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1. Introduction 

Nowadays nanoplates have been used widely in nano-sensors and 

nano-resonators. In the nanostructure, the internal characteristic 

length scale is comparable to the size if systems. As a result, for 
an accurate modeling, the atomic forces should be considered to 

account, which theories of classical continuum mechanics cannot 
consider these forces. Recently several non-classical theories such 

as couple stress [1] , strain gradient [2] and nonlocal theory [3] try 
to capture the size effect. Among these methods nonlocal theory 

has been used widely. In the classical theories of continuum 
mechanics, the stress in a point is related only to the strain in that 

specific point; however, in the nonlocal theory, the stress is related 
to the strain in the whole of the volume. Eringen [4] presented this 

theory and used it in different problems. 

Many researches have contributed to study the vibration and 

buckling analysis of macro  and nanoplates [5-7]. Pradhan and 
Phadikar [8] reformulated classical plate theory and first-order 

shear deformation theory of plates using the  nonlocal differential 
constitutive relations of Eringen. Murmu and Pradhan [9] 

investigated small-scale effects on the free in-plane vibration of 
nanoplates employing nonlocal continuum mechanics. 

Aghababaei and Reddy [10] presented analytical solutions of 
bending and free vibration of a simply supported rectangular plate 

using the nonlocal linear elasticity theory of Eringen to illustrate 
the effect of nonlocal theory on deflection and natural frequency 

of the plates. Aksencer and Aydogdu [11] studied buckling and 
vibration of nanoplates using nonlocal elasticity theory. 

Malekzadeh and Shojaee [12] extended the application of a two-
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variable refined plate theory to the free vibration of nanoplates. 
Chakraverty and Behera [13] considered vibration analysis of 

isotropic rectangular nanoplates based on the classical plate theory 
in conjunction with Eringen’s nonlocal elasticity theory. They 

used Rayleigh-Ritz method with algebraic polynomial 
displacement function to solve the vibration problem of isotropic 

rectangular nanoplates subjected to different boundary conditions. 
Malekzadeh and Shojaee [14] employed a two-variable first-order 

shear deformation theory in combination with surface free energy 
and small scale to present a simple and computationally efficient 

formulation for the free vibration of nanoplates with arbitrary 
boundary conditions.  Chakraverty and Behera [15] studied free 

vibration of non-uniform embedded nanoplates based on classical 
plate theory in conjunction with nonlocal elasticity theory.  

Panyatong et al. [16] developed the second-order shear 
deformation plate theory for the study of the natural frequencies of 

rectangular nanoplates based on the nonlocal elasticity theory of 
Eringen. Behera and Chakraverty [17] applied the Rayleigh-Ritz 

method to solve governing differential equations of the free 
vibration of nonhomogeneous rectangular nanoplates. Faroughi 

and Goushegir [18] employed the Ritz method to analyze the free 
in-plane vibration of heterogeneous rectangular nanoplates 

corresponding to Eringen’s nonlocal elasticity theory. Karimi et al. 

[19] used finite difference method to study the size-dependent free 
vibration characteristics of rectangular nanoplates considering the 

surface stress effects.  Sarrami-Foroushani and Azhari [20] 
analyzed the buckling and vibration of thick rectangular 

nanoplates. Hosseini-Hashemi et al. [21] presented analytical 
closed-form solutions in explicit forms to investigate small scale 

effects on the buckling and the transverse vibration behavior of 
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In this paper, the wave propagation method is combined with nonlocal elasticity theory 

to analyze the buckling and free vibration of rectangular Reddy nanoplate. Wave 
propagation is one of the powerful methods for analyzing the vibration and buckling of 

structures. It is assumed that the plate has two opposite edges simply supported while 

the other two edges may be simply supported or clamped. It is the first time that the 

wave propagation method is used for thick nanoplates. In this study, firstly the matrices 

of propagation and reflection are derived. Then, these matrices are combined to provide 

an exact method for obtaining the natural frequencies and critical buckling loads which 

can be useful for future studies. It is observed that obtained results of the wave 

propagation method are in good agreement with the obtained values by literature. At the 

end the obtained results are presented to evaluate the influence of different parameters 

such as nonlocal parameter, aspect ratio and thickness to length ratio of nanoplate. 
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Levy-type rectangular nanoplates based on Reddy’s nonlocal 
third-order shear deformation plate theory. Rong et al. [22] 

proposed an analytical Hamiltonian-based model for the dynamic 
analysis of rectangular nanoplates using the Kirchhoff plate theory 

and Eringen’s nonlocal theory. Daneshmehr et al. [23] investigated 
the free vibration behavior of the  nanoplate made of functionally 

graded materials with small-scale effects. The generalized 
differential quadrature method (GDQM) was used to solve the 

governing equations for various boundary conditions to obtain the 
nonlinear natural frequencies of FG nanoplates. Hosseini et al. [24] 

studied stress distribution in a single-walled carbon nanotube 

under internal pressure with various chirality. Hosseini et al. [25] 
presented the stress analysis of ratating nano-disk of functionally 

graded materials with nonlinearly varying thickness based on 
strain gradient theory. Zamani Nejad et al. [26] used a semi-

analytical iterative method as one of the newest analytical methods 
for the elastic analysis of thick-walled spherical pressure vessels 

made of functionally graded materials subjected to internal 
pressure. In other work,  Zamani Nejad and Hadi [27] formulated 

the problem of the static bending of Euler-Bernoulli nano-beams 
made of bi-directional functionally graded material with small 

scale effects. Also, Zamani Nejad and Hadi [28] investigated the 
free vibration analysis of Euler-Bernoulli nano-beams made of bi-

directional functionally graded material with small scale effects. 
Zamani Nejad et al. [29] presented consistent couple-stress theory 

for free vibration analysis of Euler-Bernoulli nano-beams made of 
arbitrary bi-directional functionally graded materials. Also, 

Zamani Nejad et al. [30] presented buckling analysis of the nano-
beams made of two-directional functionally graded materials with 

small scale effects based on nonlocal elasticity theory. In other 
work, Zamani Nejad et al. [31] presented an exact closed-form 

analytical solution for elasto-plastic deformations and stresses in a 
rotating disk made of functionally graded materials in which the 

elasto-perfectly-plastic material model is employed. Shishesaz et 
al. [32] studied the thermoelastic behavior of a functionally graded 

nanodisk based on the strain gradient theory.  Hadi et al. [33] 
presented buckling analysis of FGM Euler-Bernoulli nano-beams 

with 3D-varying properties based on consistent couple-stress 
theory. Zamani Nejad et al. [34] discussed some critical issues and 

problems in the development of thick shells made from 

functionally graded piezoelectric material. Hadi et al. [35] 
presented an investigation on the free vibration of three-directional 

functionally graded material Euler-Bernoulli nano-beam, with 
small scale effects. 

Even though there are some classical analytical and exact solutions 
of the nonlocal plate theory, in these method the natural 

frequencies are obtained by applying the boundary conditions to 
the general solution of differential equation. There is an alternative 

approach called wave propagation method, which considers 
vibrations as propagating waves traveling in the structures. 

 Zhang and Lam [36] presented the vibration analysis of 
cylindrical shells using wave propagation method. Mei and Mace 

[37] presented wave reflection, transmission and propagation in 
Timoshenko beams with wave analysis of vibrations in 

Timoshenko beam structures. Natsuki and Endo [38] presented a 
vibration analysis of single-and double-walled carbon nanotubes 

as well as nanotubes embedded in an elastic matrix using wave 
propagation approach. Xuebin [39] presented a wave propagation 

approach for free analysis of circular cylindrical shell, based on 
Flugge classical thin shell theory.  Bahrami et al. [40] analyzed the 

free vibration of annular circular and sectorial membaranes using 
wave propagation approach. In other work, Bahrami and 

Teimourian [41] combined the wave propagation approach with 

nonlocal elasticity theory to analyze the buckling and free 
vibration of Euler-Bernoulli nanobeams. Ilkhani et al. [42] used 

wave propagation approach to analyze the free vibrations analysis 
of thin rectangular macro and nano-plates. Bahrami and 

Teimourian [43] presented the wave propagation approach for 
analyzing the free vibration and wave reflection in carbon 

nanotubes. Also, they presented the wave propagation approach 
for free vibration analysis of nan-uniform annular and circular 

membranes [41]. Recently, Bahrami and Teimourian [44]  
presented the wave propagation approach for free vibration 

analysis of non-uniform rectangular membranes. Moreover, 

Bahrami and Teimourian [45] developed the wave propagation 
technique for analyzing the wave power reflection in circular 

annular nanoplates. In other work, Bahrami [46] utilized the wave 
propagation method and the differential constitutive law 

consequent to the Eringen strain-driven integral nonlocal elasticity 
model to analyze the free vibration, wave power transmission and 

reflection in multi-cracked nanorods. Also, Bahrami [44] utilized 
the wave propagation method and the nonlocal elasticity theory to 

analyze the vibration, wave power transmission and reflection in 
multi-cracked Euler-Bernoulli nanobeams.  

According to present literature review, the wave propagation 
method for thick nanoplates has not been addressed. In addition, 

there were at most two waves in analyzing all the above- 
mentioned structures while in this study, there are four waves for 

the first time causing the problem to be more complicated to 
analyze. In this study, firstly the matrices of propagation and 

reflection are derived and by combining them, the characteristic 
equation of the plate is obtained.  

 

 

2. Modeling and Formulation 

2.1 Non-local elasticity theory  

Non-local elastic theory which introduced by Eringen [4] is one of 
the unconventional contemporary theories that the effects of small 

scales are applied in the characteristic equations of this theory. In 

the nonlocal theory, the stress tensor in the point x  of a physical 

environment   is connected to the strain tensor   in whole of 

the environment by an integral equation. In other words, 

constitutive law of nonlocal theory is   

     ,x x x C x dv       (1) 

Element  ,x x    is called nonlocal modulus and acts as a 

weight function in this equation. x x   is distance between local 

and nonlocal point. C  is fourth-order tensor which exists in 

classical theory too.   is related to the internal length scale  a  

and outer length scale  l  as 

0

2


  

e a

l l
 

(2) 
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which 
0e  is a physical parameter that has been identified by 

experimental results. And the parameter  
2

0e a   is called 

small size parameter. 

At last the form of structural equation of non-localized elastic 

theory is as follows. 

 21 :C      (3) 

 

It should be mentioned, when the body is not small; consequently, 
the small size parameter is small, the nonlocal constitutive 

parameter converges to the classical theory. 

2.2 Governing Equations of motion 

In Figure 1, a thick isotropic rectangular plate is shown with length 

a , width b and height h . In Reddy plate  theory[47], the 

displacement components are presumed to be given as:  

 

Figure 1. Geometry of rectangular isotropic thick plate 
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(4b) 

1 2 3 0 1 2( , , , ) ( , , )w x x x t w x x t  (4c) 

     where ,u v  and w are the mid-plane displacements and 1  

and 2  show normal rotation perpendicular to middle of the plate 

around 2x  and 1x  axes, respectively. 

     By using the above displacement fields, the strain equation 

could be written as follows: 

2
30 1 2 01 1 2 1

11 3 32 2

1 1 1 1

( , , ) ( , , ) 4

3

u x x t wx x t
x x

x x xh x

 


   
    

    
 

(5a) 

2
30 1 2 02 1 2 2

22 3 32 2

2 2 2 2

( , , ) ( , , ) 4

3

v x x t wx x t
x x

x x xh x

 


   
    

      

(5b) 

33 0   (5c) 

0 1 2 0 1 2 1 1 2 2 1 2
12 3

2 1 2 1

2
3 01 2

32

2 1 2 1

( , , ) ( , , ) ( , , ) ( , , )1

2

4
2

3

u x x t v x x t x x t x x t
x

x x x x

w
x

x x x xh

 


 

      
      

      

  
   

    


 

(5d) 

2 0 1 2
13 3 12

1

( , , )1 4
(1 )

2

w x x t
x

xh
 

 
   

 
 

(5e) 

2 0 1 2
23 3 22

2

( , , )1 4
(1 )

2

w x x t
x

xh
 

 
   

 
 

(5f) 

So the stress-strain relations for the plane stress problem are 

defined as: 
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(6) 

 

where E  is the Young modulus of elasticity and   is the 

Poisson’s ratio. 

By using displacement field in Hamilton principle and 

according to the same approach used by [10]  , the  equations of 
motion based on forces and moments are achieved as follows: 
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xxN  and yyN  are compressive load in 1x  and 2x directions. 

Also, the stress resultants are defined by: 
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Since the present paper deals with the out-of-plane vibration and 

buckling of isotropic rectangular plates, the initial in-plane 

displacements 0u and 0v  must be zero in Eqs. (4a-c).By taking 

2 4 0I I  , the coupling between Eqs. (7a) and (7b) is omitted. 

By replacing Eqs (8) and (9a-c) into Eqs. (7c-e) and using non-

dimensional terms, the dimensionless equations of motion based 
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on third-order shear deformation plate theory for a thick 
rectangular plates are  [21]: 
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

     

        

    

 

(10c) 

A comma followed by 1, 2 or 3 denotes the partial derivatives 

with respect to the normalized coordinates 1 2
1 2( ,  )

x x
X X

a b
  .

w  is non-dimensional transverse displacement, 
1 and 

2 are 

non-dimensional slope due to bending alone in the respective 

planes which are defined by the following relations: 

1 1 2 1 1 2( , , ) ( , ) i tX X t x x e     (11a) 

2 1 2 2 1 2( , , ) ( , ) i tX X t x x e     (11b) 

1 2
1 2

( , )
( , , )

i tw x x e
w X X t

a



  
(11c) 

where  is the natural frequency of the plate. 

Also the non-dimensional variables such as nonlocal parameter 

 , thickness to length ratio , aspect ratio , frequency parameter

 , buckling load N and the coefficient f  are defined as 

follows: 

2
2 2

2
 ,  ,  ,  ,  ,

yy

xx

xx

Nh b h a
a N N f

a a D D N a

 
         

 

(12
) 

where 
3

212(1 )

Eh
D





 and the coefficient f  is set to be 1.   

3. Solving by the wave propagation method 

Solving the governing equations on the Reddy plate can be 

obtained by expressing the dimensionless functions 
1 ,

2  and 

w  in the form of the dimensionless functions of potential 1W , 2W

, 3W and 4W as follows [21] :  

1 1 1,1 2 2,1 3 3,1 4,2C W C W C W W      (13a) 

2 1 1,2 2 2,2 3 3,2 4,1C W C W C W W      (13b) 

1 2 3w W W W    (13c) 

where 

 

 
 

2

2

2

2
2 2 2 2

2
2 2 2 2

2

16 1 4 16 4
)

315 105 3155        1,2,3
16 168 17 17

)
105 315 3155

(

(

i

i

C i









 
   

 
   

 
  

 


  

i

 

(14) 

Based on these considered potential functions, if the plate 

equations are rewritten, the differential equations will be the so-
called decoupled for these functions: 

2 2 2 2 2 2

1 1 1 2 2 2 3 3 30, 0,  0W W W W W W          

 

(15
) 

In which 𝛼1
2, 𝛼2

2 and 𝛼3
2 can be obtained by solving the 

following equation: 

3 2

1 2 3 0y a y a y a     (16) 

where  

4 6 2 4 4 4 2 4 2 2 2 2 4 2 2 2

2 2

2 2 2 2 2 2 21 2

4(32 2 5355 10710 23940 126 88200

317520 ( 1) 64260 317520( 1))

(149 21420 252)( 12)

N

N N
a

N

               

   

       

    


    

  
  

(17a) 
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4 6 4 4 2 2 4 2 2 2 2

2 2 2

2 2 2 22 2

2

2 2 2

21( 2040 1020 5040 60480

1

(149 21420 25

7280 60480 60480 ( 1))

2)( 12)

N

N

N
a

          

 

    







 



    

 





 


  

(17b) 

2 2 4

2 2 2 2 2 23 22

1260 (17 1008( 1))

(149 21420 252)( 12)
a

N

   

       
 

 

  
 

(17c) 

Also: 

2 2

4 4 4 0W W    (18) 

 

 

4 2

2

4 2

17 1008 1

102 1



 

 


 



 

(19) 

Using the method of separation of variables, an answer set is 
obtained for equations (15) and (18):                

     

     

1 1 1 2 2 1 2 1 1

1 1 2 2 1 2 1 1

sin cosh sin

sin cos cos

W A h X A X X

B h X B h X X

  

  

   

   

 

(20a) 

     

     

2 3 2 2 4 2 2 2 1

3 2 2 4 2 2 2 1

sinh cosh sin

sinh cosh cos

W A X A X X

B X B X X

  

  

   

   

 

(20b) 

     

     

3 5 3 2 6 3 2 3 1

5 2 2 6 2 2 3 1

sin cos

sin cos  

W A X A X sin X

B X B X cos X

  

  

   

   

 

(20c) 

     

     

4 7 4 2 8 4 2 4 1

7 4 2 8 4 2 4 1

sinh cosh

sinh cosh  

W A X A X cos X

B X B X sin X

  

  

   

   

 

(20d) 

In which iA and iB are the arbitrary constants and i and i

which are the wave numbers in two directions of 2X  and 1X , are 

depended on  𝛼𝑖: 

2 2 2 2 2

1 1 1 1 1   0   0         (21a) 

2 2

2 2 2 2 2

2 2 2   0   0         (21b) 

3 3

2 2 2 2 2

3 3 3   0   0         (21c) 

4 4

2 2 2 2 2

4 4 4   0   0         (21d) 

Based on the third-order shear theory, the boundary conditions 

for two parallel corners (for example 1 0X  and 1 1X  ) are as 

follows: 

 

Simply supported: 

12 2 0w PM      (22) 

Clamped: 

1 2 ,2 0w w      (23) 

In which: 

1 2
1 2

2
 ;    ;

12 12

aM aP
M P

D h D
   

(24) 

Now, by considering the simply support conditions in the 

corners 𝑋1 = 0 and 𝑋1 = 1 and applying our wave answers to 

these support conditions, answers can be written as follows: 

1 2 3 m       (25) 

     1 1 1 2 2 1 2 1  sinh cos sinW A X A h X m X     

 

(26a
) 

     2 3 2 2 4 2 2 1sinh cosh sinW A X A X m X     

 

(26b

) 

     3 5 3 2 6 3 2 1sin cosW A X A X sin m X       (26c
) 

     3 7 4 2 8 4 2 1sinh coshW A X A X cos m X     

 

(26d
) 

By substituting the formulas iW in equations related to 

potential function and considering the following equations, i can 

be obtained: 

   

   

sin  ;cos ; 
2 2

 sinh ;cosh
2 2

i i i ie e e e

i

e e e e

   

   

 

 

 

 

 
 

 
 

 

(27) 

Which we will have: 
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1 2 1 2 2 2 2 2

3 2 3 2 4 2 4 2

' ' ' '

1 1 1 2 1 3 2 4 2

' ' ' '

5 3 6 3 7 4 8 4 1

[

)cos( )

X X X X

i X i X X X

A C m e A C m e A C m e A C m e

A C m e A C m e A e A e m X

   

   

    

    

 

 

   

   

 

(28a) 

1 2 1 2 2 2 2 2

3 2 3 2 4 2 4 2

'' '' '' ''

2 1 1 1 2 1 1 3 2 2 4 2 2

'' '' '' ''

5 3 3 6 3 3 7 8 1

[

]sin( )

X X X X

i X i X X X

A C e A C e A C e A C e

A C e A C e A m e A m e m X

   

   

    

    

 

 

   

   

 

(28b) 

1 2 1 2 2 2 2 2

3 2 3 2

''' ''' ''' '''

1 2 3 4

''' '''

5 6 1

[

]sin( )

X X X X

i X i X

w A e A e A e A e

A e A e m X

   

  

 



   

 
 

(28c) 

      In which: 

' ' ' 3 41 2 2 1
1 2 3;  ;  

2 2 2

A AA A A A
A A A

 
    

(29a) 

' ' '4 3 6 5 5 6
4 5 6;  ;  

2 2 2

A A A iA iA A
A A A

  
    

(29b) 

' '7 8 7 8
7 8;  

2 2

A A A A
A A

 
   

(29c) 

 

      As it can be seen, in the equations above, 
''

iA and 
'''

iA can be 

written based on
'

iA : 

' '' ''' ' '' ''' ' ''

1 1 1 2 2 2 3 3;   ;A A A A A A A A       (30a) 

' '' ''' ' '' ''' ' '' '''

4 4 4 5 5 5 6 6 6; ;A A A A iA A A iA A          (30b) 

''' ''' ' '' ' ''

7 8 7 7 8 80,; ; A A A A A A      (30c) 

      Finally, we will have: 

 
1 2 1 2 2 2 2 2

3 2 3 2 4 2 4 2

' ' ' '

1 1 2 1 3 2 4 2

1' ' ' '

5 3 6 3 7 4 8

1

4

cos

X X X X

i X i X X X

A C m e A C m e A C m e A C m e
m X

A C m e A C m e A e A e

   

   

   


   


 

 

   
  

     

 

(31a) 

 
1 2 1 2 2 2 2 2

3 2 3 2 4 2 4 2

' ' ' '

1 1 1 2 1 1 3 2 2 4 2 2

1' ' ' '

5 3 3 6 3 3 7 8

2 sin  

X X X X

i X i X X X

A C e A C e A C e A C e
m X

iA C e iA C e A m e A m e

   

   

   





  

 

 

   
  

     

 

(31b) 

 
1 2 1 2 2 2 2 2

3 2 3 2

' ' ' '

1 2 3 4

1' '

5 6

sin

X X X X

i X i X

A e A e A e A e
w m X

A e A e

   

 


 



   
  

   

 

(31c) 

      In above equations, sentences with even indexes show a wave 

that moves in the positive direction of 2X axis and sentences with 

odd indexes show a wave that moves in the negative direction of 

2X  axis.  

According to what was said, we can write: 

   

1 2 1 2

2 2 2 2

3 2 3 2

4 2 4 2

' '

2 1

' '

4 3

' '

6 5

' '

8 7

;     

X X

X X

i X i X

X X

A e A e

A e A e
a x a x

A e A e

A e A e

 

 

 

 





 





   
   
   

    
   
   
   

 

(32) 

4      Propagation Matrix 

Consider two points on the plate a distance
0X apart in 2X  

direction as shown in figure 2. Positive- and negative-going waves 
propagate from one point to another. Denoting them as  Eqs. (32), 

they are related by:   
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Figure 2 A lateral view of Reddy plate representing positive and negative going propagating waves 

 

     

     

0 0

0 0

,  

 

a X X f X a X

a X f X a X X

  

  

 

 
 

(33) 

      In which  f X
 is the propagation matrix in the positive 

direction and  f X
 is the propagation matrix in the negative 

direction.  By substituting the wave domain equations in equations 

above, we will have: 

   

1 2

2 2

3 2

4 2

0 0 0

0 00
             

0 00

0 00

X

X

i X

X

e

e
f X f X

e

e

 

 

 

 





 





 
 
  
 
 
  

 

(34

) 

      As it is seen, the propagation functions in the positive and 

negative directions are equal to each other and they are called 

 f X .This is a property which cannot be appeared in non-

uniform plates and in them; the propagation matrices are different 
from each other in the positive and negative directions.  

5    Reflection Matrix 

When the propagated waves in the plate are collided to the 
boundaries, they are reflected and this action obviously presents 

that as long as the plate is vibrating, positive and negative waves 
are propagating in the environment.  

Equation between positive and negative travelling waves with 

the reflection matrix 𝑟 will be provided: 

a ra   (35) 

For obtaining the reflection of waves in the boundaries, the 

boundary conditions will be used. For two boundary modes of 
simply supported and clamped, we try to express the reflection of 

the propagated waves in the plate.  

5.1    Reflection matrix for the simply support boundary 

condition  

In this case, the boundary conditions, as previously said, are as 

follows: 

12 2 0w PM      (36) 

The incoming wave to this boundary is called a
and the 

reflected wave from the boundary is called a
. 

4 2 2 2 2 2

2 1 1 1 1 1

4 2 2 2 2 2

1 1 1 1 1

4 2 2 2 2 2

2 2 2 2 2

4 2 2 2 2 2

2 2 2 2 2

4 2 2

3

1 1 1 1

60 15 60 15

1 1 1 1

60 15 60 15

1 1 1 1

60 15 60 15

1 1 1 1

60 15 60 15

1 1

60 15

M m C m C a

m C m C a

m C m C a

m C m C a

m C m

    

    

    





   

 

















 
    
 

 
    
 

 
    
 

 
    
 

  2 2 2

3 3 3 3

4 2 2 2 2 2

3 3 3 3 3

4 2

4 4 4

4 2

4 4 4

1 1

60 15

1 1 1 1

60 15 60 15

1 1 1

60 15 15

1 1 1

60 15 15

C a

m C m C a

m m m a

m m m a

 

    

     







    









 
  

 

 
    
 

 
   
 

 
   
 

 

(37a) 
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1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 0
C m a C m a C m a C m a

C m a C m a a a

   

  




   

   

   
 

     

  
(37b) 

1 1 2 2 3 3 0a a a a aw a              (37c) 

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

2 2

1 1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1

m C m C a

m C m C a

m C m C a

m

P

C m C a







    

    

    

    









 
   

 

 
    
 

 
    
 

 
    
 





2 2 2 2 2 2

3 3 3 3 3

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4 4 4

1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1 1 1 1

105 105 105 105

m C m C a

m C m C a

m m a m m a

    

    

       









 

 
   

 

 
    
 

   
        
   

 

(37d) 

That by writing it in the form of matrix, the reflection matrix 
for the simply supported mode is:  

1

sr A B  (38) 

1

1311 12 14

31 2 4

4341 42 44

1311 12 14

31 2 4

4341 42 44

             
11 1 0

             
11 1 0

s

AA A A

C mC m C m
r

AA A A

BB B B

C mC m C m

BB B B

  

  


 
 
  
 
 
 

 
 
 
 
 
 

 

(39) 

In which: 

4 2 2 2 2 2

11 11 1 1 1 1

1 1 1 1

60 15 60 15
A B m C m C     

 
     

 

 

(40a) 

4 2 2 2 2 2

12 12 2 2 2 2

1 1 1 1

60 15 60 15
A B m C m C     

 
     

 

 

(40b) 

4 2 2 2 2 2

13 14 3 3 3 3

1 1 1 1

60 15 60 15
A B m C m C     

 
     

 

 

(40c) 

4 2

14 14 4 4

1 1 1

60 15 15
A B m m m     

 
    

 
 

(40d) 

2 2 2 2 2 2

41 41 1 1 1 1

1 1 1 1

336 105 105 336
A B m C m C    

 
     

 

 

(40e) 

2 2 2 2 2 2

42 42 2 2 2 2

1 1 1 1

336 105 105 336
A B m C m C    

 
     

 

 

(40f) 

2 2 2 2 2 2

43 43 3 3 3 3

1 1 1 1

336 105 105 336
A B m C m C    

 
     

 

 

(40g) 

44 44 4 4

1 1

105 105
A B m m   

 
    

 
 

(40h) 

In this case, this matrix will be a negative identity matrix, that 

is: 

sr I   (41) 

5.2    Reflection matrix for the Clamped boundary condition 

In the clamped mode, the boundary condition is as follows: 

1 2 ,2 0w w      (42) 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 0
C m a C m a C m a C m a

C m a C m a a a

   

  




   

   

   
 

     



 

(43a
) 

1 1 1 1 1 1 2 2 2 2 2 2

3 3 3 3 3

2

3 4 4

0
C a C a C a C a

iC a iC a m a m a

   

   


   

   

   
 

     

  

(43b
) 

1 1 2 2 3 3[ ] 0a a a a aw a            (43c
) 

1 1 1 1 2 2 2 2 3 3 3,2 3 0a a a a i a i aw                  

 

(43d
) 

Therefore, the reflection matrix for the clamped mode is as 

follows: 
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1

31 2 4

3 31 1 2 2

31 2

31 2 4

3 31 1 2 2

31 2

11 1 0

             

0

11 1 0

             

0

C

C mC m C m
r

C iC C m

i

C mC m C m

C iC C m

i

  

  

 

  

  

 


 
 
  
 
 
 

 
 
 
   
 

  

 

(44) 

6   Analyzing the free vibrations of the Reddy plate 

Consider the plate shown in Figure 2. For analyzing this plate 

using our wave method, two wave domains for the positive 
travelling wave and two wave domains for the negative travelling 

wave in the direction of 𝑋2 at two beginning and ending points are 
considered. These waves can be related to each other using the 

obtained propagation and reflection matrices.  

   ;b f L a a f L b      (45) 

In which 𝑓(𝐿) is the propagation matrix of the wave between 
two points of A and B. Also, using the propagation and reflection 

equations in the boundaries, we will have: 

;  A Ba r a b r b      (46) 

 

In which 𝑟𝐴 and 𝑟𝐵 are the reflection matrices in the boundaries 
A and B, respectively. 

By writing equations in the form of matrix, we have: 

 

 

0  0

0 0
              0

00

0 0

A

B

I r a

If L a

I f L b

r I b









  
  
  
  
  



    





 

(47) 

And for having determinant answer, this matrix must be zero. 

By equalizing the determinant of this matrix to zero, the frequency 
and critical buckling load characteristic equation of the system will 

be obtained.            

7. Results and Discussion 

For the validation of the results, the values obtained from the wave 
propagation method and the results obtained from the research 

literature are compared.  Here, the letters S and C representing the 
simply supported and clamped boundary conditions. For example, 

in the SCSC boundary condition, the edges along x = 0 and x = a 
are simply supported boundary conditions and the edges along y = 

0 and y = b are clamped boundary conditions. The values of n and 

m represented the vibrational modes has n and m half-wave in x 
and y directions, respectively. For all modes, the Poisson 

coefficient υ is assumed to be 0.3.  

The procedure for obtaining the plate frequencies is specified by 

the wave propagation method is shown in Figure 3. The plot of the 
real and imaginary part changes of the determinants of equation 

(47) in terms of the dimensionless frequency for the SCSC 

boundary condition and assuming m = 1, 1  , 0   and 

0.1  is shown in Figure 3. As shown in the figure, the 

intersection of the real and imaginary curves of the determinant 
with the zero axis represents the roots of the determinant and hence 

the frequency of the plate. Furthermore, on the left of the 
frequency there is another root which is the cut-off frequency in 

which there is no sign change in the real and imaginary curves. 

Figure 3 Real and imaginary parts of determinant of Eq. (47) (N=0) 

In Table 1, the dimensionless frequencies of the wave method are 
compared with reference results [21] and [10] for simply supported 

boundary condition, 0,1,2,3,4   , 1,2   and 0.05,0.1 

are compared and the obtained values indicate the high accuracy 
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of the wave propagation method. In Tables 2-4, the dimensionless 
frequency values for four modes and different boundary conditions 

of SSSS, SCSS and SCSC are listed for different values of 
nonlocal parameter, aspect ratio and thickness ratio. The values

0,0.2,0.4,0.6  , 0.5,1,2  and 0.05,0.1,0.2  are 

assumed. 

        Table 1. Dimensionless frequency 2 ha
D

     for SSSS nanoplate   

method  Nonlocal parameter    

   𝜇 = 0 𝜇 = 1 𝜇 = 2 𝜇 = 3 𝜇 = 4 

 0.1    1          

Present 

[21] 

[10] 

  19.0653 

19.0653 

19.1678 

17.4253 

17.4231 

17.5073 

16.1467 

16.1432 

16.2157 

15.1138 

15.1094 

15.1907 

14.2566 

14.2518 

14.3297 

 0.05    1          

Present 

[21] 

[10] 

  19.5625 

19.5625 

19.6695 

17.8780 

17.8774 

17.9412 

16.5651 

16.5642 

16.6244 

15.5046 

15.5034 

15.5545 

14.6247 

14.6234 

14.7315 

 0.1    2          

Present 

[21] 

[10] 

  12.0675 

12.0675 

12.1157 

11.3862 

11.3856 

11.4187 

10.8086 

10.8076 

10.8447 

10.3109 

10.3095 

10.3526 

9.8761 

9.8745 

9.9016 

 0.05    2          

Present 

[21] 

[10] 

  12.2675 

12.2675 

12.3445 

11.5745 

11.5743 

11.6042 

10.9870 

10.9867 

11.0281 

10.4808 

10.4804 

10.5343 

10.0386 

10.0382 

10.1228 

 

                  Table 2. Dimensionless frequency 2 ha
D

      and frequency ratio for SSSS nanoplates  


h

τ
a

 
b

δ
a

 (𝒏, 𝒎) Nonlocal parameter 
 

   0   0.2   0.4   0.6   

0.05 0.5 

     

(𝟏, 𝟏) 48.2699 (1.0000) 27.9996 (0.5801) 16.1910 (0.3354) 11.1480 (0.2310) 

(𝟏, 𝟐) 156.3907 (1.0000) 56.3974 (0.3606) 29.6834 (0.1898) 19.9900 (0.1278) 

(𝟐, 𝟏) 76.2612 (1.0000) 37.4198 (0.4907) 20.6689 (0.2710) 14.0693 (0.1845) 

(𝟐, 𝟐) 181.9487 (1.0000) 61.1069 (0.3358) 31.9340 (0.1755) 21.4739 (0.1180) 

0.1 0.5 

     

(𝟏, 𝟏) 45.4869 (1.0000) 26.4101 (0.5806) 15.2767 (0.3358) 10.5194 (0.2313) 

(𝟏, 𝟐) 133.7198 (1.0000) 48.4172 (0.3621) 25.4944 (0.1907) 17.1705 (0.1284) 

(𝟐, 𝟏) 69.8093 (1.0000) 34.3122 (0.4915) 18.9595 (0.2716) 12.9069 (0.1849) 

(𝟐, 𝟐) 152.7532 (1.0000) 51.5506 (0.3375) 26.9521 (0.1764) 18.1255 (0.1187) 

0.2 0.5 

     

(𝟏, 𝟏) 38.1883 (1.0000) 22.2526 (0.5827) 12.8876 (0.3375) 8.8772 (0.2325) 

(𝟏, 𝟐) 95.2602 (1.0000) 35.0582 (0.3680) 18.4935 (0.1941) 12.4601 (0.1308) 
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(𝟐, 𝟏) 55.2543 (1.0000) 27.3374 (0.4948) 15.1277 (0.2738) 10.3019 (0.1864) 

(𝟐, 𝟐) 106.3633 (1.0000) 36.6092 (0.3442) 19.1763 (0.1803) 12.9012 (0.1213) 

0.05 1 

     

(𝟏, 𝟏) 19.5625 (1.0000) 14.6247 (0.7476) 9.5947 (0.4905) 6.8721 (0.3513) 

(𝟏, 𝟐) 48.2699 (1.0000) 27.9996 (0.5801) 16.1910 (0.3354) 11.1480 (0.2310) 

(𝟐, 𝟏) 48.2699 (1.0000) 27.9996 (0.5801) 16.1910 (0.3354) 11.1480(0.2310) 

(𝟐, 𝟐) 76.2612 (1.0000) 37.4198 (0.4907) 20.6689 (0.2710) 14.0693 (0.1845) 

0. 1 1 

     

(𝟏, 𝟏) 19.0653 (1.0000) 14.2566 (0.7478) 9.3550 (0.4907) 6.7009 (0.3515) 

(𝟏, 𝟐) 45.4869 (1.0000) 26.4101 (0.5806) 15.2767 (0.3358) 10.5194 (0.2313) 

(𝟐, 𝟏) 45.4869 (1.0000) 26.4101 (0.5806) 15.2767 (0.3358) 10.5194 (0.2313) 

(𝟐, 𝟐) 69.8093 (1.0000) 34.3122 (0.4915) 18.9595 (0.2716) 12.9069 (0.1849) 

0. 2 1 

     

(𝟏, 𝟏) 17.4523 (1.0000) 13.0634 (0.7485) 8.5780 (0.4915) 6.1460 (0.3522) 

(𝟏, 𝟐) 38.1883 (1.0000) 22.2526 (0.5827) 12.8876 (0.3375) 8.8772 (0.2325) 

(𝟐, 𝟏) 38.1883 (1.0000) 22.2526 (0.5827) 12.8876 (0.3375) 8.8772 (0.2325) 

(𝟐, 𝟐) 55.2543 (1.0000) 27.3374 (0.4948) 15.1277 (0.2738) 10.3019 (0.1864) 

0. 05 2 

     

(𝟏, 𝟏) 12.2675 (1.0000) 10.0386 (0.8183) 7.1142 (0.5799) 5.2595 (0.4287) 

(𝟏, 𝟐) 19.5625 (1.0000) 14.6247 (0.7476) 9.5947 (0.4905) 6.8721 (0.3513) 

(𝟐, 𝟏) 41.1622 (1.0000) 25.1605 (0.6113) 14.8283 (0.3602) 10.2624 (0.2493) 

(𝟐, 𝟐) 48.2699 (1.0000) 27.9996 (0.5801) 16.1910 (0.3354) 11.1480 (0.2310) 

0. 1 2 

     

(𝟏, 𝟏) 12.0675 (1.0000) 9.8761 (0.8184) 6.9999 (0.5801) 5.1753 (0.4289) 

(𝟏, 𝟐) 19.0653 (1.0000) 14.2566 (0.7478) 9.3550 (0.4907) 6.7009 (0.3515) 

(𝟐, 𝟏) 39.0977 (1.0000) 23.9166 (0.6117) 14.0994 (0.3606) 9.7578 (0.2496) 

(𝟐, 𝟐) 45.4869 (1.0000) 26.4101 (0.5806) 15.2767 (0.3358) 10.5194 (0.2313) 
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0. 2 2 (𝟏, 𝟏) 11.3717 (1.0000) 9.3111 (0.8188) 6.6025 (0.5806) 4.8826 (0.4294) 

(𝟏, 𝟐) 17.4523 (1.0000) 13.0634 (0.7485) 8.5780 (0.4915) 6.1460 (0.3522) 

(𝟐, 𝟏) 33.4301 (1.0000) 20.5091 (0.6135) 12.1043 (0.3620) 8.3805 (0.2507) 

(𝟐, 𝟐) 38.1883 (1.0000) 22.2526 (0.5827) 12.8876 (0.3375) 8.8772 (0.2325) 

 

                  Table 3. Dimensionless frequency 2 ha
D

     and frequency ratio for SCSS nanoplates  


h

τ
a

 
b

δ
a

 (𝒏, 𝒎) Nonlocal parameter 
 

   0   0.2   0.4   0.6   

0.05 0.5      

  (𝟏, 𝟏) 66.2898 (1.0000) 36.9229 (0.5570) 21.0297 (0.3172) 14.4199 (0.2175) 

  (𝟏, 𝟐) 187.2540 (1.0000) 65.8462 (0.3516) 34.6336 (0.1850) 23.3262 (0.1246) 

  (𝟐, 𝟏) 89.6072 (1.0000) 42.9016 (0.4788) 23.5496 (0.2628) 16.0059 (0.1786) 

  (𝟐, 𝟐) 208.9296 (1.0000) 68.5837 (0.3283) 35.7783 (0.1712) 24.0514 (0.1151) 

0.1 0.5      

  (𝟏, 𝟏) 59.4159 (1.0000) 33.3597 (0.5615) 19.0338 (0.3203) 130561 (0.2197) 

  (𝟏, 𝟐) 151.2530 (1.0000) 53.9784 (0.3569) 28.4121 (0.1878) 19.1382 (0.1265) 

  (𝟐, 𝟏) 79.0782 (1.0000) 38.1544 (0.4825) 20.9720 (0.2652) 14.2581 (0.1803) 

  (𝟐, 𝟐) 167.1402 (1.0000) 55.6729 (0.3331) 29.0678 (0.1739) 19.5435 (0.1169) 

0.2 0.5      

  (𝟏, 𝟏) 45.3311 (1.0000) 25.9475 (0.5724) 14.8788 (0.3282) 10.2175 (0.2254) 

  (𝟏, 𝟐) 101.3727 (1.0000) 37.3604 (0.3685) 19.7069 (0.1944) 13.2800 (0.1310) 

  (𝟐, 𝟏) 59.3203 (1.0000) 29.1202 (0.4909) 16.0567 (0.2707) 10.9239 (0.1842) 

  (𝟐, 𝟐) 111.3032 (1.0000) 38.3225 (0.3443) 20.0548 (0.1802) 13.4898 (0.1212) 

0.05 1      

  (𝟏, 𝟏) 23.3076 (1.0000) 17.1646 (0.7336) 11.1288 (0.4756) 7.9345 (0.3391) 

  (𝟐, 𝟏) 50.3745 (1.0000) 29.0378 (0.5764) 16.7503 (0.3325) 11.5252 (0.2288) 

  (𝟏, 𝟐) 56.7682 (1.0000) 32.2541 (0.5682) 18.5313 (0.3264) 12.7413 (0.2244) 

  (𝟐, 𝟐) 82.4728 (1.0000) 39.9430 (0.4843) 21.9915 (0.2667) 14.9581 (0.1814) 
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0. 1 1      

  (𝟏, 𝟏) 22.4018 (1.0000) 16.5256 (0.7377) 10.7254 (0.4788) 7.6493 (0.3415) 

  (𝟐, 𝟏) 47.1306 (1.0000) 27.2247 (0.5776) 15.7146 (0.3334) 10.8144 (0.2295) 

  (𝟏, 𝟐) 52.2324 (1.0000) 29.8128 (0.5708) 17.1459 (0.3283) 11.7911 (0.2257) 

  (𝟐, 𝟐) 74.2252 (1.0000) 36.1208 (0.4866) 19.9045 (0.2682) 13.5411 (0.1824) 

0. 2 1      

  (𝟏, 𝟏) 19.7695 (1.0000) 14.6531 (0.7412) 9.5386 (0.4825) 6.8095 (0.3444) 

  (𝟐, 𝟏) 39.0576 (1.0000) 22.6936 (0.5810) 13.1236 (0.3360) 9.0356 (0.2313) 

  (𝟏, 𝟐) 41.7851 (1.0000) 24.1293 (0.5775) 13.9182 (0.3331) 9.5775 (0.2292) 

  (𝟐, 𝟐) 57.2458 (1.0000) 28.1960 (0.4925) 15.5737 (0.2720) 10.6003 (0.1852) 

0. 05 2      

  (𝟏, 𝟏) 12.8339 (1.0000) 10.4688 (0.8157) 7.3931 (0.5761) 5.4563 (0.4251) 

  (𝟏, 𝟐) 21.2891 (1.0000) 15.7891 (0.7417) 10.2944 (0.4836) 7.3557 (0.3455) 

  (𝟐, 𝟏) 41.4323 (1.0000) 25.3002 (0.6106) 14.9038 (0.3597) 10.3132 (0.2489) 

  (𝟐, 𝟐) 49.2546 (1.0000) 28.4781 (0.5782) 16.4467 (0.3339) 11.3200 (0.2298) 

0. 1 2      

  (𝟏, 𝟏) 12.5937 (1.0000) 10.2762 (0.8160) 7.2594 (0.5764) 5.3584 (0.4255) 

  (𝟏, 𝟐) 20.6182 (1.0000) 15.3064 (0.7424) 9.9858 (0.4843) 7.1366 (0.3461) 

  (𝟐, 𝟏) 39.3163 (1.0000) 24.0301 (0.6112) 14.1606 (0.3602) 9.7999 (0.2493) 

  (𝟐, 𝟐) 46.2637 (1.0000) 26.7892 (0.5791) 15.4788 (0.3346) 10.6552 (0.2303) 

0. 2 2      

  (𝟏, 𝟏) 11.7827 (1.0000) 9.6247 (0.8169) 6.8062 (0.5776) 5.0261 (0.4266) 

  (𝟏, 𝟐) 18.5563 (1.0000) 13.8157 (0.7445) 9.0302 (0.4866) 6.4577 (0.3480) 

  (𝟐, 𝟏) 33.5542 (1.0000) 20.5746 (0.6132) 12.1395 (0.3617) 8.4041 (0.2504) 

  (𝟐, 𝟐) 38.6067 (1.0000) 22.4614 (0.5818) 12.9983 (0.3367) 8.9513 (0.2319) 
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                   Table 4. Dimensionless frequency 2 ha
D

     and frequency ratio for SCSC nanoplates  


h

τ
a

 
b

δ
a

 (𝒏, 𝒎) Nonlocal parameter 
 

   0   0.2   0.4   0.6   

0.05 0.5      

  (𝟏, 𝟏) 88.5692 (1.0000) 48.3921 (0.5464) 27.3718 (0.3090) 18.7341 (0.2115) 

  (𝟏, 𝟐) 219.3453 (1.0000) 74.5856 (0.3400) 38.9573 (0.1776) 26.1925 (0.1194) 

  (𝟐, 𝟏) 106.8335 (1.0000) 50.4645 (0.4724) 27.6125 (0.2585) 18.7531 (0.1755) 

  (𝟐, 𝟐) 237.6635 (1.0000) 76.1353 (0.3203) 38.5753 (0.1665) 26.5823 (0.1118) 

0.1 0.5      

  (𝟏, 𝟏) 75.2832 (1.0000) 41.6212 (0.5529) 23.5827 (0.3133) 16.1444 (0.2144) 

  (𝟏, 𝟐) 167.8807 (1.0000) 58.5725 (0.3489) 30.6465 (0.1825) 20.6115 (0.1228) 

  (𝟐, 𝟏) 90.1355 (1.0000) 43.0810 (0.4780) 23.6146 (0.2620) 16.0436 (0.1780) 

  (𝟐, 𝟐) 181.3243 (1.0000) 59.5150 (0.3282) 30.9836 (0.1709) 20.8174 (0.1148) 

0.2 0.5      

  (𝟏, 𝟏) 53.1087 (1.0000) 30.1629 (0.5679) 17.1903 (0.3237) 11.7824 (0.2219) 

  (𝟏, 𝟐) 106.7070 (1.0000) 39.3108 (0.3684) 20.6535 (0.1936) 13.9020 (0.1303) 

  (𝟐, 𝟏) 63.8945 (1.0000) 31.3079 (0.4900) 17.2314 (0.2697) 11.7171 (0.1834) 

  (𝟐, 𝟐) 115.9685 (1.0000) 40.0078 (0.3450) 20.8984 (0.1802) 14.0507 (0.1212) 

0.05 1      

  (𝟏, 𝟏) 28.3174 (1.0000) 20.6724 (0.7300) 13.3181 (0.4703) 9.4734 (0.3345) 

  (𝟐, 𝟏) 53.0989 (1.0000) 30.4637 (0.5737) 17.5426 (0.3304) 12.0648 (0.2272) 

  (𝟏, 𝟐) 66.2898 (1.0000) 36.9229 (0.5570) 21.0297 (0.3172) 14.4199 (0.2175) 

  (𝟐, 𝟐) 89.6072 (1.0000) 42.9016 (0.4788) 23.5496 (0.2628)         16.0059 (0.1786) 

0. 1 1      

  (𝟏, 𝟏) 26.7084 (1.0000) 19.5537 (0.7321) 12.6161 (0.4724) 8.9777 (0.3361) 

  (𝟐, 𝟏) 49.1756 (1.0000) 28.3017 (0.5755) 16.3127 (0.3317) 11.2215 (0.2282) 

  (𝟏, 𝟐) 59.4159 (1.0000) 33.3597 (0.5615) 19.0338 (0.3203) 13.0561 (0.2197) 

  (𝟐, 𝟐) 79.0783 (1.0000) 38.1544 (0.4825) 20.9720 (0.2652) 14.2581 (0.1803) 
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0. 2 1      

  (𝟏, 𝟏) 22.5355 (1.0000) 16.6210 (0.7375) 10.7703 (0.4779) 7.6740 (0.3405) 

  (𝟐, 𝟏) 40.0654 (1.0000) 23.2394 (0.5800) 13.4266 (0.3351) 9.2416 (0.2307) 

  (𝟏, 𝟐) 45.3350 (1.0000) 25.9475 (0.5724) 14.8788 (0.3282) 10.2175 (0.2254) 

  (𝟐, 𝟐) 59.3313 (1.0000) 29.1202 (0.4908) 16.0567 (0.2706) 10.9239 (0.1841) 

0. 05 2      

  (𝟏, 𝟏) 13.5772 (1.0000) 11.0475 (0.8137) 7.7813 (0.5731) 5.7357 (0.4224) 

  (𝟏, 𝟐) 23.3076 (1.0000) 17.1646 (0.7364) 11.1288 (0.4775) 7.9345 (0.3404) 

  (𝟐, 𝟏) 41.7487 (1.0000) 25.4698 (0.6101) 14.9975 (0.3592) 10.3768 (0.2486) 

  (𝟐, 𝟐) 50.3746 (1.0000) 29.0378 (0.5764) 16.7503 (0.3325) 11.5252 (0.2288) 

0. 1 2      

  (𝟏, 𝟏) 13.2747 (1.0000) 10.8073 (0.8141) 7.6159 (0.5737) 5.6149 (0.4230) 

  (𝟏, 𝟐) 22.4018 (1.0000) 16.5256 (0.7377) 10.7254 (0.4788) 7.6493 (0.3415) 

  (𝟐, 𝟏) 39.5680 (1.0000) 24.1656 (0.6107) 14.2354 (0.3598) 9.8506 (0.2490) 

  (𝟐, 𝟐) 47.1306 (1.0000) 27.2247 (0.5776) 15.7146 (0.3334) 10.8144 (0.2295) 

0. 2 2      

  (𝟏, 𝟏) 12.2939 (1.0000) 10.0250 (0.8154) 7.0754 (0.5755) 5.2198 (0.4246) 

  (𝟏, 𝟐) 19.7696 (1.0000) 14.6531 (0.7412) 9.5386 (0.4825) 6.8095 (0.3444) 

  (𝟐, 𝟏) 33.6918 (1.0000) 20.6502 (0.6129) 12.1811 (0.3615) 8.4322 (0.2503) 

  (𝟐, 𝟐) 39.0576 (1.0000) 22.6936 (0.5810) 13.1236 (0.3360) 9.0356 (0.2313) 

 
Figure 4 illustrates the plot of frequency ratio changes based on 

thickness to length ratio for different values of the aspect ratio  

for three boundary conditions of SSSS, SCSS and SCSC and for 

0.6  .  Regarding the figures, by increasing the thickness to 

length ratio, the frequency ratio for different values of   

increases, Also, the increase rate of frequency ratio is low for 

larger values of .  As it can be observed, the SCSC boundary 

condition has the highest and SSSS has the lowest increase rate of 

frequency ratio. Figure 5 shows the plot of frequency ratio changes 
based on the nonlocal parameter for different values of aspect ratio 

and for SCSC boundary condition and 0.1  . As it can be 

observed, by increasing the nonlocal parameter the values of 
frequency ratio decrease. Also, the influence of nonlocal 

parameter is more considerable for lower values of aspect ratio. 

The plot of frequency ratio changes based on nonlocal parameter 
for different modes number of the above boundary conditions and 

for 1   and 0.1  is drawn in Figure 6. It is observed that for 

higher modes, the frequency reduction rate is higher. Variations of 
frequency ratio with nonlocal parameter for different boundary 

conditions and for 0.2   and  =0.5 is shown in figure 7. As it 

can be seen, the values of frequency ratio decrease by increasing 

the values of nonlocal parameter. In addition, the influence of 

nonlocal parameter is more remarkable for SCSC boundary 
condition. The method for obtaining the critical buckling load is 

the same as the method of obtaining a non-dimensional frequency, 
with the difference that the real and imaginary part of the 

determinant are plotted in terms of different values of 

dimensionless critical buckling load N and for 0   (As shown 

in Figure 8). In order to verify the critical buckling load obtained 

from the wave propagation method, in Table 5, the critical load 

values of the boundary conditions for simply supported boundary 
condition and different values of nonlocal parameter and for 

0,0.1,0.2,0.3  , 1,2   and 0.1   are compared with the 

results obtained from [21]. It can be observed that the values 
obtained by the present method are very close to [21]. In Table 6, 

the critical loads of the first mode for the three boundary 
conditions of SSSS, SCSS and SCSC are listed for different values 

of nonlocal parameter, aspect ratio and thickness to length ratio. 
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Figure 4 Variations of frequency ratio with thickness to length ratio for different boundary conditions and values of aspect ratio ( 0.6  ) 
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Figure 5 Variations of frequency ratio with nonlocal parameter for different 

values of aspect ratio (SCSC, 0.1  ) 

 

 

Figure 6 Variations of frequency ratio with nanlocal parameter for different 

mode numbers (SCSC, 0.2 , =1  ) 

 

 

Figure 7 Variations of frequency ratio with nonlocal parameter for different 

boundary conditions ( 0.2 , =0.5  ) 

 

 

Figure 8 Real and imaginary parts of determinant of Eq. (47) (  0 ) 
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 Table 5. Dimensionless buckling load 
2

xx

a
N N

D
 ratio for SSSS nanoplate and different nonlocal parameters  


h

τ
a

 


b

δ
a

 Method Nonlocal parameter 

 

   0   0.1   0.2   0.3   

0.1 1      

  Present 

[21] 

-18.6861   

-18.6861  

-15.6057  

-15.6057  

-10.4417  

-10.4408 

-6.7300  

-6.7200 

0.1 2      

  Present 

[21] 

-11.9171 

-11.9171 

-10.6084  

-10.6084 

-7.9795  

-7.9794 

-5.6470  

-6.7289 

 

 

                  Table 6. Dimensionless buckling load 
2

xx

a
N N

D
 and buckling load ratio for different nonlocal parameters and boundary conditions 


h

τ
a

 
b

δ
a

  Nonlocal parameter 
 

   0   0.1   0.2   0.3   

0.05 0.5      

  SSSS -47.6685 (1.0000) -31.9178 (0.6695) -16.0288 (0.3362) -8.7605 (0.1837) 

  SCSS -79.5633 (1.0000) -42.8457 (0.5385) -17.5740 (0.2208) -9.2180 (0.1158) 

  SCSC -134.9581 (1.0000) -53.1381 (0.3937) -19.1887 (0.1421) -9.2576 (0.0685) 

0.1 0.5      

  SSSS -43.2593 (1.0000) -28.9651 (0.6695) -14.5461 (0.3362) -7.9501 (0.1837) 

  SCSS -66.7824 (1.0000) -36.3659 (0.5445) -15.2557 (0.2284) -7.7511 (0.1160) 

  SCSC -102.7726 (1.0000) -41.0587 (0.3995) -14.6297 (0.1423) -7.0586 (0.0686) 

0.2 0.5      

  SSSS -31.6290 (1.0000) -21.1779 (0.6695) -10.6354 (0.3362) -5.8127(0.1837) 

  SCSS -41.2908 (1.0000) -22.5930 (0.5471) -9.4627 (0.2291) -4.8110 (0.1165) 

  SCSC -53.6786 (1.0000) -21.4606 (0.3997) -7.6495 (0.1425) -3.6909 (0.0687) 

0.05 1      
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Regarding the table 6, by increasing the thickness to length ratio, 

the buckling load ratio for different values of   increases. Also, 

by increasing the nonlocal parameter the values of buckling load 
ratio decrease. In addition, the influence of nonlocal parameter is 

more remarkable for SCSC boundary condition. 

 

8. Conclusion 

This paper presents the free vibration and buckling analysis of the 

rectangular Reddy nanoplates based on nonlocal elasticity theory 
using wave propagation method. Dimensionless natural 

frequencies and dimensionless buckling load of the nanoplate are 
compared with available literature and excellent agreement is 

observed. In future works, these results can be an excellent 
database to verify approximate or other analytical solutions as they 

are regarded as exact solutions. Also, it is seen that the computer 
coding of the proposed method is much easier than the classical 

methods which makes it more appropriate in implementation. 

Moreover, the influence of different parameters, such as nonlocal 
parameter, aspect ratio, aspect of length to thickness of nanoplate 

and boundary conditions are discussed. It was observed that: 

  By increasing the thickness to length ratio, the frequency 

ratio and buckling load ratio for different values of   

increase. 

 By increasing the nonlocal parameter the values of 
frequency ratio and buckling load ratio decrease. 

 By increasing the nonlocal parameter, the frequency 
reduction rate is higher for higher modes. 

 The influence of nonlocal parameter in more remarkable 
for SCSC boundary condition. 
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