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1. Introduction 

Nowadays, computational fluid dynamics (CFD) help solve 
complex problems. Lattice Boltzmann method (LBM) is one 
of CFD methods, which are used on a mesoscopic scale. 
Instead of considering one particle of matter or an 
infinitesimal control volume, a group of particles is 
considered to derive the governing equations, based on the 
kinetic theory of gases[1, 2]. LBM is composed of two main 
processes: Collision between particles and streaming of 
particles[1, 2]. Here, the concept of particles is a fictitious 
particle which is obtained by probability distribution functions 
of the real particles[2]. LBM is widely used to simulate the 
flow in porous media, two or multi-phase flow, Newtonian 
and non-Newtonian fluids[3]. Obtaining probability 
distribution functions based on macroscopic quantities such 
that they satisfy conservation laws is an important issue in 
LBM. This issue reveals itself the most when applying 
boundary conditions on the Boltzmann equation. Various 
methods are proposed for boundary conditions. These 
methods include applying different boundary conditions, such 
as Dirichlet and Neumann, on straight and curved boundaries. 

Different boundary conditions are used for fixed and 
moving boundaries. Boundary conditions can also be 
categorized to straight and curved boundaries, based on 

geometry. Bounce back boundary condition is the most 
common one[1]. The main idea behind this method, which is 
adapted from lattice gas cellular automata (LGCA) 
method[4], is to redistribute the fictitious particle in the 
opposite direction of the bulk flow direction on solid 
boundaries. Various researchers calculated probability 
distribution functions of curved boundaries using Bounce 
Back boundary and various interpolations and extrapolations 
Methods [5-10]. It's worth mentioning that the Bounce Back 
method is a simple, robust method and complies with 
conservation laws perfectly[7]. For straight boundaries, 
different approaches were used to expand the boundary 
conditions in which the relations obtained independently and 
from equation independent of macroscopic quantities. Bounce 
Back, Zou-He, No-slip and regularized boundary conditions 
are of the most important methods in applying macroscopic 
quantities to boundaries[11, 12]. Vershaeve proposed two 
non-slip boundary conditions for fixed boundaries. 
Considering that the diagonal elements of the strain matrix are 
zero for a straight boundary, he proposed new relations to 
calculate the non-equilibrium term of probability distribution 
function. This method can be used for relaxation frequencies 
up to 2 [12]. Latt et al. investigated the stability and the 
accuracy of second order regularized and Zou-He boundary 
conditions for different geometries. The results showed that 
selection of boundary condition depends on the flow regime 
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and geometry[11]. In addition, Vershaeve presented an 
algorithm to find unknown probability distribution functions 
on no slip curved boundaries by combining regularized and 
non-slip methods[13]. Malaspinas et al. presented a second-
order boundary condition based on regularized method for 
straight boundaries which can be used for all computational 
nodes including flow corners[3]. Chopard and Dupuis 
proposed a boundary condition for fixed walls which 
converges more rapidly than the second order Bounce Back 
method[14]. Arun and Satheesh simulated a two-sided lid-
driven cavity. They used Zou-He method for moving 
boundaries and Bounce Back method for fixed 
boundaries[15]. Hou and Zou performed an accuracy analysis 
on lid-driven cavity to evaluate the accuracy of LBM. The 
results of comparing their method with other numerical 
solutions indicate high accuracy of LBM in a wide range of 
Reynolds numbers. There were some perturbations found in 
cavity pressure contours in the upper corners of the 
cavity[16]. Izham et al. studied the high Reynolds numbers 
flow in a cavity and a 2D flow around a cylinder, using 
regularized lattice Boltzmann method (RLBM). There are 
some perturbations in cavity pressure contours[17]. Yu et al. 
removed instabilities through improving the mesh around the 
upper corners of the cavity, using the multi-block method[18]. 
Since boundary condition is one of the most important factors 
in perturbation development in solution field, using the best 
method of applying boundary conditions regarding the flow 
regime is of great importance. Due to the perturbations in 
cavity corners of studies using SRT-LBM model, it seems 
essential to investigate and compare the effect of different 
boundary conditions in stability and accuracy of solutions.  

In this paper, we aim to study the effect of different 
boundary conditions on the straight wall in the context of 
LBM and compare the numerical results in lid-driven cavity 
and 2D channel flows. For each geometry, first we investigate 
the effect of full regularized and Zou-He boundary conditions 
for both moving and fix walls in terms of accuracy and 
convergence rates. Regarding the results of each section we 
combine the superior boundary condition, either Zou-He or 
regularized with other types, B No-slip, C No-slip and Bounce 
Back. In section 2, LBM governing equations are presented. 
In section 3, boundary conditions are introduced. In section 4, 
the numerical results of lid-driven cavity flow and flow inside 
a 2D channel are presented and finally, the conclusion of this 
paper is presented in section 5. 

2. Lattice Boltzmann Method Using BGK Approximation  

The Boltzmann equation in general form can be written 
as[2]: 

( )
f F

c f f fx c
t m


     


 (1) 

Where f , is the probability distribution function, c , is the 
velocity vector, F , is the external force acting on the particle, 
m , is the particle mass, x is gradient respect to x  and c  
is gradient respect to the velocity and ( )f  represents the 
Collision between particles. Using BGK model to 
approximate ( )f  and ignoring external forces, the 
Boltzmann equation can be rewritten as below [1, 2, 12]. 

 ( , ) ( , ) ( , ) ( , )
eqt

f x c t t t f x t f x t f x t



         (2) 

where   is the relaxation time and eqf , is the probability 
distribution function of particles in the equilibrium. Eq. (2) 
includes two processes of particle collision and streaming. 
The discretized Boltzmann equation in limited directions is 
known as LBM which specified with common lattices like as 
D2Q9 and others[1]. Both collision and streaming in the LBM 
can be written as Eqs. (3-a) and (3-b) respectively that f

i
 is 

the probability distribution function in the ith direction. 

 
1

( , ) ( , ) ( , ) ( , )eq

i i i if x t f x t f x t f x t


     (3-a) 

( , ) ( , )i if x c t t t f x t     (3-b) 

The probability distribution function eqf  can be calculated 
by Eq. (4). At first eqf  is considered as the Maxwell’s 
distribution function, which is an exponential function. Using 
the Taylor expansion and low Mach number (Ma) assumption, 
the Eq. (4) will be achieved and its truncation error is the 
order of O(Ma2) [2, 12, 19]. 

2 4
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where 

2

i i sc c c 
i

Q I  (5) 

 

D2Q9 lattice is one of the most popular lattices used in 
LBM. Coefficients of 

it , lattice velocity vectors, 
ic , and 

lattice speed of sound, 
sc , are listed in Table 1 for D2Q9 

model [1, 2]. The units in the LBM is not physical and for the 
length, time and mass is considered lu, ts and mu, 
respectively[1]. Catching the physical amounts need to map 
data in the lattice unit to physical one[20]. 

Table 1. Required coefficients for D2Q9 lattice 

Lattice type Lattice vectors  
it  2

sc  

D2Q9 

(0, 0)  

( 1,0), (0, 1)   

( 1, 1)   

4 9  

1 9  

1 36  

1 3  

 

The macroscopic quantities such as density, momentum, 
j , and second order moment, Π , are given in Eqs. (6) to (8) 

respectively, based on the probability distribution 
function[12]: 

eq
f f
i ii i

     (6) 

eq
j u c f c f

i i i ii i
     (7) 

c c f
i i ii

 Π  (8) 

Boltzmann equation using BGK approximation can be 
written in macroscopic form using Chapman–Enskog 
analysis. In other words, lattice Boltzmann method is 
equivalent to Navier-Stokes equation. Based on Chapman–
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Enskog analysis, 
if  in Boltzmann equation can be expanded 

around an equilibrium value as:[12, 19] 

(0) (1) 2 (2) (0) (1) 2( )i i i i i if f f f f f O           (9) 

where   is a small value. (0)

if  is the probability distribution 
function at equilibrium. So, Eq. (9) can be rewritten as: 

eq neq

i i if f f   (10) 
neq

if  is the non-equilibrium part of probability distribution 
function and is usually approximated by (1)

if . Thus, LBM is 
a second-order method 2( )O  . That is, LBM is a numerical 
solution with 2 2 2( , ,Ma )O x t   of error. x  is the grid 
spacing, t  is the time step and Ma  is the Mach number[13]. 

Regarding mass and momentum conservation laws of 
particles while colliding and thanks to Eqs. (6) to (8), we can 
conclude that[12]: 

 

Based on Chapman–Enskog analysis, (1)

if , kinematic 
viscosity and strain tensor can be calculated as [12]: 

 

where 1   is the collision frequency and 
( ) 2

T
u u  S  is the strain tensor. 

In order to keep the incompressibility assumption in our 
numerical simulation the Mach number should be less than 
about 0.3. This means that the maximum velocity threshold 
for D2Q9 lattice should be about 0.18 [2]. 

2

max,LBM

1
D2Q9 : 0.18

3
sc u    (16) 

Considering flow dimensionless numbers are equal in both 
physical and lattice scales, Reynolds number based on lattice 
parameters is defined as,[2] 

 

2

LBMRe
0.5

su Nc





 (17) 

Where LBMu  is the characteristic speed and  is the lattice 
size along the characteristic length. Also in LBM, pressure 
can be calculated as, [1, 19] 

2

sP c   (18) 

 

Fig. 1. Southern boundary node in a D2Q9 lattice 

3. Boundary Conditions 

Regarding the Streaming process of particles in LBM, 
fictitious particles are transferred to adjacent nodes. The 
fictitious particles in central nodes which move in various 
directions can move through and outside of the bulk flow. 
However, in the boundary nodes those directions of the lattice 
which doesn’t receive information from outside of the bulk 
flow need boundary conditions to be determined. Moreover, 
transferring information from macroscopic to mesoscopic 
scale is a complicated task. In this study, four types of 
boundary conditions are evaluated: Bounce Back, B and C 
No-slip, Zou-He and regularized boundary conditions for 
straight and Dirichlet boundaries (Fig. 1). 

3.1. Bounce Back Boundary Condition 

This is the simplest boundary condition. When a particle 
collides with a fixed boundary, it will return in the opposite of 
the original direction. If boundary nodes are placed exactly on 
the solid boundary, a wet boundary is formed which is the 
simplest type of Bounce Back boundary condition. In other 
cases, the wall can be placed in between two rows of 
boundary nodes[1]. 

3.2. No-Slip Boundary Condition 

The main idea of this type of boundary condition is based 
on the fact that the diagonal elements of the strain matrix are 
zero for a fixed boundary, which was applied to Eqs. (11), 
(12) and (15) by Vershaeve[12]. He provided a solvable 
system of equations of algebraic equations for

neq

if . Through 
eliminating the equation containing the non-diagonal elements 
of the strain matrix. He was able to develop an indeterminate 
algebraic system of equations. Vershaeve proposed two kinds 
of boundary conditions (B and C), based on those neq

if   
values that are aligned with the determined 
boundary ( { | 0})ji j c n   , n  is the normal vector of 
boundary surface) to obtain a system of determinate algebraic 
equation. As a result, the system of equations close and 
unknown values of 

neq

if  are calculated [12, 21] 

 

3.3. Zou-He Boundary Condition 

In this method, the Bounce Back method was applied to 
neq

if  in line with the normal vector of the boundary. This can 
be seen, considering the symmetry in Eq. (13) [11]. It should 
be noted that influence of stress tensor is neglected in Zou-He 
method. Based on the idea of Zou-He, for the boundaries 
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shown in Fig. 1, Eqs. (6) and (7) are closed for four unknown 
variables:  , 

2f , 
5f  and 

6f  [1, 22]. 

 

 

3.4. Regularized Boundary Condition 

The method proposed by J.Latt known as the Regularized 
method, substitutes all values of probability distribution 
functions into the boundaries. He rewrote Eq. (13) using the 
symmetry of 

i
Q  and 1( )

iΠ , and simplifying assumptions: 
[11, 19] 

(1) 1

2 42

( )i i

i

s s

t t
f

c c




   

i i
Q : S Q : Π  (19) 

 

In Eq. (19), the value of 1( )
Π  is calculated using Eq. (15) 

and applying the Bounce Back method to neq

if  (similar to 
Zou-He method). The equations for the southern boundary 
while flow velocity is ( , )u v , with corresponding to the 
Regularized method are presented in below. Employing the 
regularized and Zou-He boundary conditions for both velocity 
and pressure Dirichlet boundary conditions are similar. 

 (1) 1 1 1

4
2

2

( ) ( ) ( )i

i ixx xx ixy xy iyy yy
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   1 2 2

4 7 82( )

yy sf f f v v c      Π  

 

4. Results and Discussions 

To evaluate the described boundary conditions, lid-driven 
cavity and flow through a channel are used. The evaluation 
criterion is based on the average relative error as:  

,ref

1 ,ref

1
Average Relative  Error

N
j j

j j

u u

N u


   (21) 

 

The numerical results of lid-driven cavity are compared by 
the numerical results of reference [23] and for the 2D channel 
flow, the computed error is based on the exact solution. Also 
relative error approximation is used for convergence errors as 
below. 

1 1

, , , ,

, ,

Relative  Convergence Error ,

k k k k

i j i j i j i j

k k

i j i j

u u v v

u v

   
 
 
 

 

 

(22) 

 
4.1. Lid-driven Cavity 

Lid-driven cavity is of significant importance in LBM due 
to the singular points on the upper corners. The intended 
geometry is the same as reference [23]. The geometry is 
shown in Fig. 2. The flow velocity is considered as unity and 
the kinematic viscosity is obtained as 1 Re . The flow is 
solved for Reynolds numbers of 10, 100, 400 and 1000. In 
solving the flow using LBM, 0.75   for Reynolds numbers 
10, 100 and 400, and 0.6   for Reynolds number 1000. 
Number of lattice nodes varies from 71 to 201 for Reynolds 
numbers 10 and 100, and from 121 to 261 for Reynolds 
number 400, and from 191 to 301 for Reynolds number 1000. 
Regarding the perturbations reported in pressure contours of 
Zou-He method for cavity geometry [16], 0.75   was 
chosen for Reynolds numbers of 10, 100 and 400 to ensure 
that there is no instability in the flow field. Number of lattice 
nodes are chosen in such a way that satisfies the conditions of 
Eq. (16). For Reynolds number 1000, the minimum number of 
lattice which satisfies the condition of Eq. (16) is equal to 464 
at 0.75   which in regard has very high computational 
costs. So the 0.6   is chosen to reduce the computational 
cost due to maximum lattice nodes of 301. One of the main 
questions we would like to address in this section is to 
investigate the effect of Zou-He and Regularized boundary 
condition on bounding or minimizing the noise propagation in 
the corner of the cavity neighboring the moving wall. A cavity 
with fully regularized and full Zou-He boundary conditions 
are designed for this purpose, Table 2. 

 

Fig. 2. schematic of Lid-driven cavity geometry 
 

Figs. 3 & 4 show the average relative error for  and v  
(velocity along x  and y  axes, respectively) versus the 
number of lattice points for Reynolds numbers 10, 100, 400 
and 1000. Based on these figures, increasing lattice size leads 
to smaller errors as we expected. As it is obvious in these 
figures, the full regularized boundary condition has 
supremacy to the full Zou-He boundary condition with 
regards to average relative errors. Indeed, the regularized 
boundary condition takes into account the effect of the strain 
and velocity gradient specifically on moving boundary. So, it 
represents higher accuracy than the Zou-He method.  
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Table 2. Different boundary conditions used in lid-driven cavity 
State Northern boundaries Other Boundaries 

1 Regularized Regularized 

2 Zou-He Zou-He 

  

  

Fig. 3. Average relative error of u  for Reynolds numbers 10,100,400 and 1000 in a lid driven cavity based on 
Table 2 

 

Based on the latter results a natural question arises: how 
the accuracy of the numerical results will change if we 
combine the regularized boundary condition on moving wall 
(northern boundary) and couple this boundary with B No-slip 
and C No-slip types on fixed walls (like the arrangement of 
Table 3). The same numerical results are repeated for this 
case, fig 5 & 6. The accuracy of full regularized boundary 
condition, state 1, is better that state 3 and state 4 for both 

relative error of u  and v  in all ranges of Reynolds numbers. 
The only exception is the relative error of velocity field for v  
in moderate Reynolds number that shows better accuracy with 
the combination of regularized boundary condition for the 
moving wall and No-slip boundary condition for fixed walls. 
Just for curiosity and comparison, the results of full Zou-He 
boundary condition are added to these two sets of figures. 

 

 

Table 3. Combination of Regularized boundary condition with other boundary 

conditions used in lid-driven cavity 
State Northern boundaries Other Boundaries 

1 Regularized Regularized 

3 Regularized B No-slip 

4 Regularized C No-slip 
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Fig. 4. Average relative error of  for Reynolds numbers 10,100,400 and 1000 in a lid driven cavity based on 
Table 2 

 

Table 4. Number of iterations required for convergence for Reynolds numbers of 100 and 400 and error 

of 10-8 

Re 
Convergence 

error State 1 State 2 State 3 State 4 

100 10-8 29934 56641 26877 26558 

400 10-8 137049 134392 45897 45892 

 

 

Fig. 7 shows the cavity pressure contours for Reynolds 
number 100. These contours are plotted for a 101×101 lattice 
in two relaxation times; 0.6   and 0.75  . The Bounce 
Back boundary condition is applied for all fixed boundaries 
and Zou-He and Regularized boundary conditions are applied 
on the moving boundary. According to the Fig. 7, numerical 
instability is observed in the upper corner of the cavity for 

0.6   which is so widespread in Zou-He method but so 
small in regularized method. No instability is seen in 0.75   
for regularized method but Zou-He method suffers from a 
small instability. 

u  and v  diagrams aligned middle lines of 1 2x   and 
1 2y   respectively for Reynolds numbers 1000 and 201 

lattice nodes are shown in Fig. 8. To achieve better 
readability, just the state 1 of Table 2 is compared by the 
numerical results of reference [23] that has a great agreement 
with those solutions. 

Another important factor in evaluation the boundary 
condition efficiency is the number of iterations required for 
convergence. For the lid-driven cavity, with the maximum 
relative convergence error of 10-8 (Eq. 22), the numbers of 
iterations required for convergence are listed in Table 4 for 
Reynolds numbers of 100 and 400. 
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Fig. 5. Average relative error of u  for Reynolds numbers 10,100,400 and 1000 in a lid driven cavity based on 
Table 3 
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Fig. 6. Average relative error of  for Reynolds numbers 10,100,400 and 1000 in a lid driven cavity based on 
Table 3 

 

  

  

Fig. 7. Cavity pressure contours for Zou-He and regularized method applied to moving boundary for Reynolds 
number of 100 and in a 101×101 lattice (Bounce Back method was applied to other boundaries) 
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Fig. 8. u  and v  plots for middle lines of 1 2x   and 1 2y   respectively, and Reynolds number of 1000, in 
state 1 and for a 201×201 lattice 

 

Table 5. Different boundary conditions used in 2D-channel flow 
State Input/Output boundaries Other Boundaries 

1 Regularized Regularized 

2 Zou-He Zou-He 

 

4.2. 2D Channel 

The other geometry studied in this paper is the 2D 
Poiseuille flow or, in other words, the flow inside a channel. 
The overview of this geometry is shown in Fig. 9. Fully 
developed velocity profile at the inlet and constant outlet 
pressure Boundary condition are employed. The No-slip 
condition is applied on the walls. 

 

Fig. 9: 2D Poiseuille flow overview 
 

The exact solution of the flow is [24]: 

exact ave( ) 6 1
2 2

y y
u y u

h h

 
  

 
 (23) 

where 
aveu  is the average inlet velocity and the Reynolds 

number is defined based on this velocity as aveRe 2u h   in 
which 2h  is the channel width and   is the kinematic 
viscosity. The boundary conditions are listed below [24]: 

0,2 0y h u     

ave0 ( ) 6 1
2 2

y y
x u y u

h h

 
    

 
 (24) 

0L ctex P P      

The outlet pressure is assumed as 2

0 sP c  in which   is 
the lattice to physical unit conversion factor. The flow is 
solved for Reynolds numbers of 10 and 100 and lattice nodes 
varying from 51 to 151 along the characteristic length using 
the discussed boundary conditions. Average relative errors 
versus lattice size is shown in Fig. 8. The same as the 
previous section, we are interested in examination full 
regularized and full Zou-He boundary conditions for a planar 
2D flow (Table 5).  

Fig. 10 demonstrates average velocity error for the 
streamwise velocity versus the number of lattice points. In 
contrast to the cavity, the full Zou-He boundary condition 
ends up to better accuracy than the full regularized boundary 
condition. Literally, the regularized boundary condition 
exhibits its advantage at high strain rate we counter in the 
cavity. In this simple shear flow at low Reynolds number, 
there is no dominance for regularized boundary condition.   

Now the main question comes into being is the relation and 
combination of Zou-He boundary with other types of 
boundary conditions: B No-slip, C No-slip and Bounce Back 
(the arrangement are summarized in Table 6).  
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Fig. 10. Average relative error of u  at Lx   for Reynolds numbers of 10 and 100 in channel flow based on Table 5 

 

Table 6. Different boundary conditions used in 2D-channel flow 
State Input/Output boundaries Other Boundaries 

2 Zou-He Zou-He 

3 Zou-He B No-slip 

4 Zou-He C No-slip 

5 Zou-He Bounce Back 

 

 

According to Fig. 11, increasing the computational nodes 
along the characteristic length will lead to more accurate 
solution. But as it can be seen in the figure, the disagreement 
of states 1, 3 and 4 with states 2 and 5 will decrease by 
increasing the Reynolds number. Since the effects of the 
strain and thus velocity gradients are not significantly 
important in low Reynolds numbers, and due to the fact that 
these effects are considered in Regularized and No-slip 

boundary conditions, their truncation error leads to more 
discrepancy with Zou-He and Bounce Back methods. By 
increasing the Reynolds number, velocity gradient effects 
become more important and therefore, the absence of gradient 
terms in Zou-He and Bounce Back methods lead to larger 
errors and the disagreement of states 2 and 5 with the other 
states will be minimized. 

 

  

Fig. 11. Average relative error of u  at Lx   for Reynolds numbers of 10 and 100 in the channel flow based on 
Table 6 
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Fig. 12. 
aveu u  versus 2y h  in the outlet for a 71×351 lattice and Reynolds numbers of 10 and 100 and 

considering the state 1 for the boundaries conditions 
 

Table 7. Number of iterations required for convergence for Reynolds numbers of 10 and 100 and error of 10 -8 

Re 
Convergence 

error 
State 1 State 2 State 3 State 4 State 5 

10 10-8 197813 201490 201558 201581 201494 

100 10-8 120589 225511 226346 226857 225515 

 

 

The streamwise velocity profile at the outlet for a 71×351 
lattice and Reynolds numbers equal 10 and 100 with 
regularized boundary condition, state1, is shown in Fig. 9. 
According to this, the numerical solutions are in great 
agreement with the exact solution. 

The numbers of iterations required for convergence based 
on Eq. (22) are listed in Table 7. It can be said that increasing 
Reynolds number enhances the convergence rate for 
regularized boundary condition. To evaluate the effects of 
boundary conditions applied to the inlet and outlet in 
comparison to the boundary conditions applied to the walls, 
the Regularized boundary condition was chosen for the inlet 
and outlet and B No-slip boundary condition was selected for 
the walls. The iterations were 197932 for Reynolds number of 
10 and 121318 for Reynolds number of 100, which indicate 
the importance role of the inlet, and outlet boundary 
conditions play in the convergence. 

Exceptionally, for state 1, the required iteration numbers 
decrease by increasing the Reynolds numbers. So, for this 
special test case, the convergence error versus the iteration 
number for three different Reynolds numbers, 10, 100 and 
400 is plotted in Fig. 13. We review the number of iterations 
required for convergence in a 91×451 lattice for Reynolds 
numbers of 10, 100 and 400. Convergence errors against the 
required iterations number plots are shown in Fig. 13. By 
increasing the Reynolds number, the fluctuation amplitude 
around the response increases, as well as the convergence 
rate. Therefore, reduction of iteration numbers are natural. 
This happens due to the fact that there are velocity gradient 
terms in the Regularized boundary condition. When these 
terms are signified, the iteration numbers reduce. As can be 
seen in this figure, increasing the Reynolds number decreases 
the convergence rate and this origin from the velocity gradient 

term in the Regularized boundary condition. At sufficiently 
high Reynolds number the velocity gradient in the flow 
becomes more important and regularized boundary condition 
shows its benefit at high Reynolds number. 

 

Fig. 13. Convergence error versus the iteration number for 
state 4 boundary conditions 

 

5. Conclusions 

In this paper, the flow in a lid-driven cavity and a 2D 
channel were studied using regularized, Zou-He, No-slip and 
Bounce Back boundary conditions. In all Figures, the relative 
error decreases by increasing the lattice size. Permanent 
existence of strong velocity gradients in the lid-driven cavity 
is the main factor of error. Thus, regularized and No-slip 
boundary conditions lead to a better accuracy compared to 
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Zou-He and Bounce Back methods. But for the 2D channel 
flow, u y   is the only velocity gradient term, which is of 
little importance at low Reynolds numbers. As a result, it 
leads to higher truncation and round-off error in regularized 
and No-slip boundary conditions. Pressure contours inside the 
cavity were plotted in terms of  and for regularized and Zou-
He boundary conditions to evaluate the stability. According to 
these figures, strong velocity gradients lead to instability in 
the upper corners that regularized boundary condition resolves 
this problem. The numbers of iterations required for 
convergence were analyzed for both geometries. Results show 
that applying regularized and Zou-He methods on fixed 
boundaries will cause high computational costs. On the other 
hand, the influence of the inlet and outlet boundary condition 
on convergence rates in the channel flow was established 
clearly. Also, applying the regularized boundary lead to more 
rapid convergence rate in the channel flow. 

Based on the discussions, in test cases where the velocity 
gradient is important, regularized method is much more 
efficient than Zou-He and much more stable. Thus, we can 
conclude that in high Reynolds number flows and in cases 
which perturbations can easily affect the fluid flow, the 
regularized method and in low Reynolds number flows, Zou-
He method are more suitable. In the cases of strong velocity 
gradients on solid boundaries, regularized and No-slip 
methods are recommended while. at low velocity gradients, 
Zou-He and Bounce Back method are strongly adviced. 
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