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1. Introduction 

The dynamical interaction between the thermal and 

mechanical has great practical applications in modern 

aeronautics, astronatics, nuclear reactors, and high-energy 

particle accelerators. Classical elasticity is not adequate to 

model the behavior of materials possessing internal structure. 

Furthermore, the micropolar elastic model is more realistic 

than the purely elastic theory for studying the response of 

materials to external stimuli. Eringen and Suhubi [1, 2] 

developed a nonlinear theory of micro-elastic solids. Later 

Eringen [3-5] developed a theory for the special class of 

micro-elastic materials and called it the "linear theory of 

micropolar elasticity". Under this theory, solids can undergo 

macro-deformations and micro-rotations.  

     The concept of micro-temperatures was derived by 

assuming the fact that in a thermoelastic body there exit 

microelements which have distinct temperatures and which 

further depends homogeneously on microcoordinates of these 

microelements, that are based on the concept of the 

microstructure of the continuum. This micro-temperatures 

theory is widely used in nano materials which are of great 

importance in the current research area. Many researchers 

have contributed to the problems on micro-temperatures in the 

past. Grot [6] investigated thermodynamics theory of elastic 

solids with microstructure whose microelements exhibit 

micro-temperatures and obtained the heat conduction equation 

for micro-temperatures. In this theory, the inverse of the 

temperature of microelements is assumed as a linear function 

of microcoordinates of the microelements. Riha [7] 

investigated the heat transportation in materials possessing 

micro-temperatures and the constitutive coefficients are then 

specified as a function of the volume concentration of inner 

structure and thermal characteristics of the materials. Iesan 

and Quintanilla [8] studied a theory of thermoelasticity with 

micro-temperatures. Iesan [9] proposed the theory of 

micromorphic elastic solids with micro-temperatures. Ezzat 

et. al. [10]  discussed the dependence of modulus of elasticity 

on the reference temperature in generalized thermoelasticty. 

Exponential stability in thermoelasticity with micro-

temperatures was studied by Casas and Quintanilla [11]. 

Scalia and Svandze [12] gave the solutions of the theory of 

thermoelasticity with micro-temperatures. Iesan [13] 

discussed thermoelasticity of bodies with microstructure and 

micro-temperatures. Aouadi [14] discussed some theorems in 

the isotropic theory of micro-stretch thermoelasticity with 

micro-temperatures. Iesan and Quintanilla [15] discussed 

thermoelastic bodies with inner structure and micro-

temperatures. Scalia et al. [16] studied basic theorems in the 

equilibrium theory of thermoelasticity with micro-

temperatures. Quintanilla [17] discussed the growth and 

continuos dependence in thermoelasticity with micro-

temperatures. Steeb et al. [18] studied time harmonic waves in 

thermoelastic material with micro-temperatures. Chirita et. al. 

[19] studied the theory of thermoelasticity with micro-

temperatures. Kumar et. al. [20] studied the Reflection and 

refraction of plane waves at the interface of an elastic solid 

and micro-stretch thermoelastic solid with micro-

temperatures. 

       The thermal and mechanical properties of the materials 

vary with temperature, so the temperature dependent of the 

material properties must be taken into consideration in the 
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thermal stress analysis. When the temperature variation from 

the initial stress is not strongly varying, the properties of 

materials remain unchanged. In the refractory industries, the 

structural components are exposed to a high temperature 

change. In that case, the materials characteristics such as 

modulus of elasticity, thermal conductivity and the coefficient 

of linear thermal expansion are no longer constants. In the 

industries involving very high temperature, we cannot neglect 

the effect of temperature on the physical quantities. The effect 

of temperature on the parameters, hence become an important 

part of study in many practical applications. Noda [21] 

studied he thermal stress in a material with temperature-

dependence properties. Youssef [22] discussed the 

dependence of the modulus of elasticity and the thermal 

conductivity on a reference temperature in the generalized 

thermoelasticity for an infinite material with a spherical 

cavity. Othman et al. [23] studied the two-dimensional 

problem of generalized magneto thermoelasticity with 

temperature dependent elastic moduli for different theories. 

The effect of gravity on elastic surface waves is discussed by 

Biot [24]. Kumar and Devi [25] studied thermomechanical 

interactions in porous generalized thermoelastic material 

permeated with heat source. Lotfy [26] have studied the 

transient disturbance in a half-space under generalized 

magneto-thermoelasticity with a stable internal heat source. 

Lotfy [27] discussed the transient thermo-elastic disturbances 

in a visco-elastic semi-space due to moving internal heat 

source. Othman [28] studied the generalized thermoelastic 

problem with temperature-dependent elastic moduli and 

internal heat sources. Kumar and Devi [29] discussed 

deformation in porous thermoelastic material with 

temperature dependent properties. Ailawalia and Budhiraja 

[30] studied the Internal heat source in temperature rate 

dependent thermoelasticity using dual-phase lag model. 

Othman [31] discussed the effect of gravitational field and 

temperature dependent properties on two-temperature 

thermoelastic medium with voids under G-N Theory. Kumar 

et. al. [32] investigated a problem in a micro-stretch 

thermoelastic solid which have micro-temperatures. Ailawalia 

et. al. [33] investigated the two dimensional deformation in 

micro-stretch thermoelastic half space with micro-

temperatures and internal heat source. Ailawalia et. al. [34] 

investigated a two dimensional problem in a rotating micro-

stretch thermoelastic solid with micro-temperatures. 

Most of the earlier investigations were performed on the 

pretext of temperature-independent material properties, which 

restrict the applicability of the solution obtained in the certain 

ranges of temperature. In case of high temperature, the 

characteristics such as modulus of elasticity, thermal 

conductivity and the coefficient of linear thermal expansion 

are no longer constants. Various authors have discussed the 

problems in thermoelastic medium with micro-temperatures, 

but not many problems have been discussed in thermoelastic 

medium with micro-temperatures based on the temperature 

dependence. The study of temperature dependence on the 

deformation of body led to the study of the present problem.  

2. Formulation Of  Problem 

The constitutive equation of motion for a homogeneous, 

isotropic thermoelastic solid with micro-temperatures without 

body forces, body couples, heat sources, and first heat source 

moment following Iesan and Quintanilla [8] are,   

, , ,( ) ( ) ,i jj i ij ijr r i iK u u K T u             (1) 

, 12 ,i jj ijr r i ijr r iK u K w J           (2) 

* *

, 0 , 1 , 1,ii i i i iK T c T T u k w Q      (3) 

6 , 4 5 , 1 2 3 ,( ) 0,i jj i ij ijr r i i ik w k k w bw k w k T          (4) 

The constitutive relations are, 

, , , ,( ) ( ) ,ij r r ij i j j i j i ijr r ijt u u u K u T             (5) 

, , , ,ij r r ij i j j im        (6) 

4 , 5 , 6 , , , , 1,2,3ij r r ij i j j iq k w k w k w i j m      (7) 

where = (3 2 ) tK     and = (3 2 ) t    ,
t is 

coefficents of linear thermal expansion,   and   are Lame’s 

constants, , , ,K     are the micropolar constants of the 

solid, 
1 1 2 3 4 5 6, , , , , ,k k k k k k  are the constitutive coefficients. 

ijt  is the component of stress tensor, ijm is the couple stress 

tensor,  ijq
 
is the first heat flux moment tensor, ( )iu u  is 

the displacement vector, ( )i   is the micro-rotation vector, 

( )iw w  is the micro-temperature vector,  is the density, 

J  is the micro-inertia, *c  is the specific heat at constant 

strain, 1Q  is the internal heat source, *K is the thermal 

conductivity and T  is the thermodynamic temperature above 

reference temperature 
0T . 

Within the context of linear theory, the C-D inequality 

provides the following                                               

restrictions on the elastic moduli are given by Grot [6], 

4 5 63 0,k k k   6 5 0,k k  2 0,k 
* 0,K 

 
2 *

1 0 3 0 24 .k T k T K k 
 

We also assume that all functions are continuous and 

differentiable upto required order in the domain of definition.
 

           We have restricted our analysis to the plane strain 

parallel to xz -plane having origin on the surface 0z   and 

z- axis pointing vertically downward into the thermoelastic 

medium with micro-temperatures. We consider a normal 

force of magnitude F1 acting at the free surface of 

thermoelastic medium with micro-temperatures occupying the 

region 0 z   as shown in figure-1. 

We have restricted our analysis to the plane strain parallel to 

xz plane with displacement vector 
1 3= ( ,0, ),u u u

 
micro-

temperature vector 
1 3= ( ,0, ),w w w and micro-rotation vector 

2= (0, ,0).i 
 

 

Figure 1. Geometry of the problem 
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Our aim is to investigate the effect of dependence of reference 

temperature on all elastic and thermal parameters. Therefore 

we may assume [10], 
*

0 0= (1 ),T   *

0 0= (1 ),T   *

0 0= (1 ),K K T
*

0 0= (1 ),T   *

0 0= (1 ),T   *

0 0= (1 ),T  
*

0 0= (1 ),T   * * *

0 0= (1 ),K K T * * *

0 0= (1 ),c c T
*

0 0= (1 ),J J T *

0 0= (1 ),b b T *

1 10 0= (1 ),T  
*

1 10 0= (1 ),k k T  

*

2 20 0= (1 ),k k T *

3 30 0= (1 ),k k T *

4 40 0= (1 ),k k T
*

5 50 0= (1 ),k k T *

6 60 0= (1 ).k k T
 

 

where 
0 , 0 , 0 ,K 0 , 0 , 0 , 0 , *

0 ,K *

0 ,c
0 ,J 0 ,b 10 ,  

10 ,k  

20 ,k 30 ,k 40 ,k 50k and 
60k  are considered constants, *  is 

called empirical material constant, in case of the system 

independent of reference temperature, * 0  . 

For convenience and to simplify the numerical calculations, 

the following non-dimensional variables are used:  

' 1
=x x

L
, ' 1

=z z
L

, '

1 1

1
=u u

L
, '

3 3

1
=u u

L
, 

'

1 1=w Lw , '

3 3=w Lw , ' 1=
c

t t
L

,
'

0

=
ij

ij

t
t

T
, '

2 2=  ,  

'

0

=
ij

ij

m
m

L T
,

'

1 0

=
ij

ij

q
q

Lc T
 , '

0

=
T

T
T

 

,

 

' 1

1

0

= ,
F

F
T

' 1

1

0

= .
Q

Q
Q

 

where  
1

2
0

*

0 0

=
b

L
c T

 
 
 

, 
2 0 0 0

1

2
= .

K
c

 



 

 
We assume the scalar potential functions 

1( , , )x z t ,
2 ( , , )x z t ,

3 ( , , )x z t and 
4 ( , , )x z t defined by 

the relation in non dimensional form as, 

 

1 2

1 = ;u
x z

  


 

1 2

3 = ;u
z x

  


 
 

3 4

1 = ;w
x z

  


 

3 4

3 = .w
z x

  


 
 

(8) 

Using above non dimensional variables and scalar potentials 

given by equation (8), the equations (1)-(4) reduces to (after 

dropping superscripts), 

 
2

2

1 2 1 32
1 0,A A A T

t


 
     

 
 (9) 

2
2

2 2 4 22
0,A A

t
 

 
    

 
 (10) 

2
2 2 2

5 6 2 5 2 7 42
2 0,A A A A

t
  

 
        

 
 (11) 

2 2 2

8 9 1 10 3 1 ,A T A A Y Q
t

 
 

       
 

 (12) 

 2

11 12 13 3 141 0,A A A A T
t


 
      

 
 (13) 

2 2

12 13 4 15 0.A A A
t t




 
     

  
 (14) 

where 

0 0

1

0 0

=A
K

 






,

* 2

1

2

0 0

=
A c

A
K



 
, 0 0

3

0 0

=
T

A
K



 
, 0

4

0 0

=
K

A
K 

,  

2

0

5

0

=
K L

A


,
2

0 1

6

0

= ,
J c

A



10

7

0

=A



,

*

0 1

8 *

0

=
c c L

A
K


, 

0 1

9 *

0

= ,
c L

A
K

 10

10 *

0 0

=
k

A
K T

, 40 50

11

60

=
k k

A
k


,

2

20

12

60

=
k L

A
k

,

0 1

13

60

=
b c L

A
k

,
2

30 0

14

60

=
k T L

A
k

, 10 1

15

60

=
c L

A
k


,

2
*

0*

0

= ,
L

Y A Q
K

*

*

0

1
=

(1 )
A

T
. 

3. Method of Solution 
Here, we use normal mode analysis technique to find the 

solution of the considered physical variables in the following 

form,  

2 1 2

1

( , , , , , , )( , , ) ( , , , ,

, , )( ) .

i ij ij ij i ij ij

t iax

ij

T t q m Q x z t T t q

m Q z e

   




 (*) 

where  is complex frequency, a  is wave number in 

x direction and 2( ), ( ), ( )i z T z z   , ( ), ( ),ij ijt z q z
 

1( ), ( )ijm z Q z
 
are the amplitudes of field quantities.  

Using (*) in the equations (9)-(14), we get,  
2

6 1 2( ) = 0,D B B T   (15) 

2

7 2 4 2( ) = 0,D B A    (16) 

2 2 2 2 2

8 2 5 2 7 4( ) ( ) ( ) = 0,D B A D a A D a        (17) 

2 2 2 2 2

9 9 1 10 3 1( ) ( ) ( ) = ,D B T A D a A D a Y Q       (18) 

2

10 3 5( ) = 0,D B B T   (19) 

2

11 4 12 2( ) = 0.D B B    (20) 

where  

,
d

D
dz

 2

1

1

= ,
1

A
B

A 

3

2

1

= ,
1

A
B

A 

12

3

11

= ,
1

A
B

A 

13

4

11

= ,
1

A
B

A 

14

5

11

= ,
1

A
B

A 

2 2

6 1= ,B a B  2 2

7 2= ,B a A 

2 2

8 5 6= 2 ,B a A A   2

9 8= ,B a A  2

10 3 4= ,B a B B    

2

11 12 13= ,B a A A  
12 15 .B A 

 
The constitutive equations (5)-(7) takes the form, 

   2 2

17 16 1 17 16 2 ,xxt A D a A ia A A D T       (21) 

   2 2

18 19 1 18 19 2

19 18 2( ) ,

zxt ia A A D A D a A

A A

 



   

 
 (22) 

   2 2

16 17 1 16 17 2 ,zzt A D a A ia A A D T       (23) 

   2 2

20 21 3 20 21 4 ,xxq A a A D ia A A D      (24) 
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   2 2

22 23 3 22 23 4 ,zxq ia A A D A D a A       (25) 

   2 2

21 20 3 21 20 4 ,zzq A a A D ia A A D      (26) 

24 2.zym A D  (27) 

where 

0 0 0

16

0 0

2
=

K
A

T

 



 
, 0

17

0 0

=A
T




,  0

18

0 0

= ,A
T




 

0 0

19

0 0

= ,
K

A
T






 40 50 60

20 3

1 0 0

= ,
k k k

A
L c T

 
 40

21 3

1 0 0

= ,
k

A
L c T

 

50

22 3

1 0 0

= ,
k

A
L c T

 60

23 3

1 0 0

= ,
k

A
L c T

  0

24 2

0 0

= .A
L T




   

Eliminating 
3 ( )z  and ( )T z  from equations (15), (18)-(19), 

we get the following sixth order differential equation for 

1( )z  as, 

6 4 2

1 13 1( ) ( ) = .D PD QD R z B Q    (28) 

Eliminating 
4 ( )z and 2 ( )z  from equations (16)-(17) and 

(20), we get the following sixth order differential equation for 

2 ( )z  as, 

6 4 2

2( ) ( ) = 0.D ED FD G z    (29) 

where 

5 10 6 9 9 2 10= [ ( )],P B A B B A B B   
 

2 2

9 6 2 9 10 6 9 2 9 5 10= [ ( ) 2 ],Q B B a B A B B B B A a B A       

4 2

5 10 10 9 6 2 9= [ ( )],R a B A B B B a B A 
              

5 4 7 8 11 7 12= [ ],E A A B B B A B   
 

2 2

7 8 4 5 11 7 8 4 5 12 7 7= [ ( ) ( )],F B B a A A B B B A A B A B a     

2 2

11 5 4 7 8 7 7 12= [ ( ) ],G B a A A B B a A B B 
 

13 10 2= .B Y B B  

In a similar manner we can show that 
3 ( )z , ( )T z  satisfies 

the equation,  
6 4 2

3 13 1( ) ( ( ), ( )) = .D PD QD R z T z B Q    (30) 

which can be factorized as,  
2 2 2 2 2 2

1 2 3 1 13 1( )( )( ) ( ) = .D r D r D r z B Q    (31) 

where 2

nr ; ( 1,2,3)n  are roots of equation (30). 

and 
4 ( )z and 2 ( )z

 
satisfies the equation, 

6 4 2

4 2( )( ( ), ( )) = 0.D ED FD G z z     (32) 

which can be factorized as,  
2 2 2 2 2 2

1 2 3 2( )( )( ) ( ) = 0.D h D h D h z    (33) 

where 
2

nh ; ( 1,2,3)n   are roots of equation (32). 

The series solution of equation (30) which are bounded as 

z  are given by,  
3

1

=1

( ) = [ ( , ) ] ,
r z
n

n

n

z M a e N 


  (34) 

3
'

1

=1

( ) = [ ( , ) ] ,
r z
n

n

n

T z M a e N


  (35) 

3
''

3 2

=1

( ) = [ ( , ) ] .
r z
n

n

n

z M a e N 


  (36) 

The series solution of equation (32) which are bounded as 

z   given by,  
3

2

=1

( ) = [ ( , ) ],
h z

n
n

n

z L a e 


  (37) 

3
'

2

=1

( ) = [ ( , ) ],
h z

n
n

n

z L a e 


  (38) 

3
''

4

=1

( ) = [ ( , ) ].
h z

n
n

n

z L a e 


  (39) 

where ' '( , ), ( , ), ( , )n n nM a M a M a  


and '( , ), ( , )n nL a L a   
', ( , )nL a 


are specific functions depending upon a ,  .  

Using (34)-(36) in (15), (18)-(19), we get,  
'

1( , ) = ( , ),n n nM a H M a   (40) 

'

2( , ) = ( , ).n n nM a H M a 


 (41) 

Similarly, using (37)-(39) in (16)-(17) and (20), we get,  
'

1( , ) = ( , ),n n nL a R L a   (42) 

'

2( , ) = ( , ).n n nL a R L a 


 (43) 

Thus we have,  
3

1 1

=1

( ) = [ ( , ) ] ,
r z
n

n n

n

T z H M a e N


  (44) 

3

3 2 2

=1

( ) = [ ( , ) ] ,
r z
n

n n

n

z H M a e N 


  (45) 

3

2 1

=1

( ) = [ ( , ) ],
h z

n
n n

n

z R L a e 


  (46) 

3

4 2

=1

( ) = [ ( , ) ],
h z

n
n n

n

z R L a e 


  (47) 

3

3

=1

3

3 3

=1

( ) = [ ( , ) ]

[ ( , ) ] ,

r z
n

xx n n

n

h z
n

n n

n

t z H M a e

R L a e N








 




 (48) 

3

4

=1

3

4

=1

( ) = [ ( , ) ]

[ ( , ) ],

r z
n

zx n n

n

h z
n

n n

n

t z H M a e

R L a e













 (49) 

3

5

=1

3

3 4

=1

( ) = [ ( , ) ]

[ ( , ) ] ,

r z
n

zz n n

n

h z
n

n n

n

t z H M a e

R L a e N








 




 (50) 

3

6

=1

3

5 5

=1

( ) = [ ( , ) ]

[ ( , ) ] ,

r z
n

xx n n

n

h z
n

n n

n

q z H M a e

R L a e N








 




 (51) 
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3

7

=1

3

6

=1

( ) = [ ( , ) ]

[ ( , ) ],

r z
n

zx n n

n

h z
n

n n

n

q z H M a e

R L a e













 (52) 

3

8

=1

3

5 6

=1

( ) = [ ( , ) ]

[ ( , ) ] ,

r z
n

zz n n

n

h z
n

n n

n

q z H M a e

R L a e N








 




 (53) 

3

7

=1

( ) = [ ( , ) ].
h z

n
zy n n

n

m z R L a e


  (54) 

where, 

13

1,
B

N Q
R

 6

1

2

,
B N

N
B

 5 1

2

10

,
B N

N
B




2

3 16 1( ),N A a N N  2

4 17 1( ),N A a N N  2

5 20 2( ),N A a N

2

6 21 2( ),N A a N
2

6

1

2

( )
= ,n

n

r B
H

B


5 1

2 2

10

( )
= ,

( )

n

n

n

B H
H

r B
 

2 2

3 17 16 1( ),n n nH A r a A H    
4 18 19= ( ),n nH iar A A   

2 2

5 16 17 1( ),n n nH A r a A H     

2 2

6 20 21 2( ) ,n n nH a A A r H 
7 22 23 2= ( ) ,n n nH ia A A r H

2 2

8 21 20 2( ) ,n n nH a A A r H    

2

7

1

4

( )
= ,

( )

n

n

B h
R

A


12 1

2 2

11

( )
= ,

( )

n

n

n

B R
R

h B



3 16 17= ( ) ,n nR ia A A h

2 2

4 18 19 19 18 1[ ( ) ],n n nR A h a A A A R    

5 21 20 2= ( ) ,n n nR ia A A h R
  

2 2

6 22 23 2( ) ,n n nR h A A a R 
7 24 1= .n n nR A h R

 
4. Boundary Conditions 

To determine the parameters 
nM  and 

nL  , ( 1,2,3)n  the 

boundary conditions at the free surface 0z   are given by,  

1= , = 0, = 0, = 0

, = 0, = 0.

t iax

zz zx zy zz

zx

t Fe t m q

T
q

z

 





 (55) 

where 
1F  is the magnitude of mechanical force applied at the 

free surface..  

Using the expressions of 
zzt , 

zxt , zym , 
zzq , 

zxq , and T  into 

above boundary conditions (55), gives the following non 

homogeneous equations, 
3 3

5 3 4 1=1 =1
[ ] [ ] = ,n n n nn n
H M R L N F     

3 3

4 4=1 =1
[ ] [ ] = 0,n n n nn n
H M R L 

 
3

7=1
[ ] = 0,n nn
R L   

3 3

8 5 6=1 =1
[ ] [ ] = ,n n n nn n
H M R L N     

3 3

7 5=1 =1
[ ] [ ] = 0,n n n nn n
H M R L   

3

1=1
[ ] = 0.n n nn
H r M

 
After solving the above system of non homogeneous 

equations, we get the values of constants 

1 2 3 1 2 3, , , , ,M M M L L L  and hence obtain the components of 

normal displacement, microtemperature, normal force stress, 

temperature distribution, heat flux moment tensor and 

tangential couple stress for thermoelastic half space with 

micro-temperatures.  

5. Particular Cases 

i) If we take * 0  , we obtain the results in 

thermoelastic medium with micro-temperatures 

(TM). 

ii) Neglecting micro-rotation effect i.e. 

0 0b K J          , we obtain the 

results in thermoelastic medium with micro-

temperatures without micro-rotation with 

temperature dependence (TMWMT). 

       iii)  Letting * 0  in the case (ii), we obtain the results 

in thermoelastic medium with micro-temperatures   

             without micro-rotation (TMWM).  

6. Numerical Results and Discussions 

To determine the constants 
1 2 3 1 2 3, , , , , ,M M M L L L we 

consider the following values of the physical constants: 

The values of micropolar constants are given by Eringen [35], 

  = 10 29.4 10 /N m ,   = 10 24.0 10 /N m , 

3 31.74 10 / ,kg m    
10 2= 10 ,K Nm 

 
10= 7.79 10 ,N  14 2= 0.0000002 10 ,J m

10 2= 0.32 10 /N m K 
 

The values of thermal parameters are given by Dhaliwal and 

Singh [36]: 
* 4= 0.104 10 / / ,c Nm Kg K

0 = 298 ,T K
* 2 1 1=1.7 10 ,K Ns K  1= 0.05t K 

  
The values of microtemperature parameters are given by 

Kumar and Kaur [20]: 
1

1 = 0.0035 ,k Ns  1

2 = 0.045 ,k Ns  1 1

3 = 0.055 ,k NK s 

1 2

4 = 0.065 ,k Ns m 1 2

5 = 0.076 ,k Ns m 1 2

6 = 0.096 ,k Ns m

1 = 0.0085 ,N 10= 0.15 10 .b N
 

The computations are carried out for the value of non-

dimensional time = 0.2t  in the range 0 10x   and on the 

surface =1.0z  for * = 0.051/ .K  The numerical values for 

normal displacement, micro-temperatures, normal force 

stress, temperature distribution, heat flux moment tensor and 

tangential couple stress are shown in figures (2)-(7) for 

1 = 1.0F , 
0 = 1,Q  

0=   , 
0 = 0.3  , = 0.1, 1 = 10Q

 
and = 0.8a  for 

a) Thermoelastic medium with micro-temperatures with 

temperature dependence (TMT) by solid line with centered 

symbol  . 

b) TM by solid line with centered symbol ■ 

c) TMWMT by dashed line with centered symbol ▲. 

d) TMWM by dashed line with centered symbol .  

7. Discussion 

The variations of normal displacement in case of TMWM are 

more as compared to TMT, TM, and TMWMT, which show 

the appreciable effect of micro-rotation. These variations are 

very less for TM as depicted in the range 0 10.0x   in the 

figure-2.  

From figure-3, it is noticed that the variations of 

microtemperature is more for TMWM as compared to other 

three mediums. These values are less for TMWMT, which 

show the influence of temperature dependence. 
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The variations of normal force stress for TMT and TM are of 

opposite nature which signifies the influence of temperature 

dependence on the component of normal force stress. These 

variations are more in case of TMWMT as depicted in the 

figure-4. 

The variations in temperature distribution is more in case of 

TMT. These variatrions are of opposite nature for TM and 

TMWMT. These variations are presented in figure-5. 

The variations of heat flux moment tensor follow similar trend 

for TM and TMWMT with the values differ in magnitude, 

whereas these variations are of opposite nature for TMT and 

TMWM as depicted in the figure-6 in the range 0 10.0x  . 

The variations of tangential couple stress for TMT and TM 

follow similar pattern in the range 0 3.5,x   with the 

values differ in magnitude, after that the variations show an 

opposite nature which show the significant effect of 

temperature dependence as presented in the figure-7. 

8. Conclusion 

From the graphical representations of the developed analytic 

solutions of thermoelastic half-space with micro-

temperatures, the investigation of the influence of the heat 

source and temperature dependence in the medium is 

conducted. The following conclusion have been drawn, 

 A significant effect of the heat source is observed in 

the medium. 

 A noticeable effect of micro-rotation is observed. 

 Temperature dependenc plays an prominent role in 

the deformation of the medium. 

 The present problem can also be studied in the 

absence of heat source as well. 

 
Figure 2. Variation of normal displacement with horizontal 

distance 

 

 

 

Figure 3. Variation of micro temperature with horizontal 

distance 

 

 

Figure 4. Variation of normal force stress with horizontal 

distance 
 

 

 

 

 

Figure 5. Variation of temperature distribution with 

horizontal distance 
 

 

 

 

Figure 6. Variation of heat flux moment with horizontal 

distance 
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Figure 7. Variation of tangential stress with horizontal 

distance 
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