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1. Introduction 

With the developmen1ts in technology, nanotechnology 

emerged and has become a focus of interest in recent years. In 

nanotechnology, nanotubes attract attention as one of the 

highly studied subjects. Nanotube is, the most general 

definition, tube-shaped 1-D nano-scale structure. In 1959, 

physicist Richard Feynman gave a speech called "There's 

plenty of room at the Bottom" [1]. He talked about the 

possibility of producing more powerful devices at smaller size 

and the advantages of miniaturization in his speech. With this 

speech, the idea of nanotechnology was first introduced by 

Feynman. Nanotechnology is an interdisciplinary field with 

great potential. Nanotechnology is studied in many disciplines 

such as Applied Physics, Materials Science, Device Physics, 

Chemistry, Chemical Engineering, Electrical Engineering, 

Health, Civil Engineering, Aerospace Engineering. One of the 

most important subjects of nanotechnology is nanotubes. 

Nanotubes are 1-D, tube-shaped nanostructures and have 

remarkable properties. Thanks to their remarkable properties, 

the interest on nanotubes has increased. 

When nanotubes are classified in terms of the atoms forming 

themselves, they can be divided into two groups: organic and 

inorganic [2]. Organic nanotubes are Carbon Nanotubes 
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(CNT). CNT, one of the most famous nano structures, was 

discovered by Sumio Iijima in 1991 [3] CNT is a C allotropic 

only composed of C atoms [4]. Hexagons obtained by adding 

the C atoms to the corners combine with each other to form a 

long, cylindrical structure, which causes the CNT structure. 

The mechanical, electrical, thermal, physical, chemical 

properties of CNTs are unconventional. CNTs have high 

Young modulus and tensile strength, low density, large 

length/diameter ratio [2]. The Boron nitride Nanotube (BNNT), 

which is an inorganic nanotube (see Figure 1), was 

theoretically estimated in 1994 [5,6]. Following this prediction, 

the first synthesis was produced in 1995 [7]. BNNT and the 

CNT are very similar structurally. CNT is formed by rolling the 

graphene layer consisting only of C atoms, while BNNT is 

formed by rolling the BN layer [8].  

According to the classical physics theories, equilibrium 

equations can be applied to every point of the object. However, 

this applies to macro-dimensional structures, and as the 

dimensions get smaller, the internal structure of the material 

and the interactions at the other points must also be considered 

[9]. Since these interactions are not handled in classical 

theories, calculations are not exactly accurate. In other words, 

taking the size effect into accounts is important in order to 
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obtain more accurate results. Therefore, Nonlocal Theory of 

Elasticity presented by Eringen is used [10]. This theory based 

on the fact that the stress of a point must depend not only on 

that point but also the function of the shape changes of all other 

points.  

Many researchers have analyzed nano/micro structures using 

various methods. Reddy [11] reformulated various beam 

theories, such as the Euler–Bernoulli, Timoshenko, Reddy, and 

Levinson beam theories, for bending, buckling and vibration 

using the nonlocal differential constitutive relations of Eringen. 

Kong et al. [12] solved the dynamic problems of Bernoulli–

Euler beams based on modified couple stress theory. Civalek 

and Demir [13] developed elastic beam model using nonlocal 

elasticity theory for the bending analysis of microtubules 

(MTs) based on the Euler–Bernoulli beam theory. Vibration 

analysis of the Euler-Bernoulli beam was reported using the 

finite element method by Eltaher et al [14]. They used 

Eringen’s Nonlocal constitutive equation. Khan and Hashemi 

[15] modeled double-walled CNTs as local and nonlocal Euler 

Bernoulli beams. They found the natural frequencies of double-

walled CNTs with various boundary conditions by using finite 

element formulation. Dinçkal [16] analyzed vibration of CNTs 

by using finite element method. CNTs were modeled according 

to Euler-Bernoulli and Timoshenko beam theory. She 

presented the results obtained with tables and graphs. 

Norouzzadeh and Ansari [17] investigated static bending of 

Timoshenko nanobeams by using finite element analysis.  

Demir and Civalek [18] presented nonlocal finite element 

formulation for vibration. Some important studeies have also 

been made by researchers for nano modeling [19-30]. Recently, 

stress analytsis of nano structures have been investigated by 

Hosseini et al. [31,32].  Shishesaz et al. [33] gives detailed 

review for size-dependent elasticity for nanostructures. 

Analysis of functionally graded nanodisks under thermoelastic 

loading based on hts ehtain gradient theory has been given by  

Shishesaz et al. [34]. Vibrations of three-dimensionally graded 

nanobeams and buckling of FGM Euler-Bernoulli nano-beams 

were discussed by Hadi et al. [35,37]. Adeli et al. [36] proposed 

torsional vibration of nano-cone based on nonlocal strain 

gradient elasticity htsett. owt aabr nbnateae es ntnahtntt hue-

iatsthaebna swbthaebnaat rtnisi cwast-ostbewaaa bnbe-nsnae 

nnesi eb bebaetna sanehataht htsett tne nssb anis nt  soni sh 

na. [83]. aeas ehtst ssssthe ewtt ne htstanl, magnetic and 

piezoelectricity on mechanical modeling of nanostructures 

have been detailed discussed [39-48].  

By this time carbon nanotubes have been detailed investigated 

via some higher-order continuum theories. In this study, 

however, the authors analyzed the boron nitride nanotube via 

size-dependent continuum theory. Different cross-sections 

have been considered and finite element formulation has been 

applied. Also, nonlocal matrix and their elements have been 

listed in detailed via beam and size-dependent parameters. 

Galerkin weighted residual method is used to obtain the finite 

element parameters. 

 

 

 

 

 

Figure 1. Demonstration of BN layer and graphene 

 

2. The Nonlocal Euler-Bernoulli Beam Theory 

The nonlocal stress tensor at point x is expressed as [10,19] 

(| ' |, ) ( ') 'K x x t x dx               (1)                                                                                                                        

where t(x)=C(x): ε(x) is the classical, macroscopic stress tensor 

at point x, (| ' |, )K x x   is kernel function, | ' |x x  is the 

distance in Euclidean form and   is a material constant that 

depends on internal and external characteristic lengths, C is the 

fourth-order elasticity tensor. The nonlocal constitutive 

formulation is 

 
2 2

01 e a t   
 

              (2) 

 

 

 

Figure 2. Illustration of coordinates of beam 

 

According to the coordinates via Figure 2 selected above, x, y, 

z indicate the length, width and height of the beam. u, v, w are 

the displacements in the x, y, z directions, respectively. The 

displacements for a Bernoulli–Euler beam can be written as 

[20] 
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( , , ) ( , )w x z t w x t                                                                 (5) 

  is the strain tensor, expressed as 
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We obtain from Eq. (6) the strains of the Euler-Bernoulli beam 

as follows 

                                
2
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x x x
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  
                   (8) 
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 
  
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                           (10) 

 0yy                                                                        (11) 

0yz zy                                                                            (12) 

0zz                                                                                   (13) 

Only 
xx  has a non-zero value. E elasticity modulus and   

stress, the strain for the linear elastic materials is expressed as 

follows  

E                                                                     (14) 

xx  is obtained if 
xx  is written in Eq. (14) as we obtained in 

Eq. (8) 
2

2

( , )
xx xx

w x t
E Ez

x
 


  


                                                (15) 

Moment (M) and the moment of inertia (I) are given by 

xx

A

M z dA                                                                       (16) 

2

A

I z dA                                                                             (17) 

Here, A is the cross-sectional area.  

For one dimensional case, the nonlocal constitutive relations 

can be written as below [10,21,22] 
2

2

0 2
( ) xx

xx xxe a E
x


 


 


                                                    (18) 

Where 
0e  is the constant which is determined experimentally, 

a  is the internal characteristic length. Multiplying z on both 

sides of Eq. (18) and integrating over the cross-sectional area 

(A) of the beam, we obtain  

 
2
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z dA e a z dA z E dA
x


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
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Substituting Eq. (8), (16) and (17) into (18), we get 
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For the transverse vibration of Euler-Bernoulli beam, the 

equilibrium conditions are 
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Where ρ is the mass density. By differentiating equation (20) 

twice with respect to the variable x and substituting Eq. (23) 

into Eq. (20), we get the equation of free vibration of Euler-

Bernoulli nanobeams 
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3. Galerkin Weighted Residual Method 

For finite element formulation, we considred the Fig. 3 as 

below. As seen in Fig. 3, beam element has two end nodes and 

four degrees of freedom. 

 

 

 

Figure 3. Illustration of a beam element 

 

The degrees of freedom are shown below 

𝑤𝑖: displacement of i ,  𝜃𝑖: rotation of i, 𝑤𝑗: displacement of j , 

and  𝜃𝑗: rotation of j. The displacement of the beam element is 

expressed by four constants due to the degrees of freedom [23-

30] 

𝑤 = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑥
2 + 𝛼4𝑥

3=[1 𝑥 𝑥2 𝑥3] [

𝛼1
𝛼2
𝛼3
𝛼4

]          (25)    

Since the rotation is expressed as 𝜃 = −
𝑑𝑤

𝑑𝑥
, it is written as 

                                                            𝜃 = −(𝛼2 + 2𝛼3𝑥 +
3𝛼4𝑥

2)                                                 (26)                                                         

 

Find the deformations of the beam element at points i (x = 0) 

and j (x = L) from Eq. (25) and Eq. (26)  

 

i (x=0)                            𝑤(0) = 𝛼1                                     (27)                                               

                                       𝜃(0) = −𝛼2                         (28) 

j(x=L)           𝑤(𝐿) = 𝛼1 + 𝛼2𝐿 + 𝛼3𝐿
2 + 𝛼4𝐿

3                    (29)                                                          

                  𝜃(𝐿) = −(𝛼2 + 2𝛼3𝐿 + 3𝛼4𝐿
2)                  (30)    

                                              

If we write the displacement and rotation expressions in matrix 

form 

 

 

  {

𝑤𝑖
𝜃𝑖
𝑤𝑗
𝜃𝑗

} =[

1 0 0 0
0 −1 0 0
1 𝐿 𝐿2 𝐿3

0 −1 −2𝐿 −3𝐿2

] {

𝛼1
𝛼2
𝛼3
𝛼4

}                                 (31) 

 

 

Write the coefficients 𝛼1, 𝛼2, 𝛼3, 𝛼4 from Eq. (31) 
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{

𝛼1
𝛼2
𝛼3
𝛼4

} =

[
 
 
 
 
1 0 0 0
0 −1 0 0
−3

𝐿2

2

𝐿

3

𝐿2

1

𝐿
2

𝐿3

−1

𝐿2

−2

𝐿3

1

𝐿2]
 
 
 
 

{

𝑤𝑖
𝜃𝑖
𝑤𝑗
𝜃𝑗

}                                         (32) 

 

Substitution Eq. (32) into Eq. (25), the shape function   is 

obtained.    

 

 =

{
  
 

  
 1 − 3

2
+ 2

3

𝐿(− + 2
2
− 

3
)

3
2
− 2

3

𝐿(
2
− 

3
) }

  
 

  
 

                                                  (33) 

 

To obtain the weak form of the governing equation obtained 

according to the nonlocal Euler-Bernoulli beam theory, the 

residue can be expressed as 

                                      𝐼 = [𝐸𝐼
𝜕4𝑤

𝜕𝑥4
− (𝑒0𝑎)

2𝜌𝐴
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
] = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒           (34) 

 

Eq. (34) is multiplied by a weighting function ( ) to define the 

weighted residue. When the weighted residual is integrated 

over the length 

 

∫ 𝜑𝐼𝑑𝑥 = 0
𝐿

0
                                                                        (35) 

 

Substituting Eq. (34) into Eq. (35) 

 

                                     ∫ [𝜑𝐸𝐼
𝜕4𝑤

𝜕𝑥4
− 𝜑(𝑒0𝑎)

2𝜌𝐴
𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+

𝐿

0

𝜑𝜌𝐴
𝜕2𝑤

𝜕𝑡2
] 𝑑𝑥 = 0          (36) 

 

Eq. (36) is integrated by parts. According to the chain rule, the 

general form  

 

                                 ∫ [𝐸𝐼
𝜕2𝜑

𝜕𝑥2

𝜕2𝜑𝑇

𝜕𝑥2
− (𝑒0𝑎)

2𝜌𝐴
𝜕𝜑

𝜕𝑥

𝜕𝜑𝑇

𝜕𝑥
𝑤̈ +

𝐿

0

𝜌𝐴𝜑𝜑𝑇𝑤̈] 𝑑𝑥 = 0  (37) 

 

By =x/L using the shape functions in Eq. (33) and the 

dimensionless local coordinate, the stiffness matrix (K) and the 

mass matrices (𝑀1, 𝑀2) are obtained  

 

𝐾 =
𝐸𝐼

𝐿3
[

12 −6𝐿 −12 −6𝐿
−6𝐿 4𝐿2 6𝐿 2𝐿2

−12 6𝐿 12 6𝐿
−6𝐿 2𝐿2 6𝐿 4𝐿2

]                                   (38) 

  

                                   𝑀1 =

𝜌𝐴

420
[

156𝐿 −22𝐿2 54𝐿 13𝐿2

−22𝐿2 4𝐿3 −13𝐿2 −3𝐿3

54𝐿 −13𝐿2 156𝐿 22𝐿2

13𝐿2 −3𝐿3 22𝐿2 4𝐿3

]                      (39) 

                                 

𝑀2 =
(𝑒0𝑎)

2𝜌𝐴

30𝐿
[

36 −3𝐿 −36 −3𝐿
−3𝐿 4𝐿2 3𝐿 −𝐿2

−36 3𝐿 36 3𝐿
−3𝐿 −𝐿2 3𝐿 4𝐿2

]                            (40) 

 

The free vibration of the Euler-Bernoulli beam is found as 

follows  

 
2 0K M                                                                       (41) 

 

Here M= 𝑀1 +𝑀2 and 𝜔 is frequency. 

 

4. Numerical Results 

In this section, the frequency values of nanotubes are obtained 

with different lengths, different e0a/L values, different cross-

sectional geometries, different boundary conditions and 

different number of elements (N). Boundary conditions are 

simply supported at both ends (S–S), clamped-clamped (C–C) 

and clamped – simply supported (C–S). The results obtained 

are shown in tables and graphs. It is seen from the Tables 1-6 

and Figs. 4-7 that the frequency values of the nanobeam 

decreases with increasing the nondimensional nonlocal 

parameters and increasing the mode numbers. The highest 

frequency value is seen on the triangular cross-section.

 

 

 

 

Table 1.  Frequencies for CNT & BNNT (109 rad/sn) 
  S – S ,  Circular ,  e0a/L = 0 , L = 40 

Mode  

Numbers 

CNT BNNT 

Analytical FEM (N=100) Analytical FEM (N=100) 

1 

2 

3 

4 

5 

148.3739 

593.4956 
1335.3651 

2373.9824 

3709.3475 

148.3739 

593.4956 
1335.3652 

2373.9828 

3709.3491 

126.1339 

504.5356 
1135.2051 

2018.1424 

3153.3474 

126.1339 

504.5356 
1135.2051 

2018.1427 

3153.3488 

 

 

 

 

 

 



B. Uzun,H. M. Numanoğlu and Ö. Civalek 

256 

 

 

Table 2. Frequencies of different geometries for analytical & FEM (109 rad/sn) 

C – S ,  L = 20 nm , BNNT , N=25 

e0a/L 
Mode 

Numbers 
Circular Rectangular Quadratic Triangular 

  Analytical FEM Analytical FEM Analytical FEM Analytical FEM 

0 

1 

2 

3 

4 

5 

788.1809 

2554.2109 

5329.1571 

9113.1741 

13906.262 

788.1812 

2554.2222 

5329.2597 

9113.6851 

13908.071 

1046.6324 

3391.7593 

7076.635 

12101.465 

18466.249 

1046.6328 

3391.7743 

7076.7711 

12102.143 

18468.650 

806.4617 

2613.4524 

5452.7599 

9324.542 

14228.799 

806.4620 

2613.4640 

5452.8648 

9325.0649 

14230.65 

1209.6091 

3919.9083 

8178.5758 

13985.849 

21341.728 

1209.6096 

3919.9257 

8178.7332 

13986.633 

21344.503 

0.1 

1 

2 

3 

4 

5 

746.3139 

2136.5522 

3826.4338 

5602.5012 

7383.1323 

746.3142 

2136.5619 

3826.5111 

5602.8340 

7384.1504 

991.0368 

2837.1465 

5081.1553 

7439.611 

9804.1268 

991.0373 

2837.1595 

5081.2580 

7440.0529 

9805.4787 

763.6237 

2186.1067 

3915.1829 

5732.4438 

7554.3743 

763.6240 

2186.1166 

3915.2620 

5732.7843 

7555.4160 

1145.3565 

3278.9339 

5872.3694 

8598.0728 

11330.780 

1145.3570 

3278.9489 

5872.4880 

8598.5836 

11332.343 

0.2 

1 

2 

3 

4 

5 

651.5667 

1550.8298 

2448.2587 

3318.7311 

4169.6422 

651.5670 

1550.8377 

2448.3126 

3318.9417 

4170.2464 

865.2212 

2059.3607 

3251.0643 

4406.9724 

5536.9049 

865.2216 

2059.3711 

3251.1360 

4407.2520 

5537.7072 

666.6789 

1586.7993 

2505.0428 

3395.7046 

4266.3516 

666.6792 

1586.8073 

2505.0979 

3395.9201 

4266.9697 

999.9494 

2380.0348 

3757.3051 

5093.2058 

6399.0861 

999.9499 

2380.0468 

3757.3878 

5093.5290 

6400.0133 

 

 

 

 

 

Table 3.  Frequencies for various N (109 rad/sn) 

C-C , Rectangular , L = 10 nm ,  e0a/L = 0.4  

Mode 

Numbers 

CNT 

Analytical N=6 N=7 N=8 N=10 N=20 

1 

2 

3 

4 

5 

4121.8764 

6752.2336 

9570.2437 

12082.4884 

14740.7602 

4123.9355 

6771.1086 

9661.8603 

12321.4960 

14837.0893 

4123.0054 

6762.7933 

9622.8533 

12231.1703 

15081.3687 

4122.5449 

6758.5661 

9602.2741 

12175.6150 

14968.7276 

4122.1535 

6754.8972 

9583.9541 

12123.4049 

14844.3726 

4121.8940 

6752.4061 

9571.1534 

12085.2929 

14748.1165 

 

 

 

 

 

Table 4.  Frequencies of CNT & BNNT for analytical solution (109 rad/sn) 

C – C ,  Triangular ,  L = 80 nm ,  e0a/L=0.2 

Mode 

Numbers 

CNT BNNT 

1 

2 

3 

4 

5 

105.4913 

210.0892 

314.4882 

413.0534 

510.3829 

89.6791 

178.5986 

267.349 

351.1402 

433.8808 
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Table 5.  Frequencies and errors of CNT & BNNT for different N (109 rad/sn) 

C – C ,  Triangular ,  L = 80 nm ,  e0a/L=0.2 

 Mode 

Numbers 

CNT BNNT 

FEM Error (%) FEM Error (%) 

N=15 

1 

2 

3 

4 

5 

105.4922 

210.1034 

314.5692 

413.3302 

511.1137 

0.00085 

0.00676 

0.02576 

0.06701 

0.14319 

89.6798 

178.6106 

267.4179 

351.3755 

434.5020 

0.00078 

0.00672 

0.02577 

0.06701 

0.14317 

N=20 

1 

2 

3 

4 

5 

105.4916 

210.0937 

314.5142 

413.1431 

510.6222 

0.00028 

0.00214 

0.00827 

0.02172 

0.04689 

89.6793 

178.6024 

267.3712 

351.2164 

434.0842 

0.00022 

0.00213 

0.00830 

0.02170 

0.04688 

N=25 

1 

2 

3 

4 

5 

105.4915 

210.0911 

314.4989 

413.0906 

510.4825 

0.00019 

0.00090 

0.00340 

0.00901 

0.01951 

89.6792 

178.6002 

267.3582 

351.1718 

433.9654 

0.00011 

0.00090 

0.00344 

0.00900 

0.01950 

N=30 

1 

2 

3 

4 

5 

105.4914 

210.0901 

314.4934 

413.0714 

510.4314 

0.00009 

0.00043 

0.00165 

0.00436 

0.00950 

89.6791 

178.5993 

267.3535 

351.1555 

433.9220 

0.00000 

0.00039 

0.00168 

0.00436 

0.00950 

 

 

 

 

 

 

Table 6. Frequencies  for analytical & FEM (109 rad/sn) 

  C – S ,  L = 20 nm , N = 100 

e0a/L Mode 

Numbers 

Circular 

CNT BNNT 

Analytical FEM Error 

(%) 

Analytical FEM Error 

(%) 

0 1 

2 

3 

4 

5 

927.1534 

3004.5709 

6268.7973 

10720.014 

16358.223 

927.1534 

3004.5709 

6268.7978 

10720.017 

16358.231 

0.00000 

 0.00000 

 0.00001 

 0.00003 

 0.00005 

788.1809 

2554.2109 

5329.1571 

9113.1741 

13906.262 

788.1809 

2554.2109 

5329.1575 

9113.1761 

13906.269 

0.00000 

 0.00000 

 0.00001 

 0.00002 

 0.00005 

0.1 1 

2 

3 

4 

5 

877.9044 

2513.2703 

4501.1129 

6590.3376 

8684.9306 

877.9044 

2513.2704 

4501.1133 

6590.3392 

8684.9354 

0.00000 

 0.00000 

 0.00001 

 0.00002 

 0.00006 

746.3139 

2136.5522 

3826.4338 

5602.5012 

7383.1323 

746.3139 

2136.5522 

3826.4341 

5602.5025 

7383.1364 

0.00000 

 0.00000 

 0.00001 

 0.00002 

 0.00006 

0.2 1 

2 

3 

4 

5 

766.4513 

1824.2731 

2879.9371 

3903.8918 

4904.8361 

766.4513 

1824.2731 

2879.9373 

3903.8927 

4904.8389 

0.00000 

 0.00000 

 0.00001 

 0.00002 

 0.00006 

651.5667 

1550.8298 

2448.2587 

3318.7311 

4169.6422 

651.5667 

1550.8299 

2448.2589 

3318.7319 

4169.6447 

0.00000 

 0.00001 

 0.00001 

 0.00002 

 0.00006 
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Figure 4. Error percentage between frequencies of analytical 

and FEM solution with different N 

 
Figure 5. First 5 frequencies of CNT & BNNT with different 

e0a/L 

 
Figure 6a. Frequencies of nanotubes with different cross-

sectional geometries with e0a/L=0.1 (CNT) 

 
Figure 6b. Frequencies of nanotubes with different cross-

sectional geometries with e0a/L=0.1 (BNNT) 

 

 
Figure 7. Frequencies of nanotubes with different e0a/L and 

boundary conditions 

. 

5. Conclusions 

In this paper, free vibration analyzes of BNNT and CNT are 

investigated based on the Nonlocal Euler-Bernoulli beam 

theory. Solutions are obtained for S-S, C-S, C-C boundary 

conditions and four different cross-section geometries such as 

circular, rectangular, quadratic, and triangular by using 

analytical and FEM. Results are shown in tables and graphs. 

The results show that frequency of the nanobeams decreases 

with increasing the nondimensional nonlocal parameters. The 

highest frequency value is seen on the triangular cross-section. 

Circular cross section has the lowest frequency value. Using 

the same geometric and material parameter, namely under the 

similar conditions, the frequency values are bigger for CNT 

than BNNT.  For FEM as the number of elements increases, the 

results approach real value. 
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