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1. Introduction 

Nanoplates are a subgroup of nanostructures with two-

dimensional geometries. They are used as thin-film elements [1], 

nano-sheet resonators [2], paddle-like resonators [3], gas sensors 

[4,5] and mass sensors [6] due to their exceptional mechanical, 

thermal and electrical properties. Researchers studied various 

mechanical behavior of nanostructures based on the experimental 

methods, molecular dynamics simulations [7-8] and classical 

continuum theories but their higher accuracy demands the need 

for developing more accurate models to analyze.  

At nanostructure, experimental and atomistic simulation 

results have shown a significant size effect [7, 9-10] on the 

mechanical properties. Computational methods such as molecular 

dynamic (MD) simulation is reasonable in the analysis of 

nanostructures [11], however this method is time consuming for 

nanostructure with large numbers of atom. The classical elasticity 

theories governing the mechanical behavior of the macro-

materials often fail to predict the properties of the nanostructures. 

This is the reason why researchers have tried to develop some 

size-depended theories to compensate the shortages of the 

classical techniques [12-16].Based on these theories various 

mechanical behavior of micro/nanoplates have been studied [17-

24].In view of the difficulties in determining the material length 

scale parameters, the modified couple stress theory first proposed 

by Yang et al. [13] that is used in this paper. This theory takes an 

advantage over the aforementioned size-dependent continuum 

theories due to involving only one material length scale 

parameter. This theory is used to determine the mechanical 

behavior of the micro-nanostructures including their vibration 

[25-27] buckling [28, 29] and electromechanical properties [30-

32]. 

As a result of nanoplate’s application as resonators and 

sensors, it is important to understand their vibration 

characteristics. Therefore, the vibration and dynamic analysis of 

the nanoplates has become a subject of primary interest in recent 

studies [33-35].Kiani[36] studied vibrations of an embedded 

nanoplate subjected to biaxially applied loads and a moving 
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In this paper, a new viscoelastic size-depended model developed based on a 
modified couple stress theory and the for nonlinear viscoelastic material in order 
to vibration analysis of a viscoelastic nanoplate. The material of the nanoplate is 
assumed to obey the Leaderman nonlinear constitutive relation and the von 
Kármán plate theory is employed to model the system. The viscous parts of the 
classical and nonclassical stress tensors are obtained based on the Leaderman 
integral and the corresponding work terms are calculated. The viscous work 
equations are balanced by the terms of size-dependent potential energy, kinetic 
energy. Then the equations of motion are derived from Hamilton’s principle. 
The governing nonlinear integro-differential equations with coupled terms are 
solved by using the fourth-order Runge-Kutta method and Galerkin approach. 
The results are validated by carrying out the comparison with existing results in 
the literature when our model is reduced into an elastic case. In order to explore 
the vibrational characteristics, the influences of the thickness ratio, relaxation 
coefficient, and aspect ratio on the frequency and damping ratio were also 
examined. The results revealed that the frequency, vibration amplitude and 
damping ratio of viscoelastic nanoplate were significantly influenced by the 
relaxation coefficient of nanoplate material, and length scale parameter. Also, it 
was found that with increasing (h/l) the vibration frequency decreases and its 
amplitude and damping ratio increase. 
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nanoparticle. At this study the nanoplate is modeled via nonlocal 

Kirchhoff plate. The vibration of elastic thin nanoplates traversed 

by a moving nanoparticle involving Coulomb friction is 

investigated using the nonlocal continuum theory of Eringen[37]. 

Murmu and Pradhan [38] studied small-scale effect on free in-

plane vibration of the nanoplates by employing nonlocal 

continuum mechanics. They also investigated the vibration 

response of the nanoplates under uniaxially pre-stressed 

conditions [39]. Size-dependent natural frequencies and mode 

shapes of circular nanoplates under the effect of surface 

properties has been investigated by Assadi and Farshi [40]. In 

another work, a three dimensional vibration analysis of 

anisotropic layered composite nanoplates has been studied based 

on modified couple-stress theory [41]. Buckling and vibration of 

nanoplates such as single layered graphene sheets have been 

considered using nonlocal elasticity theory [42]. In that case, 

Navier type solution was used for simply supported sheets and 

Levy type method was used for nanoplates with two opposite 

edge simply supported and remaining ones arbitrary. Malekzadeh 

et al. [43] investigated the free vibration of orthotropic arbitrary 

straight-sided quadrilateral nanoplates. Recently, free vibration of 

a circular FG Microplates in thermal environments at different 

boundary condition have been investigated [44]. 

 

It should be noted that a large amount of previous researcha 

activities have been concentrated on the calculation of 

frequencies of the nanoplates with elastic structure whereas the 

nanostucture similar to many materials can also reveal 

viscoelastic structural damping. Recently some experiments have 

revealed that the viscoelastic phenomena widely exist in NEMS 

and MEMS materials such as silicon [45], polysilicon [46] and 

metals [47]. Su et al. recently reported the viscoelastic properties 

of graphene oxide nanoplate proved by their experimental 

investigations [48]. The tensile tests on this nanoplate show clear 

hysteresis loops, indicating the viscoelastic property of the 

graphene oxide nanoplate. In addition, Liu and Zhang [49] 

discussed the vibration of a double-viscoelastic FGM nanoplate, 

and Pouresmaeeli et al [50] investigated the vibration analysis of 

viscoelastic orthotropic nanoplates resting on viscoelastic 

medium. Jamalpoor et al [51] studied free transverse vibration 

analysis of orthotropic multi-viscoelastic microplate system via 

modified strain gradient. The vibration and instability of axially 

moving viscoelastic micro-plate is investigated. The viscoelastic 

structural properties of micro-plate are taken into consideration 

based on Kelvin’s model [52]. In all above mentioned work, the 

Boltzmann superposition principle was incorporated, enabling 

the modeling of linear viscoelastic materials. However, it is well 

known that many viscoelastic materials are not linear hence they 

should be modeled nonlinearily in order to give an adequate 

description of a viscoelastic structure behavior. The comparison 

research [53] has shown that the Leaderman model [54] is one of 

useful representations, when prediction and simplicity are 

concerned. This model have been used in this paper. 

To the best of our knowledge, no investigation has been 

performed on the vibration of nonlinear viscoelastic nanoplates 

by modified continuum models. The aim of this study is to 

present a new size-depended model based modified couple stress 

for nonlinear viscoelastic material in order to vibration analysis 

of the nanoplates. The material of the nanoplate is assumed to 

obey the Leaderman nonlinear constitutive relation and the von 

Kármán plate theory is employed to model the system. The 

dynamic governing equations together with initial conditions and 

boundary conditions are obtained by a combination of the basic 

equations of modified couple stress theory [13] and Hamilton’s 

principle. Then, the nonlinear size-dependent viscoelastically 

coupled integro-differential equation are solved by incorporating 

the expansion theory and Galerkin method with the fourth-order 

Runge–Kutta technique, and some useful results are obtained. 

2. Governing equations of viscoelastic nanoplates  

Consider a rectangular plate of length a, width b, and 

thickness h with viscoelastic material behavior. To obtain the 

governing equation of this viscoelastic nanoplate the generalized 

is applied 

 
2

1

0

t

t

T U W dt     (1) 

where δT indicates the variation of the kinetic energy, δU 

represents the variation of the elastic strain energy or elastic 

potential energy, and δW denotes the virtual work done by non-

conseravtive forces such as external and viscous dissipation. 

Here, it is convenient to divide the virtual work δW into two 

parts. One is the virtual work δWext performed by all external 

forces and the other is the virtual work δWvis performed by the 

viscous dissipative forces. Therefore, we get 

ext vis
W W W     (2) 

Substituting Eq. (2) into Eq. (1), the generalized Hamilton’s 

principle can be rewritten as 

 
2

1

0

t

ext vis

t

T U W W dt        

(3) 

In the following analysis, the formulation is limited to small 

strains, and moderate rotations and displacements, so that there is 

no geometric update of the domain, and consequently, there is no 

difference between the Cauchy stress tensor and the second 

Piola–Kirchhoff stress tensor. In the modified couple stress 

theory proposed by Yang et al. [13] the strain tensor  and the 

symmetric part of the curvature tensor χ can be given as 

   
1 1

2 2

T T

u u                  
(4) 

where u is the displacement vector and   is the rotation vector 

defined as 

1
( )

2
curl u   

(5) 

According to the Leaderman constitutive relation [54], for a 

viscoelastic structure the stress tensor σ and deviatoric part of the 

couple stress tensor m are given as 

2

( ) 2

2

tr I

m l

    

 

   

 
 

(6) 

where λ and μ are time-dependent Lame’s constants, l is the 

material length-scale parameter, and the Stieltjes’s convolution 

operation symbol ‘ ’ is defined as 

0

( )
( ) ( ) (0 ) ( ) ( )

( )

t
g t

g t k t g k t k d
t


 



  
  

 
  

(7) 

Based on the definition in Eq. (7), the Eq. (6) can be rewritten as 

 

 

0 0

0

( ( )) 2 ( )

( ) ( ( )) 2 ( ) ( )

t

e v

tr t I t

t tr I t d

    

          

  

    
 (8) 
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2 2

0

0

2 ( ) 2 ( ) ( )

t

e v
m l t l t d m m              (9) 

where λ0 and μ0 are the initial Lame’s constants; namely, their 

values at t=0 and ( ) ( ) ( ) / 2(1 )t G t E t    . E(t) is the 

relaxation function and G(t) is the shear modulus related to the 

relaxation function E(t) and the time-independent Poisson’s ratio 

ν The over dot (·) denotes differentiation with respect to the time. 

Therefore, the total stress tensor and deviatoric part of the total 

couple stress tensor could be both decomposed into two parts: 

current stress tensor σe and past history stress tensor σv; current 

couple stress tensor me and past history couple stress tensor mv . 

Considering the Cartesian system (x, y, z) shown in Fig.1, where 

the xy-plane is coincident with the geometrical mid-plane of the 

undeformed nanoplate, the displacement field according to the 

Kirchhoff’s plate theory [55] can be expressed as 

 
Fig 1. Configuration and coordinate system of the nanoplate [55] 

 

( , , ) , ( , , ) , ( , , )
w w

u u x y t z v v x y t z w w x y tx y zx y

 
    

 
 

(10) 

This approximation is applicable for the considered aspect ratios 

in this paper. However, some limitations related to this plate 

theory is also applicable here. For example, very large aspect 

ratios are better to considered as the beam model. In addition, 

small length to thickness ratios are better to be treated as the 

Mindlin or higher-ordered plate theories. The time-dependent 

variables u, v and w are the middle surface displacement 

components in the x, y and z directions, respectively. considering 

the von-Karman non-linearity, the strain components of any point 

in the nanoplate are expressed as 

22 1

2 2

22 1

2 2

21
2

2

u w w
zxx x xx

v w w
z

yy y yy

u v w w w
zxy y x x y x y







   
    

  

   
    
  

     
           

 

(11)  

 

Substituting Eq. (10) in Eq. (5), we obtain 

1
1 2 3 2

w w v u

y x x y
  

    
    
    

 

(12) 

 

Similarly, from Eqs. (4) and (10) it follows that 

2 2

011 22 33

2 2 2 21 1
12 132 2 22 4

2 21

23 4 2

w w

x y x y

w w v u

x yy x x

v u

x y y

  

 



 
   

   

      
      
         

 
  

     

 

(13) 

 

substituting Eq. (11) into Eq. (8), the following equations can be 

obtained 

 

 

 

222 21 10
2 2 22 2(1 )

222 2( ) 1 1

2 2 22 2(1 )0

E u w w v w w
z zexx x x y yx y

t E t u w w v w w
z z d

vxx x x y yx y

eyy

 



  





                                      

                                      

2 22 21 10
2 2 22 2(1 )

2 22 2( ) 1 1

2 2 22 2(1 )0

0

E v w w u w w
z z

y y x xy x

t E t v w w u w w
z z d

vyy y y x xy x

G
exy





  





                                      

                                        




2
2

2
( ) 2

0

u v w w w
z

y x x y x y

t
u v w w w

G t z dvxy y x x y x y
  

    
   
      
 

     
     
      
 

 (14) 

 

Similarly, after substituting Eq. (13) into Eq. (9), we can obtain 

2 22 2
2 , 2 ( )0

2 2
2 22 , 2 ( )

0
0

2 2 2 2
2 2, ( )

0 2 2 2 2

t
w w

m l G m l G t dexx vxxx y x yo

tw w
m l G m l G t d

eyy vyyx y x y

tw w w w
m l G m l G t d

exy vxy
y x y xo

m
exz

 

 

 

    
              

    
     
      
   

      
       
         


2 2 2 21 12 2, ( )

0 2 22 2
0

2 2 2 21 12 2
, ( )02 22 20

tv u v u
l G m l G t d

vxzx y x yx x

t
v u v u

m l G m l G t deyz vyzx y x yy y

 

 

      
      
          

                       

 (15) 

According to the modified couple stress theory of Yang et al. 

[13], we know that the variation of the elastic potential energy is 

in the following form 

( . . )
e e

U m dv      (16) 

Integration on volume for nanoplate can be written as 

2

2

h

F dv F dz dA
hV A

  


 (17) 

After substituting Eq. (17) into Eq. (16) and integrating by parts 

and collecting the coefficients of ( u , v , w ), the following 

result can be obtained 

22
1 1

[
22 2

22
1 1

22 2

2 22 2

2
2 2

2 2 2

( )
2 2

N RN Rexy eyzexx exzU u
x y x yA y

N N RReyy exy eyzexz v
y x x yx

M MM Reyy exyexx exx

x y x yx y

R R R
exy exy eyy

P w
ex yy x

 



    
          

 

    
          
 


   

   
     


  

   
  

w dA




 




 
 



 

(18) 
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where stress and couple resultants can be defined by integrating 

corresponding stresses along the thickness as follows 

/2 /2

/2 /2

h h
N dz R m dz

eij eij eij eij
h h

  
 

 (19) 

and 

( )
w w w w

P w N N N Ne exx exy exy eyyx yx y x y

       
                

 
(20) 

Similarly, the virtual work performed by the viscous dissipative 

forces can be givens as 

( . . )W U m dv
vis vis v v

        
(21) 

By integration 



22
1 1

22 2

22
1 1

22 2

2 22 2

2
2 2

2 2 2

( )
2 2

N RN Rvxy vyzvxx vxzW uvisco x y x yA y

N N RRvyy vxy vyzvxz v
y x x yx

M MM Rvyy vxyvxx vxx

x y x yx y

R R R
vxy vxy vyy

N w
x yy x

 





    
          

 

    
          
 

   
  

    

  
   

  

w dA




 
 
 
 
 



 (22) 

Where stress and couple resultants can be defined by integrating 

corresponding stresses along the thickness as follows 

/2 /2

/2 /2

h h
N dz R m dz

ij ij ij ij
h h

     
 

 (23) 

and 

( )
w w w w

P w N N N N
xx xy xy yyx x y y x y    

        
      
        

 (24) 

The virtual work done by external forces consists of three parts: 

(1) virtual work done by the body forces 

in ( / 2, / 2)V h h   , (2) virtual work done by surface 

tractions acting on the top and bottom surfaces Ω, and (3) virtual 

work done by surface tractions acting on the lateral 

surface ( / 2, / 2)S h h   , where Ω denotes the middle 

surface of the plate and   is the boundary of the middle surface 

[56]. Let (fx ,fy ,fz ) be the body forces, (cx ,cy ,cz) be the body 

couples, (qx ,qy ,qz ) be the tractions acting on  , and (tx ,ty ,tz) 

and (sx ,sy ,sz)be the Cauchy traction and surface couple, 

respectively, acting on S. Then, the virtual work done by external 

forces is [57]. 

( )
1 2 3

( )
1 2 3

W t u t v t w s s s dext x y z x y z

f u f v f w q u q v q w c c c dA
x y z x y z x y z

      

        

       


        


 

(25) 

The first variation of kinetic energy of structure is given as 

 x x y y z zK u u v v w Vw d          
(26) 

where ρ is mass density of the nanoplate. In the Eq. (26) and 

throughout this paper, the overhead “·” and“··” denote, 

respectively, the first and second time derivatives. 

Derivation Eq. (10) respect to time and substituting in Eq. (26) 

gives 

  ( . . )
0 2

( )
1

w w w w
K I u u v v w w I

x x y yA

w w w w
I u u v v dA

x x y y

 
   

 
 

   
    

   

   
   

    

 

(27) 

Where 

   
2 21, , , ,

0 1 2

2

h

z z dz I I I
h

 


 

(28) 

Substituting the expressions for U ,
vis

W ,
ext

W , and K from 

the Eqs. (18), (22), (25) and (27) into Eq. (3) and integrating by 

parts, and collecting the coefficients of ( u , v , w ), the 

dynamic governing equation of the viscoelastic nanoplate can be 

obtained as 
22

1
:

2 2

1

0 12

22
1

:
22

1
0 12

2 22

: 2
2 2

2 ( )

N RN Rxy yzxx xzu f xx y x y y

c wz
q I u Ix y x

N N RRyy xy yzxzv f
yy x x yx

c wzq I v I
y x y

M MM yy xyxxw
x yx y

R R
yy xx

x y







    
         

 
   

 

    
        

 

 
   

 

 
 

  

 
 

 

2 2

( )
2 2

2 2

( ) ( )0 2 12 2

R R
xy xy

P w
x y

cc yx
f qz z y x

w w u v
I w I I

x yx y

 
 

 


    

 

   
   

  

 (29) 

where,
ij eij ij

N N N


  , ( )
e

P w P P


  and 
ij eij ij

M M M


   

The Equation (29) is the system of integral-differential equations 

for a viscoelastic nanoplate based on the modified couple stress 

theory, which contains an additional internal material length 

scale parameter. Moreover, this additional material constant not 

only affects the current situation, but also affects the past history 

situation. Furthermore, when the past history term is neglected 

the Eq. (29) could be reduced into the size-depended model for 

elastic nanoplate, and when the size effect is neglected, 

i.e. 0l  , it could be reduced into the classical viscoelastic plate 

model. 

The equations of motion can be expressed in terms of 

displacements (w) as: 

  4 4: ( ) ( )0
0

( ) ( ) ( ( ))0
0

2 2
) ( ) ( )0 2 12 2

3 2

2 22(1 )12(1 ) 1

t
w D A E w E t w dn

t
B E P w E t P w dn

cc y w w u vxf q I w I Iz z y x x yx y

h hl h
D A Bn n

   

  

 

 
 
  
 

 
 
  
 

     

  

    
        

    

  
 

 (30) 

where 

2 1

2 2 2
2 1
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2 2 2 21

2
(1 )
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x x x y y yx
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x y y x x y











 
                   
        

              
      
     

        

 (31) 
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For homogenous rectangle plate I1 become zero.  For 

convenience, the following nondimensional variables and 

parameters are introduced 

4
0, , , , , ,

0 3
0

I ax y w t a l
x y w t l T

a b h T b h E h
        (32) 

In this paper, the standard anelastic linear solid model which is 

suggested by most experiment results [58, 59] is introduced for 

the material viscoelasticity, and the relaxation function is given 

as 

( ) tE t A Be    (33) 

where λ is the element relaxation coefficient of the nanoplate 

material.The Eq.(33) implies the initial Young’s modulus 

0
(0)E E A B   .Then the nondimensional form of 

relaxation function is introduced as 

( )
( )

0

E t tn t A Be
E

  
 (34) 

where ,
A A

A B
A B A B

 
 

and T   

The present study considers the nanoplate with all edges simply 

supported. The solutions are assumed as [60] 

21 22( , ) ( ) sin 2 (cos 2 1 )
216 1 1

21 12( , ) ( )sin 2 (cos2 1 )
2 216 1 1

( , ) ( ) sin sin
1 1

h
u x y t x y

mnam n

h
v x y t y x

mnbm n

w x y t x y
mn

m n


   




   

 

 

 
   
 

 
    

 

 
 
 

 

(35) 

where, α=mπ and β=nπ. Clearly, this choice of displacements 

(u,v,w) satisfies the simply supported boundary conditions of the 

plate. Furthermore, the expressions of u and v also satisfy the 

first two equations of the Eq. (30) automatically. To solve the last 

equation of Eq. (30) for Φmn(t) ,we use the Bubnov–Galerkin 

approach, and compute the integral. (With dropping the asterisk 

notation for brevity) 

11
sin sin 0

00

x y dx dy     

(36) 

where   is the left-hand side of the Eq. (30 c). Substituting the 

expressions of (u,v,w) into Eq. (30c), the following expression of 

  is obtained 

 1 2 2 2 4 4 4 2 4 4 44 2( ) 2( 1)( cos 2 cos 2 )
216(1 )

( )3 3( ) ( )
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 
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

       
 

       
 
 

              
       

 

(37) 

Substituting Eq. (37) into Eq. (36), the solution of ( )
mn

t can be 

obtained from 

 1 ( )2 2 2 2 4 4 4 3 34 (3 )( ) ( ) ( )
216(1 ) 0

1 1 ( )2 2 2 2 2( ) ( ) ( ) ( ) 0
2 2(1 ) 012(1 ) 0

t
t

t B e d

t
t

l t B e d t
mn

 
         



 
     



 
  

       
  

             
     

 (38) 

It is worth mentioning that, Eq. (38) is the resulting nonlinear 

integro-differential equation of the viscoelastic nanoplate based 

on the modified couple stress theory. The fourth-order Runge-

Kutta method can be used to solve this equation after some 

algebraic processes [61].  

3. Numerical results and discussion 

For verification the accuracy of the present results, a comparison 

has been carried out with available data in the literature [62, 63] 

for an elastic rectangular plate ( 0  ). The first linear 

dimensionless natural frequency of the out-of-plane motion 

 2/ /a h E   are listed in table-1 for several thickness ratios (h/l). 

It can be found that the present results are in good agreement 

with the results given by Ref. [62, 63]. For illustrative examples, 

the nanoplate is assumed to be made of epoxy with the following 

material properties: 

31220 / 1.44 0.38Kg m E GPa     

 

Table1. Comparison of first linear dimensionless natural frequency 

for elastic nano plate (a/b=1). 
h/l Non Classical plate classical plate (l=0) 

 Ref [63] Present Ref [62] Present 

1 13.381 13.383 6.16 6.16 

2 8.552 8.558 6.16 6.16 

3 7.320 7.323 6.16 6.16 

4 6.833 6.839 6.16 6.16 

5 6.584 6.602 6.16 6.16 

6 6.461 6.470 6.16 6.16 

 

 

 

At above table two significant effects due to the length scale 

parameter can be observed. First, it can be seen that the natural 

frequencies predicted by the new model are always higher than 

those predicted by the classical Kirchhoff plate theory. This is 

due to the increased stiffness predicted by the present model. 

Also, it can be found that the differences in natural frequencies 

for classical and present model are larger when the thickness 

ratio is small (e.g. h/l<3), while they are decreasing or even 

diminishing with increase in thickness ratio. This reveals that the 

size effect is significant only when the plate thickness is as small 

as the material length scale parameter. 
To study the effect of variation of the length scale parameter on 
the vibration behavior of the nanoplate, the first three 
dimensionless natural frequencies are tabulated in Table 2 for 
linear and nonlinear model (von-karman strain), various Length 
scale thickness ratios(l/h) and some aspect ratios a/b. 

It is apparent that the dimensionless natural frequency increases 

for increase in values of the length scale parameter for all modes 

of vibration. This is because of the fact that the plate becomes 

stiffer by increasing the length scale parameter. It can be seen 

that the first frequency of a nonoplate with a/b=2 equals to the 

second frequency of a nanoplate with a/b=1.This is rated to the 

constants of the equating (38) and the same effect can be seen at 

Ref.[63]. 
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Table 2. First three dimensionless natural frequencies with various 

length scale parameters 

(l/h) 

a/b=1 a/b=2 

1  
2  

3  
1  

2  
3  

Lma 

0.1 6.27 
 

15.68  31.36 15.68 53.32 116.06 

0.5 8.55 21.39 42.79 21.39 72.74 158.32 

1 13.38 

 

33.45 66.91 33.45 113.76 247.6 

5   59.72 149.31 298.63 149.31 507.67 1105 

10 118.97 297.44 594.96 297.44 1011 2202 

 

Nmb 

0.1 7.59 16.53 31.88 16.53 53.65 116.23 

0.5 9.22 21.75 43 21.75 72.87 158.39 

1 13.57 
 

33.55 66.97 33.55 
 

113.79 247.62 

5 59.72 149.31 298.63 149.31 507.67 1105 

10 118.97 297.44 594.96 297.44 1011 2202 

a: Linear model b: Nonlinear model 

Table 3. First dimensionless damped frequencies with different 

dimensionless relaxation coefficient and various length scale 

parameters. 

  l/h a/b=1 a/b=2 

Lm Nm Lm Nm 

1 

0.1 6.23 10.94 15.66 20.38 

0.5 8.52 11.79 21.38 23.95 

1 13.36 14.76 33.45 34.26 

5 59.72 59.74 149.32 149.33 

10 118.97 118.97 297.44 297.44 

5 

0.1 5.78 10.07 15.35 19.72 

0.5 8.10 11.07 21.13 23.51 

1 13.02 14.30 32.27 34.03 

5 59.61 59.63 149.27 149.28 

10 118.92 118.92 297.44 297.44 

15 

0.1 5.35 9.21 14.23 18.24 

0.5 7.40 10.12 19.96 22.19 

1 11.97 13.17 32.25 32.96 

5 58.90 58.91 148.93 148.94 

10 118.50 118.50 297.26 297.26 

The first dimensionless damped frequencies are tabulated in 

Table 3 for various Length scale thickness ratios (l/h), 

dimensionless relaxation coefficient (  ) and some aspect ratios 

a/b. it can be seen that dimensionless damped frequencies 

increases for increase in values of the length scale parameter like 

natural frequencies. As expected the frequencies decrease with 

increasing dimensionless relaxation coefficient  . Also nonlinear 

model frequencies are larger than linear model for all aspect ratio 

and length scale parameters. In order to highlight the difference 

between the linear frequencies and the corresponding nonlinear 

ones, the variation of these frequency are depicted at different 

relaxation times versus initial excitation in Fig. 2. It is observed 

that the nonlinear vibration frequency is higher than its linear 

counterpart under the action of the same initial excitation 

condition. This phenomenon are attributed to the intrinsic 

stiffening effect of the nanoplate brought by geometric 

nonlinearity Moreover, one can find that the nonlinear frequency 

gets larger with the increase of the excitation velocity. This is 

also due to the intrinsic stiffening effect. 

 

Fig 2. Variation of Linear and nonlinear damped frequency at 

different relaxation time versus excitation velocity  

(a/b=1 and l/h=0.1) 

 
a: (l/h=0.1, λ=0.5,V0=10) 

 
b:  (l/h=0.5, λ=0.5,V0=10) 

 
c: (l/h=1, λ=0.5,V0=10) 

 

Fig 3. Vibration response curves of the center deflection vs. time for 

the viscoelastic nanoplate. 
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(a) 

 
(b) 

 
(c) 

 

Fig 4. Variation of damping ratio and eigenfrequency with respect to 

thickness ratio for different values of relaxation time; (a) damping 

ratio, (b) imaginary part and (c) real part 

The Effect of linearity, nonlinearity (von-karman strain) and 

length scale thickness ratio on vibration response of the centre 

deflection of the viscoelastic nanoplate are shown in Fig. 3. The 

aspect ratio is assumed to 1. It is apparent that vibration 

amplitude decrease with increasing length scale thickness ratio 

(compare fig.3 a-c). Also difference between linear and nonlinear 

model is more obvious at smaller thickness ratio. 

In damped vibration the damping ratio can be obtained from this 

relation  
2

1 /
d n

    . Where
d

  ,
n

  and   is damped 

frequency, natural frequency and damping ratio respectively. The 

damping ratio   and eigenfrequency of a square nanoplate 

versus the thickness ratio for some dimensionless relaxation 

coefficients are depicted in Fig 4. This figure show how the 

damping ratio of a viscoelastic nanoplate is a function of the 

length scale parameter. Two significant effects due to the length 

scale parameter can be observed. First, it can be seen that the 

imaginary part of frequency decreases by increasing thickness 

ratio because the length scale parameter tends to have a 

dampening effect on the vibration frequency [64], also it can be 

found that the rate of increase of the damping ratio is larger at 

small thickness ratio (e.g. h/l<5) and then decreases to zero at 

h/l=15. Therefore, increasing the thickness ratio beyond this 

value has no effect on damping ratio. It is observed that the 

nonlinear vibration damping ratio and imaginary part of 

frequency is higher than its linear counterparts at the same 

thickness ratio. 

 
(a) 

 
(b) 

 
(c) 

Fig 5. Variation of damping ratio and eigenfrequency with respect to 

relaxation time for different thickness ratio ;(a) damping ratio, (b) 

imaginary part and (c) real part 

In order to demonstrate the effect of dimensionless relaxation 

coefficient on free vibration behavior of a viscoelastic nanoplate, 

the eigenfrequency and damping ratio (  ) of square nanoplate 

are depicted in Fig.5. It can be seen the imaginary part of 

eigenfreuqncy decreases by increasing relaxation time due to the 

dissipation of system energy. Also, the relation between 

relaxation coefficient and damping ratio is not linear and its 

increasing rate decrease and become zero while the relaxation 

coefficient increase. It is observed that the damping ratio is 

higher at larger thickness ratio because the length scale parameter 

tends to have a dampening effect on the vibration frequency. The 

figure shows that the nonlinear vibration damping ratio and 

imaginary part of frequency is higher than its linear counterparts 

at the same relaxation time.  

4. Conclusion 

In this paper, a new viscoelastic size-depended model developed 

based on a modified couple stress theory and the for nonlinear 
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viscoelastic material in order to vibration analysis of a 

viscoelastic nanoplate. The material of the nanoplate is assumed 

to obey the Leaderman nonlinear constitutive relation and the 

von Kármán plate theory is employed to model the system. The 

viscous parts of the classical and nonclassical stress tensors are 

obtained based on the Leaderman integral and the corresponding 

work terms are calculated. The viscous work equations are 

balanced by the terms of size-dependent potential energy, kinetic 

energy. Then the equations of motion are derived from 

Hamilton’s principle. The governing nonlinear integro-

differential equations with coupled terms are solved by using the 

fourth-order Runge-Kutta method and Galerkin approach. 

Vibration analysis were performed for a simply supported 

rectangular viscoelastic nanoplate. In order to explore the 

vibrational characteristics, the influences of the thickness ratio, 

relaxation coefficient, and aspect ratio on the frequency and 

damping ratio were also examined. 

 The results were found to be in good agreement with 

the existing data in the literature. 

 It can be found that the differences in natural 

frequencies for classical and present model are larger 

when the thickness ratio is small (e.g. h/l<3), while they 

are decreasing or even diminishing with increase in 

thickness ratio. This reveals that the size effect is 

significant only when the plate thickness is as small as 

the material length scale parameter. 

 The results revealed that the frequency, vibration 

amplitude and damping ratio of viscoelastic nanoplate 

were significantly influenced by the relaxation 

coefficient, and length scale parameter.  
 

 

 It is observed that the nonlinear vibration frequency is 

higher than its linear counterpart under the action of the 

same initial excitation condition. This phenomena are 

attributed to the intrinsic stiffening effect of the 

nanoplate brought by geometric nonlinearity Moreover, 

one can find that the nonlinear frequency gets larger 

with the increase of the excitation velocity. This is also 

due to the intrinsic stiffening effect. 

 The imaginary part of frequency decreases by 

increasing thickness ratio because the length scale 

parameter tends to have a dampening effect on the 

vibration frequency 

 The Imaginary part of eigenfreuqncy decreases by 

increasing relaxation time due to the dissipation of 

system energy. 

 It was found that by increasing (l/h) the vibration 

amplitude and damping ratio decrease.  

 It can be seen the relation between relaxation 

coefficient and damping ratio is not linear and its 

increasing rate decreases and becomes zero. 

 It is observed that the nonlinear vibration damping ratio 

and imaginary part of frequency is higher than its linear 

counterparts at the same thickness ratio and relaxation 

time.  

The presented new results for the viscoelastic nanoplates can be 

used as a benchmark solution for future researches. 
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