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1. Introduction 

 Geometrical discontinuities such as cracks in shell and plate 
structures which play the main role of protecting in engineering 
structures can lead to catastrophic consequences.  Study on the 
vibrational response of structures can help to reveal the 
malfunctions in the structures.  However, due to slighter effect of 
part through cracks on the dynamic response of thin walled 
structures they may be a challenge for Vibrational Structural 
Health Monitoring (VSHM). In addition, three-dimensional 
nature of part through cracked shells and structures makes 
modeling and analysis of this type of problems a tedious task. 
Therefore, limited number of researchers concerned plate and thin 
walled structures containing cracks.1 Rice and Levy [1] conducted 
the first work aimed to reduce the three dimensional problem of 
part through crack in a plate to two dimensional. They developed 
line spring method (LSM) to predict stress intensity factors in 
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bending and tension modes by combination of Kirchhoff plate 
theory with two-dimensional edge cracked medium.  An extension 
of work of Rice and Levy[1] for antisymmetric loading  condition 
which causes the crack to get excited in II and III modes was 
carried out by Joseph and Erdogan [2]. Wen and Zhixe [3] made 
some modifications to accommodate crack location parameter into 
the LSM. Effect of crack inclination under biaxial stress state was 
investigated by Zeng and Dai [4]. Problem of through crack  
presence in shells under skew-symmetric loading was studied by 
Delale [5]. A Green function solution for crack and anti-rack 
problem in thin plates is offered by Cheng and Reddy[6]. Most of 
the mentioned researches concerned the static loading and aimed 
estimation of the crack stress intensity factor and a limited number 
of researches have been devoted to dynamic response of cracked 
plate.  Israr et al. [7] fulfilled the first study on the dynamic 
characteristics of a cracked plate by implementation of LSM.  In 
this work, a nonlinear partial differential equation was developed 

 

ART ICLE  INFO ABST RACT  

Article history: 

Received: 9 December 2017 

Accepted: 10 May 2018 

 

The presence of part-through cracks with limited length is one of the 

prevalent defects in the plate structures. Due to the slight effect of this type 

of damages on the frequency response of the plates, conventional vibration-

based damage assessment could be a challenging task. In this study for the 

first time, a recently developed state-space method which is based on the 

chaotic excitation is implemented and nonlinear prediction error (NPE) is 

proposed as a geometrical feature to analyze the chaotic attractor of a 

centrally cracked plate. For this purpose using line spring method (LSM) a 

nonlinear multi-degree of freedom model of part through cracked 

rectangular plate is developed. Tuning of Lorenz type chaotic signal is 
conducted by crossing of the Lyapunov exponents’ spectrums of nonlinear 

model of the plate and chaotic signal and in the next step by varying the 

tuning parameter to find a span in which a tangible sensitivity in the NPE 

could be observable. Damage characteristics such as length, depth and angle 

of crack are altered and variation of proposed feature is scrutinized. Results 

show that by implementation of the tuned chaotic signal, tangible sensitivity 

and also near to monotonic behavior of NPE versus damage intensity are 

achievable. Finally, the superiority of the proposed method is examined 

through the comparison with the frequency-based method. 
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by combination of Berger formulation [8] and LSM, for a centrally 
located crack which was parallel with one of main axis of 
rectangular plate. Later Ismail and Cartmell [9] extended the work 
of Israr et al. [7] to capture the effect of crack orientation on the 
dynamic response of plate. They exploited the stress and moments 
transformation relations to modify the mathematical equations, 
accordingly. Initial proposed problem was investigated further by 
Bose and Mohanty[10] to take the effect of crack location into 
account. By implementation of modified line spring method 
(MLSM) of [3]and[9] , they developed an analytical model which 
covered the effect of crack orientation and location on the 
governing dynamic equation.  Li et al. [11] considered the 
vibrational energy flow and wave propagation characteristics of 
over-all part-through cracked plate using LSM model. Linear and 
nonlinear frequency response of cracked plate was the main 
concern of formerly referred works. Most of results in the previous 
researches showed that effect of a part-through crack with limited 
length has negligible effect on the frequency response of plates 
which hinders conventional vibrational based procedures to assess 
the crack effect.  In recent years, time-series based procedures 
developed which may be used to cover the shortages of frequency 
based method. Kuroiwa and Iemura[12] used Auto-Regressive 
(AR) and Auto-regressive with eXogenous inputs (ARX) 
statistical models to make a time series based analysis which was 
implemented on a 5-story steel frame model. Trendafilova and 
Manoach[13] by inspection of the changes in geometrical features 
of state space dynamic response of a damaged plate proposed a 
vibration based health monitoring scheme.  Figueiredo et al. [14] 
proposed a nonlinear time-series procedure which utilized 
Autoregressive modeling to detect damages under variable 
operational conditions. Use of chaotic signal as  a interrogator 
which developed in recent years was proposed by Todd et al. 
[15].Their work considered state space framework and suggested 
that local attractor variance ratio (ALAVR) to be a damage 
sensitive feature and examined the proposed method on a FEM 
model of a thin aluminum cantilever beam. In other research, 
Nichols et al. [16]  investigated variation of an attractor based 
property called prediction error as a damage sensitive feature on a 
simplified nonlinear model. Ryue and White [17] implemented 
chaotic excitation to inspect the correlation dimension and 
Hausdorff distant as features in a cracked beams’s state space 
response. Epureanu et al. [18] proposed a nonlinear dynamic 
based enhanced sensitivity scheme based on the feedback from 
structure response under chaotic excitation. Torkamani et al. [19] 
investigated the hyperchaotic probing of damaged structures and 
utilized prediction error as a feature and found out that 
hyperchaotic interrogation could enhance sensitivity of proposed 
feature to damage alteration in a tangible manner. It is not 
necessary to note that there are considerable researches which deal 
with the vibration of intact thin walled structures. Flat plates are 
among the structures that numerous studies devoted to the study 
of their linear and nonlinear responses [20], [21]. Researchers also 
are interested in the stability behavior of cracked plates. Shishesaz 
et al. [22] studied the buckling of centrally defected composite 
plates under the in-plane compression loading.  

2. In this study, for the first time, the nonlinear prediction error is 
proposed as a damage sensitive feature to investigate the 
sensitivity of chaotic attractor for the health monitoring of part-
through cracked plates. This feature deals with the fractal and 
geometrical attributes of chaotic attractors.  Present research, 
conducts a comprehensive study on the chaotic interrogation of 
cracked plates. For this purpose, a nonlinear multi-degree of 
freedom model of part-through cracked plate is developed by 
MLSM procedure. Evaluation of feasibility of the proposed model 
in time-series domain was examined through comparison with a 
detailed three-dimensional FE model. Nonlinear auto prediction 
error (NAPE) as a geometrical metering tool for comparison of 

chaotic attractors is proposed to be a damage sensitive feature.  
After establishment of the nonlinear model, Lorenz type chaotic 
signal was implemented to excite the nonlinear model of cracked 
plate. To confirm that the chaotic signal Lyapunov’s dimension 
will be altered via passing from the model, crossing of Lyapunov 
exponents’ spectrum (LEs) of cracked plate model with the 
interrogator signal is examined. In order to set a better tuning, 
effect of change of tuning parameter on the NAPE is surveyed to 
find a span within proposed feature reaches to a tangible 
sensitivity. By using of tuned chaotic signal, effect of the crack 
properties’ alteration e.g. crack’s length, orientation and depth on 
the variation of mentioned feature is investigated. 

 

2. Problem Description 

The rectangular plate which is considered in this study contains a 
single part-through crack located in center of the plate (Fig.1).  
Plate dimensions are 

1l and 
2l  in x and y directions and crack 

length is 2a. Crack makes an angle  with x direction. Crack has 
a depth ratio of  which is defined as the ratio of crack depth to 
the plate thickness (h). The plate is constructed from a linear 
elastic isotropic material with modulus of elasticity, E, Poisson 
ratio of   and density of  . Moreover, the plate subjected to an 
excitation force, F which acts in (x0, y0) location. 

In carrying out this project, epoxy resin was used as matrix 
material, while fibre glass and talc were used as filler for the 
production of the thermoset composite. 

For the purpose of this experiment, Talc was sieved into average 
particle sizes of 75 µm and 106 µm using a mechanical sieve. The 
fiber glass was cut into short pieces of approximately equal length, 
with an aspect ratio of 0.08. The mold was coated in Poly Vinyl 
Alcohol (mold release agent) and left to dry before pouring the 
resin mixture. 

 

 

Figure 1. Center part-through cracked plate, geometrical configuration 
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Where 
3

212(1 )

Eh
D





 is flexural rigidity of the plate and 

denotes to the Dirac delta function. , ,x y xy yxN N N N are the 

in-plane forces of an intact plate from which in-plane negative 

forces , ,x y xy yxN N N N  are subtracted due to presence of the 

crack. Therefore, summation of  ,i iN N

,i x y will denote to the net in-plane in x and y directions. 

, ,x y xy yxM M M M  are bending moments per unit length and 

, ,x y xy yxM M M M are presented due to the introduction of 

crack into plate. By considering terms with subscript xy, effect 

of angled crack can be taken into account. By introduction of 

non-dimensional coordinates,
1

x

l
   ,

2

y

l
  , and also plate 

aspect ratio, 2

1

l

l
  , equation (1) can be recast[10]: 
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(2) 

In line spring method which was firstly offered by Rice and 

Levy[1], an approximate relationship between the crack tip 
stresses and far field stresses is introduced. By implementation 

of LSM, the purely three dimensional problem of part-through 

crack in a thin plate reduced to a two dimensional one. Using 

this theory, Israr et al. [7] conducted vibration analysis of a 

plate which crack located in the center of the plate where crack 

orientation was parallel to one of x or y directions. Assume that 

crack is located in an infinite plate where far-field tensile, 

bending and in –plane shear stresses are acting as illustrated in 

Figure 2.  By plane transformation of stresses to the p-q plane, 

resulting stresses will be rewritten as: 
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Figure 2. Crack located in an infinite plate subjected to far distance 

forces and moments. 

By above transformation, problem can be rewritten in new 
plane (p-q), where tensile, bending stresses, shear and twisting 

stresses are applied on a horizontally oriented crack. For 

transformed problem, effect of un-cracked ligament is 

represented by springs which will apply forces and moments 

on a virtual through crack faces. In other word, by application 

of these springs a through crack problem would play the role 

of a part-through one. 
nN  

In the line spring method, a part through crack mouth opening 

in normal direction which is under action of far-field tensile 

stresses ,p q   and tensile force of  is expressed as: 

4
( )n q t

a

E
     

(5) 

where n

t

N

h
  . Rotation in the normal direction due to the 

action of bending moments is expressed as: 

8(1 )
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(6) 

In which, 
2

6 n

b

M

h
  . Similar to crack mouth normal 

openings, tangential displacements due to action of tangential 

stress pq  and remote force tN , is: 

4
( )t pq t

a

E
     

(7) 

Where t

t

N

h
  . Also, rotation of crack edges in response of 

application of twisting moment, tM  and remote twisting stress

pqm , can be expressed as: 

8
( )t pq b

a
m

Eh
    

(8) 

where 
2

6 t

b

M

h
  . By introduction of dimensionless terms, 

1

h

l
  , 

1

a

l
   and using the procedure outlined in [4], 
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relationship between crack tip stresses and far-field stresses 

can be found: 

2
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In above relations, , , ,ij i j t b  , 
bt tb  are compliance 

coefficients used to match stretching and bending resistances 

in mode I which happens in symmetric loading case. 

, , ,ijC i j b t  , 
bt tbC C are coefficients for handle anti-

symmetric and mixed mode loading where modes II and III of 

crack are excited[2]. Expressions which are used to evaluate 

these quantities according to crack depth ratio ( ) are given in 

Appendix A.  

By using transforming equations (3-4) and relations (9-12) 

closure forces and moments of crack will be in hand. More 

detail calculations are given in Appendix B for the sake of 

convenience.  

From Kirchhoff hypothesis, bending moments , ,xx yy xyM M M

are given in dimensionless coordinates as follows: 
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 Using equations 13-15 and ones given in Appendix B which 

present crack closure forces and moments, final partial 

differential equation that governs dynamics of part-through 

cracked plate will be in hand:  
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Where 1 23  are provided in Appendix C. In Equation (16), 

in-plane membrane forces ( ,x yN N and xyN ) can be rewritten 

using Berger’s formulation[8] to reach to an explicit equation 

in which the transverse displacement of plate (w) is the only 

dependent variable: 
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2.1. Time domain solution 

By Eq. 16 being in hand, approximate solution of the nonlinear 

PDE would be possible by application of Galerkin method. In 

this research, time domain type of solution is required and 

therefore convergence study about the minimum number of 

mode-shapes is imperative to reach acceptable accuracy. 

According to various boundary conditions of the plate, 

different mode-shape functions are considered as follows:  

For fully simply-supported plate (SSSS): 
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two opposite sides are clamped while remaining edges are 
simply supported: (SSCC) 
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(19) 

And if all of the edges are fully restrained (CCCC): 
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Where ,i jco are coefficients given in Appendix D and ( )ij t s 

are temporal functions which determine the evolutions of the 
system’s dynamic in time domain. Above infinite series must 

be truncated in practical applications and the number of modes 

must be selected in such a way that acceptable accuracy is 

achievable for subsequent time series analysis. Considering 

desired boundary condition and by substitution of one of the 

relations (18-20) into equation (16) and application of 

Galerkin’s residual weight procedure, a system of coupled 

nonlinear temporal differential equations would be obtained.    

2.2. Convergence Study and Comparison with FE Model 

 

In this section for evaluation of feasibility of the implemented 

method and also study of convergence of established nonlinear 
model a detailed FE model of part-through cracked plate is 

developed in Abaqus/Explicit environment. Mentioned model 

due to thin wall structure of the plate and also partially 

penetrating crack configuration is essentially a three-

dimensional problem and hence requires considerable number 

of three dimensional elements. Therefore, a plate with 

dimensions m which contains a crack 

with depth ratio of  and length parameter of  

is considered . It is assumed 

that crack shape is rectangular and plane of discontinuity is 

perpendicular to the plane of the plate. Material properties of 

plate are set as follows: E=70e9 GPa, . It is assumed that a mass 

proportional damping mechanism equal to one percent of 

critical damping is existed for both of FE and analytical models 

(i.e. µ must be set for every vibration mode to assign 1 % of 

critical linear viscous damping, accordingly).   Moreover, for 

sake of simplicity in meshing of the model, crack was set to be 

parallel to x-direction and is located in center of the plate. 

Figure 3 shows schematic of the proposed problem and its 

numerical equivalence in FE software. There are162905 

elements that are used to construct the numerical model. Seam 

feature is implemented to assign a geometric discontinuity into 

the model. Chaotic signal is itself a broad bandwidth one and 

due to the forced vibration essence of present problem, using 

of this type of signal is feasible for examining the analytical 

model and the convergence study.  For excitation of the models 

a chaotic Lorenz type system of equations is considered which 

is given as follows[23] : 

where over-dot operator denotes the derivation respect to time 

and and are Lorenz’s equation variables from which 

only will be used to make amplitude of excitation force (i.e. 

F in equation (16)).   is tuning parameter which will be 

discussed in more detail in next section. However, in this stage, 

is used for comparison between FE model and nonlinear 

analytical models of SSSS-SSCC and   for CCCC 

boundary condition. It must be noted that raw exciting 

amplitude (i.e. ) extracted directly from Lorenz model may 

not be sufficient to produce desired transverse deflection (w) 

in real model, thus a magnification factor must be multiplied 

to  to achieve a deflection in order of the thickness of the 

plate.  

 

 

 

 
(a) 

 
(b)  

Figure 3. (a) Schematic configuration of cracked plate for convergence 

and verification study, only one quarter of plate depicted to better caption 

of crack, (b) three dimensional FE model. 

 

 

The exciting force is applied in m. Figure 4 

summarizes the results of detailed numerical simulations and 

its comparison with analytical model for various boundary 

conditions. Adams-Gear algorithm was used for numerical 

integration of system of nonlinear ODEs. Neglecting transient 

part of solutions in which a slight departing of results is  
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perceptible, a good correlation between analytical model and detailed numerical simulations is observed in steady state response. 

This does not produce notable circumstances due to omitting of transient parts of solutions in attractor analysis, hence it can be 

implied that proposed model has sufficient eligibility for subsequent analysis in time series domain.  

 

3. Tuned Chaotic Interrogation 

As mentioned in the previous researches[16][15][19], chaotic 

signal due to its characteristics, such as wide frequency 

spectrum, determinism and sensitivity to the initial conditions 

may be a noble signal to be exploited as an interrogation tool 

to find evidences of malfunctions in dynamical systems. In 

fact, presence of positive Lyapunov exponents in spectrum of 
chaotic systems can lead to extreme sensitivity to the small 

changes of the interrogated system’s parameters. Although 

aforementioned method of interrogation has its advantages, 

some subtleties arise due to the tuning procedures. Introducing 

damage to the dynamical system results in change of its eigen-

structure. If Lyapunov exponent spectrum (LEs) of the system 

and chaotic signal are overlapped, then this ensures that 

changes in LEs of structure due to damage (e.g. crack) will 

have effect on the Lyapunov dimension of the filtered chaotic 
signal [16]which is defined according to the Kaplan-Yorke 

conjecture[24] as: 

 

 

 

 

 

(22) 

In which, K is the number of exponents that may be added before the sum becomes negative and  is the Lyapunov exponents.  
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Figure 4. Convergence study of MLSM nonlinear model and comparison with detail FE model, time history of deflection at center of the plate; 

(a)SSSS B.C. : 4 dof, (b)SSCC B.C. : 9dof, 

(c): CCCC B.C. :12dof,  

 

3.1. Nonlinear Prediction Error as a Feature 

One of the most important aspects of structural health 

monitoring is the selection of an appropriate feature which has 

an acceptable level of sensitivity to damage parameters’ 

alteration. State-space response of dynamical systems has 

essentially a geometrical configuration. Chaotic attractor of an 

exciting signal after passing from filter of a degraded 

structure’s model (i.e. cracked plate), encounters an alteration 

in its primary geometrical topology. The nonlinear prediction 

error (NPE) is one metric that describes the ability of 

prediction of state of a system in future by an attractor. This 
approach was originally  established to investigate the non-

stationarity of time-series[25]. If this metric examines the 

prediction ability of two attractors which are constructed from 

time-series recorded in various conditions of structure (e.g. 

various crack lengths, orientation etc.) but from a fixed 

measuring point, then it is called auto-prediction error. 

Alongside of this definition, if comparison is taken place 

between two different attractors which are recorded from 

different measurement points and disparate conditions then 

concept of cross-prediction error can be defined. [19]. In this 

article nonlinear auto-prediction error (NAPE) will be used as 

a damage sensitive feature.  

For quantifying mentioned feature, an attractor which is 

constructed from a reference condition of structure (i.e. an 

intact plate) is considered as a baseline attractor. Attractors 

which are constructed from subsequent conditions of plate as 

it is degraded are called comparison attractors. Some points 

called fiducial points are randomly selected on the comparison 

attractor and according to geometrical coordinates of these 

fiducial points another set of points in neighborhood of those 
coordinates are found on the baseline attractor. Fiducial points 

on the comparison attractor and also corresponding 

neighborhood points on the baseline attractor are evolved in 

time by a few steps. New position of evolved points can be 

used to determine the Euclidean centroid of neighborhood 

points on the baseline attractor and can be compared with the 

time evolved fiducial coordinates on the comparison attractor. 

The Euclidean distance between centroid of time evolved 

neighborhood points and corresponding time  

 

 
Figure 5. Qualitative illustration of Nonlinear Auto-prediction Error (NAPE) calculation algorithm 

100*F x 1,1 1,3 3,1 3,3, , ,    200*F x 1,1 1,3 3,1 3,3 1,5 5,1 3,5 5,3 5,5, , , , , , , ,        

600*F x 1,1 1,3 3,1 3,3 1,5 5,1 3,5 5,3 5,5 3,7 7,3 7,7, , , , , , , , , , ,           
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evolved fiducial point can be evaluated as a metric which is 

called NAPE, . Number of randomly selected points on the 

comparison attractor is depended on the numbers of points 

which are used to construct attractor[19]. Finally, an averaging 

must be carried out on all of the Euclidean distances 

(corresponding to every fiducial point) calculated in preceding 

stage to obtain an estimation of NAPE. Further mathematical 

description of NAPE can be found in [19].  Figure 5 

illustratively describes the above-mentioned algorithm for 

calculation of NAPE. 

In most of applications normalized form of this quantity is 

used. Here, this normalization is carried out by definition of: 

 (23) 

Where, e is normalized NAPE, is the quantity which was 

calculated according to above outlined algorithm and is the 

quantity of un-normalized NAPE when two compared 

attractors are identical and are set to be the baseline attractor, 
i.e. attractor corresponding to the intact plate.  

 
3.2.  Lyapunov Exponents Spectrums Crossing  

In this article, Lyapunov spectrum of the nonlinear model of 

plate with the properties are specified in section 2.3 and chaotic 

signal are calculated numerically according to an algorithm 

outlined in [26] for a base condition of the structure which here 
is assumed to be the intact plate. For calculation of Lyapunov 

exponents it is assumed that one percent of mass proportional 

damping mechanism is existed in the plate. If tuning parameter 

in chaotic signal is set to be , then LEs of exciting signal 

will be ( 0.82,0,-14.5). By controlling LEs of the intact plate 

((see Figure 6), condition of overlapping of spectrums for all 

of boundary condition cases is met. This guarantees that any 

changes in eigen structure of the cracked plate model results in 

an alteration of Lyapunov dimension of filter-passed chaotic 

signal. While, the required condition of signal tuning is met 
this process may be further scrutinized by checking the effect 

of variation of tuning parameter on the sensitivity of NAPE.   

 
3.3.  Effect of Tuning Parameter on Feature Sensitivity  

As it can be concluded that by crossing of LEs spectrums of 

signal with the structural model a change in Lyapunov 

dimension of exciting signal is guaranteed but this alteration 

may not lead to an acceptable level of sensitivity. By changing 

the tuning parameter within a range and calculation of NAPE 

feature for two states of damage limits e.g. maximum crack 

length ( ) and intact condition, variation of feature 

vs. tuning parameter can be evaluated. It is assumed that crack 

orientation is parallel to x-axis and its depth parameter is fixed 

to be  for these calculations. Figure 6 illustrates the 

behavior of NAPE vs. tuning parameter, . What is more 

discernible from these graphs is the existence of a distinct span 

in which the normalized NAPE (e) takes higher magnitudes. 

For SSSS and SSCC boundary conditions apex of the curve is 

located around and this maximum migrates to vicinity 

of in CCCC case. Also, there is a considerable reduction 

in value of e in fully clamped case. Studies in subsequent 

sections are accomplished by setting   for SSSS and 

SSCC and for CCCC boundary conditions. Figure 7 

summarizes the graphical depiction of final LEs spectrums of 

intact plate model and tuned signal for different boundary 
conditions.   

 
4. Results and Discussion 

In this section the results of analyses are presented after the 

tuned chaotic interrogator signal used to excite a cracked plate 

with  and h=0.02(m) as its geometrical 

characteristics. Material of the plate is assumed to be linear 

isotropic elastic with properties provided in the section 2.2.  

Alteration in geometrical configuration of chaotic attractor 
after passing from filter of cracked plate with various levels of 

damage intensity (e.g. crack length) is illustrated in figure 8.  

This figure depicts the local morphing of attractors as a result 

of damage action on the nonlinear model.  

Figure 9 illustrates variation of normalized NAPE (e) vs. 

variation of crack length parameter,  For various boundary 

conditions. For these analyses crack depth parameter is 

assumed to be constant, . Crack orientation for SSSS 

and CCCC cases is varied in range of in 15o 

intervals due to symmetry and in the case of SSCC this range 

extended to with 30o intervals.

 

 
Figure 6. NAPE vs. tuning parameter( ) 
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Figure 7. Crossing Lypunov Exponents Spectrums (LEs) of the intact plate model ( by assuming 0.01 (one percent) of mass proportional 

damping) and chaotic signal after optimal tuning for top: SSSS, middle: SSCC and bottom: CCCC boundary conditions (Whit bars: model, Black 

bars: Chaotic signal). 
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Figure 8. Chaotic attractor morphing after passing from filter of the model for different damage intensities, a) Lorenz chaotic signal,  b) SSSS, 

c)SSCC and d) CCCC boundary condition. State space at center of centrally cracked plate when crack is parallel to x axis. 

 

 

 

 

 

 
Figure 9. Variation of NAPE (left) and Standard Deviation (right) vs. crack length parameter ( ) for various boundary conditions and crack 

orientations, legend for SSCC :0o , 30o ,60o ,90o , SSSS and CCCC: 0o , 15o 

,30o ,45o . 
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For SSSS case, maximum normalized NAPE factor (e) can 

take the excellent value of 1.85 (i.e. 185%) where the crack is 

centrally located and inclined by 45o angle. Maximum 

sensitivity of e corresponding to  as shortest crack 

length is about 24%. This graph reveals this fact that 
distinguishing between various crack orientations is a 

relatively hard task for SSSS boundary condition at least in real 

world experimental conditions.  

In SSCC case, maximum excellent value of 2 (200%) for e is 

attained in centrally cracked plate corresponding to . 

Maximum achievable value of e corresponding to  is 

about 50% and occurred in crack orientation of to 60o. 

Maximum quantity of 1.5 for e is observable in center located 

crack case for fully clamped (CCCC) boundary condition. 
Generally lower sensitivity for this case is elicitable in 
comparison with other boundary conditions. 60% of sensitivity 

for  and 45o of crack angle is observed which is 

higher than sensitivity for similar conditions in SSSS case.  

By comparing the various boundary conditions, what is more 

discernible is that by more restraining the plate distinguishing 

of various crack orientations would be easier task.  It is 

noteworthy that in the case of presence of multiple cracks in 

the plate which is more probable in real conditions, it is 

expectable that the only NPE is not sufficient for high levels of 

health monitoring. In this case, it is suggested that the number 

of features and also the measurement locations in various 
points of the plate must be increased. For example, the standard 

deviation of the time series could be a good candidate to be a 

bonus damage sensitive feature. Standard deviation is defined 

as:  

 
2

1

1

N

r

r

x x

SD
N
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
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(23) 

where , 1,...,rx r N , denotes to individual data points 

resulted from time series solution, x is the mean of data set and 

N is the number of time series data set. Figure 9 illustrates the 

variation of standard deviation vs. crack length parameter 

which shows a considerable sensitivity to the damage severity. 

By gathering more information from multiple points of the 

plate, judgment about the severity and location of cracks may 

be facilitated.  

Figure 10 presents effect of crack depth parameter,  , on the 

variation of e. It is assumed that the crack is located in center 

of the plate. What is more discernible from these graphs is non-

monotonic behavior of e against . There is an extremum for 

every boundary condition that its location depends on the crack 

angle. While maximum quantity of e for SSSS case is observed 

for higher values of   ( ), these points located in 

range of 0.2 0.3 
 

for SSCC and CCCC boundary 

conditions.  
Table 1 summarizes the variation of natural frequencies of 

cracked plate for various boundary conditions at most sensitive 

crack orientations. This table illustrates the sensitivity level of 

conventional frequency based method and indicates the 

superiority of chaotic excitation method. 
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Figure10.  Variation of normalized NAPE (e) versus crack depth parameter (  ) 
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Table 1.  Comparison of fundamental frequency for various crack lengths 

B.C. (crack orientation) θo First Natural 

Frequency(Hz) for 

Г=0.05 

First Natural 

Frequency(Hz) for 

Г=0.25 

% of sensitivity 

SSSS 0o 93.5 81.01 13% 

SSCC 90o 133 113 15% 

CCCC 45o 155 138 11% 

 
5. Conclusion 

 

In present article, nonlinear time series response of a 

rectangular partially through cracked plate subjected to the 

chaotic excitation studied in state space domain. For more 

comprehensive investigation of the crack effect on the 
variation of damage sensitive feature an analytical model 

developed using MLSM theory, which its eligibility for time 

series analysis examined through the comparison with a 

detailed FE model. By implementation of a tuned Lorenz type 

chaotic signal to excite the cracked plate which constrained 

with different boundary conditions, sensitivity of nonlinear 

auto-prediction error (NAPE) as a feature is examined. Crack 

characteristics such as depth, length, orientation and location 

are selected as damage parameters. Scrutinizing the results 

showed that variation of the proposed attractor based feature 

versus damage parameters is significant due to high sensitivity 

of NAPE to local morphing of the filter-passed chaotic 
attractor.  

By deviation of crack location from center of the plate, an 

asymptotic behavior for NAPE (e) is observable in SSSS and 

SSCC cases while this behavior is negligible for fully clamped 

case. Although there is a monotonic relation between NAPE 

and crack length parameter such a behavior is not observable 

in the case of crack depth factor. In addition, NAPE 

discrimination level for various crack angles is noticeable. 

High capability of chaotic interrogation and geometrical 

evaluation of attractors in damage assessment of thin walled 

cracked structures can be implied from mentioned properties. 
Although present purely theoretical study illustrated the high 

sensitivity of proposed method to various damage variations, 

however in practical applications effect of noise can cause to 

mitigation of sensitivity and this problem may be studied in a 

separate experimental program.  
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Appendix A 

According to calculations of Levy and Rise[1], compliance coefficients are varied as a function of (crack depth ratio) : 

 A.1 

 A.2 

 A.3 

Joseph and Erdoghan[2], derived compliance coefficients, for antisymmetric loading case as a function of crack depth ratio as 

follows:  

 A.4 

 A.5 

 A.6 

Where functions are defined as follows: 

 A.7 

 A.8 

Appendix B 

By integration of transformation equations (3-4) and equations (9-12) over crack thickness, relation between closure forces and 

moments in p-q plane and far field forces and moments in x-y plane is funded as follow: 

 B.1 

 B.2 

 B.3 

 B.4 

Where, , i=1-8 are listed as follows: 

 

Where, R and T are defined in the text (see Eq. (12)). 

ij 
2 2 3 4 5 6 7 8(1.98 0.54 18.65 33.7 99.26 211.90 436.84 460.48 289.98 )tt                 
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Hence by using following expressions which act as reverse transformation from p-q to x-y plane:  

 

B.6  

 

 

B.7  

 

 Forces and moments due to presence of crack are written. Note that negative sign simulates reduction of forces and moments 

resulted from crack discontinuity [10],[9],[7]. 

Appendix C 

Coefficients in equation (16), are listed as follows: 

 C.1, C.2 

 C.3, C.4 

 C.5, C.6, C.7 

 C.8, C.9 

 C.10 

 C.11 

 C.12 

 C.13, C.14 

 C.15, C.16 

 C.17, C.18 

 C.19, C.20, 

C.21 

 C.22 

 C.23 

 

Appendix D 

Coefficients  in equations (19-20) are derived from linear problem of clamped-clamped Euler beam[27]: 
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