 3

4 4

2 2
0

3 3 15 3 3 15

a h a hl h h l h h
a a

      
          

     
     (143) 

3 32 3 5 2 3 5
3 3

4 4

2 2
0

3 3 15 3 3 15

a h a hl h h l h h
a a
   

        
   

         (144) 

3 2 3 5
3

4

2 2
2 0

3 3 15

a h l h h
a
 

   
 

             (145) 

2 3 5

3 4 3

2 3
2

3 15 2

l h h
a a

h

 
    

 
             (146) 

2 3 5 2
2

3 4 3 3

2 3 3 2

3 15 54

l h h q h
a a l

h h

   
       

   
 

2

3 2

3 2

4 5

q l
a

h h

 
  

 
               (147) 

Hence, 
2

2 3

2 3

3 2 3 2

4 5 34
( , )xx

q l q
x y y x y y

h h h

   
      

  
  

               
2 2 3

3 3 3

3 3 3

104 4 2

q q q q
l y y x y y

hh h h
               (148) 

3 2
2 2

2 3 5
( , ) ( )xx

q q y h
x y l x y y

I I

 
     

 
           (149) 

where  

32

3
I h                (150) 

 

5 Discussion 

In this study, Maxwell’s stress functions have been derived from 

first principles, such that they satisfy all the differential equations of 

equilibrium when body forces are ignored, and such that the stress 

fields could be derived from them. It is observed that the Maxwell 

stress functions are special cases of Beltrami stress functions when 

12 23 31 0( , , ) ( , , ) ( , , ) .x y z x y z x y z     It was also proved that by 

integration of Equations (26) – (28) and (34), (40) and (46), that the 

Maxwell stress functions all satisfy the differential equations of 

equilibrium when body forces are disregarded. Finally it is proved 

that the conditions for the Maxwell stress functions to satisfy the 

stress compatibility equations are that all the Maxwell stress 

functions are harmonic functions. It is further shown that the 

Maxwell stress functions reduce to the Airy stress potential functions 

when the problem reduces to two dimensions. 

 

6 Conclusions 

The following conclusions are drawn: 

(i) Maxwell’s stress functions satisfy all the differential equations 

of equilibrium in three dimensions in the absence of body force 

components. 

(ii) The normal and shear stress fields are derivable from the three 

Maxwell’s stress functions. 

(iii) The Maxwell stress functions satisfy the Beltrami-Michell 

stress compatibility equations if they are harmonic (potential) 

functions. 

(iv) The Maxwell stress functions are particular cases of the 

Beltrami-Michell stress potential functions. 

(v) The Maxwell stress functions simplify to the Airy stress 

function when the elasticity problem reduces from a 3D problem 

to a 2D problem 

(vi) The Airy stress potential function is thus a special case of the 

Maxwell stress potential function for applications to 2D 

problems of the theory of elasticity. 

 

 

 

 

Nomenclature 

xx, yy, zz normal stress field components 

xy, yz, xz shear stress field components 

Fx, Fy, Fz body force components in the x, y, and z  

 Cartesian coordinate directions 

   Poisson’s ratio 

11, 12, 13, 22, 23, 31, 32, 33 Beltrami-Michell stress functions 

11, 22, 33 Maxwell stress functions 

2h   depth of beam considered in the work 

Q point load acting at the free end of a cantilever beam 

x, y, z  Cartesian coordinates 

b   width of a beam’s cross-section 

c1, c2  constants of integration or  

a1, a2, a3, a4 unknown parameters of the stress function 

I   moment of inertia 

q intensity of uniformly distributed load on a simply 

supported beam 

2l span of simply supported beam considered in the study 

2D two dimensional 

3D three dimensional 

2 Laplacian 
2 2 2

2

2 2 2x y z

  
   

  
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x




  partial differential operator, partial derivative with respect to x 

 integral operator, integration sign 

 double integral 
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