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1. INTRODUCTION 

Micro and nano technologies include a wide range of advanced 

techniques used to fabricate and study artificial systems with 

dimensions ranging from several micrometers to a few 

nanometers [1, 2]. At nano and micro scales, size effects often 

become important parameters [3]. The results of both 

experimental and Molecular dynamics simulation have shown 

that the small-scale effects cannot be neglected in analyzing the 

mechanical properties of nano and microstructures, so the 

classical continuum theories become unusable in these scales 

[4-7]. Molecular dynamics simulation is a convenient method 

for simulating the mechanical behavior of small size structures; 

however, it is computationally expensive for structures with 

large number of atoms [8-16]. Thus, researchers were 

stimulated to develop  higher-order continuum theories such as 

nonlocal theory [17-24], strain gradient theory [25] and etc. 

with the capability of predicting  size effect by considering 
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material length scale parameters. In 1960s, the couple stress 

theory introduced by Toupin [26], Mindlin and Tiersten [27], 

and Koiter [28], became a popular  non-classical theory for 

analyzing micro and nano scale structures due to the higher 

predicted value of the stiffness of micro and nano scale 

structures compared to the classical theory. Free vibration of a 

C-CST Euler-Bernoulli nano-beams made of arbitrary 

bidirectional functionally graded materials have illustrated by 

Nejad et al. [11]. Farajpour et al. [29] have investigated the 

nonlinear buckling of magnetoelectro-elastic (MEE) hybrid 

nanoshells in thermal environment using a size-dependent 

continuum model. The stability analysis and vibration of 

rotating nanobeams under the effect of the compressive loading 

and a non-uniform magnetic field have investigated by Beghani 

et al. [30]. The influence of thermo-electro-mechanical loads 

on the free and forced vibration of a piezoelectric nanowire 

consideration of the framework of Timoshenko beam theory 
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within the nonlocal elasticity theory is illustrated with a 

numerical solution procedure by Kordani et al. [31]. In this 

paper effect of surface piezoelectricity, surface elasticity and 

residual surface stress is investigated. An analytical approach 

to study buckling of bundles of MTs considering surface effects 

provided by Farajpour et al. [32]. Yang, Chong, Lam, & Tong 

[33] proposed the modified version of the couple stress theory 

and considered the couple stress tensor to be symmetric. In 

their theory, two higher-order material-length-scale parameters 

are introduced in addition to the two Lame constants. One of 

the superiority of this theory compared to other theories was 

that the four additional parameters in the micro polar theory 

and five additional parameters in the strain gradient theory 

were reduced to only two additional parameters in this theory. 

In recent years, this property has attracted researchers to derive 

formulations for the mechanical analysis of the micro-beams 

and micro-plates and investigate their mechanical behavior 

based on this theory. Investigations about the formulations and 

mechanical behavior have been presented in recent years based 

on the modified couple stress theory for homogeneous linear 

micro-beams [34, 35], homogenous nonlinear micro-beams 

[36-38], functionally graded linear micro-beams [39], 

functionally graded nonlinear micro-beams [40-42], linear 

micro-plates [43-45], nonlinear micro-plates [46, 47], 

composite laminated beams [48, 49]. Recently, by considering 

true continuum kinematical displacement and rotation, 

Hajesfandiari & Dargush [50] have demonstrated that the 

couple tensor is skew-symmetric and present the consistent 

couple stress theory by adopting the skew-symmetric part of 

the rotation gradients as the curvature tensor.  

In this article, free vibration behaviors and flexural sensitivity 

of atomic force microscope cantilevers with small-scale effects 

are investigated. To study the small-scale effects on natural 

frequencies and flexural sensitivity, the consistent couple stress 

theory is applied. 

 

2. ANALYSIS 

A schematic diagram of an atomic force microscope probe 

cantilevered at one end is shown in Fig. 1. The cantilever has 

length L, thickness h and width b. A mass M is attached at the 

free end of the cantilever, which interacts with the sample by a 

spring constant k. Cartesian coordinates (x,y,z) are considered 

as presented in the figure. 

 
Fig. 1. Euler–Bernoulli micro-cantilever of an AFM probe 

with the end spring. 

 

According to the consistent couple stress developed by 

Hadjesfandiari [50], first variation of the strain energy for an 

isotropic linear elastic material with volume Ω experiencing an 

infinitesimal displacement is defined as: 

 ij ij ij jiU e m dv   


   (1) 

Where, ij , ijm , ije and ij  represent the stress, couple stress, 

strain and skew-symmetric curvature tensors, respectively. 

These tensors are defined by 

2ij kk ij ije e      (2) 

 , ,

1

2
ij i j j ie u u   (3) 

28ij ijm l    (4) 

 , ,

1

2
ij i j j i     (5) 

Where, λ and µ are Lame’s constants, and ui and ωj are the 

components of the displacement and the rotation vectors, 

respectively. The size-dependent parameter, 𝑙, is dependent on 

the material and scale and varies from one material to another 

or from one scale to another scale. This parameter should be 

obtained via conducting experiments for various dimensions in 

different working conditions. Also, it can be approximated by 

more accurate techniques such as molecular dynamics 

simulation. Where the ωj, rotation vector is defined as: 

,

1

2
i ijk k ju   (6) 

In which, ijk , denotes the permutation or Levi-Civita symbol. 

Components of displacement vector (
1u , 

2u  and 
3u  ) for micro 

beams can be expressed based on Euler–Bernoulli beam 

theories as follows: 

1

dw
u z

dx
   (7) 

2 0u   (8) 

 3u w x  (9) 

Substitution of Eqs (6-9) into the Eq. (5) yields to the 

expression for the skew-symmetric curvature tensor as 
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From Eq. (4), the couple stress tensor is defined as follows 

2
2

2

0 1 0

4 1 0 0

0 0 0

w
m l

x


 
  


 
  

 (11) 

From the displacement field, the strain components can be 

calculated by substituting Eqs. (7-9) into equation, Eq. (3). 

2
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w
e z

x

 
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 
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 (12) 

For a slender beam with a large aspect ratio, the Poisson effect 

is secondary and can be disregarded for simplifying the beam 
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theory formulation. Hence, the stress component is presented 

as 

2

2
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0 0 0

0 0 0

w
Ez

x


 
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 (13) 

Where, E is the modulus of elasticity. Considering the first 

variation of the kinetic energy on time interval [0,t] the 

following relation can be obtained: 

 1 1 2 2 3

0 0

3

t t

Kdt du u u u Vu u dt   


 
 

  
 

    (14) 

Where,   is the volume density. In order to obtain governing 

equations and corresponding boundary conditions for the AFM 

cantilever flexural vibration, the Hamilton's principle can be 

used as follows: 

 
0

0

t

U K dt    (15) 

In which U and K are strain energy and kinematic energy, 

respectively. The governing equation of the AFM cantilever 

flexural vibration is: 
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Where, A is the cross-sectional area of the AFM cantilever. The 

corresponding boundary conditions are: 
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For free vibration, we assume that the w(x,t) varies 

harmonically with respect to the time variable t as follows: 

   , i  tw x t f x e   (18) 

For convenience and generality, the following non-

dimensional variables are introduced: 
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Use of the above non-dimensional parameters in the ordinary 

differential equation and boundary conditions results in: 
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From equation (19), the general solution for f  is given below: 

1 2 3 4sin cos sinh coshf C ax C ax C ax C ax     (21) 
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In which Ci are some constants. By applying the introduced 

boundary conditions, the characteristic equation can be 

obtained as: 

      3 41 1 cos cosh 1 cosh sin cos sinh 0C a a a k Ma a a a a        

 

(2

3) 

And the natural frequency can be determined from the 

characteristic equation. The flexural sensitivity of the 

cantilever to the surface stiffness variations can be calculated 

from the following equation: 

a
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And from equation (23) we have: 
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Substituting Eqs. (25) and (26) in Eq.(24), the flexural 

sensitivity of the AFM cantilever is expressed as 
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3. Result and discussion 

In this section, the free vibration and sensitivity analysis of 

AFM cantilever are investigated by numerical results based on 

a consistent couple stress theory.  

In AFM micro cantilever, the variation of the natural frequency 

of the first modes versus to the parameter  𝑘̅̅ ̅ for various values 

of ℎ/𝑙 is shown in Figure 2. As can be seen, the natural 

frequency increases by increasing the contact stiffness. It 

should be noted that the 
ℎ

𝑙
= ∞ case presents the classical beam 

theory results. It is also seen that for a constant value of  �̅�, the 

natural frequency decreases as ℎ/𝑙 increases. Therefore, the 

natural frequency obtained by the consistent couple stress 

theory is significantly greater than the frequency obtained by 

the classical beam theory. Moreover, in very high values of �̅� 

,changing �̅� has little effect on the natural frequency.  

 
Fig. 2. The changes of the natural frequency of the first modes 

of an AFM micro-cantilever versus to the parameter  �̅� for 

various values ℎ/𝑙 
Figure 3 shows the ratio of natural frequency in the case of 

considering consistent couple stress, 𝛾𝐶𝐿, to the classic case, 

𝛾𝐶𝐿, in terms of dimensionless thickness,ℎ/𝑙 for �̅� = 0.01. As 

it can be seen, with increasing the dimensionless thickness, the 

natural frequency ratio tends to 1, which indicates the reduction 

in the couple stress effect by increasing the thickness against 

size scale parameter.  If the dimensionless thickness equals to 

1, relative natural frequency becomes 4.46, which shows the 

difference between the classic and consistent couple stress 

theory in small sizes. 

 
Fig. 3. Natural frequency ratio of the first modes of an AFM 

micro-cantilever versus to dimensionless thickness for �̅� =
0.01. 

 
Fig. 4. The changes of the sensitivity of the first modes of an 

AFM micro-cantilever versus to the parameter �̅� for various 

values ℎ/𝑙 
 

 

The distribution of the first mode sensitivity of an AFM micro-

cantilever versus to the parameter �̅� for various values 
ℎ

𝑙
 is 

shown in Figure 4. As it can be seen, with increasing �̅�, the 

sensitivity tends to zero. It may be important that for low values 

of contact stiffness, the decrease in the 
ℎ

𝑙
 leads to the reduction 

of the sensitivity, while the opposite trend is observed for high 

values of contact stiffness. As an important result, it is observed 

that when the thickness of micro-cantilevers is close to the 

internal material-length-scale parameter, the difference 

between the sensitivities obtained from the coupled stress 

theory and the sensitivities predicted by the classical beam 

theory is relatively high. 

 

4. Conclusion 

In this paper, using an Euler–Bernoulli beam theory, the 

sensitivity of the flexural vibration modes for an atomic force 

microscope cantilever has been analyzed by the consistent 

couple stress theory. According to the conducted analysis, the 

sensitivity of the cantilever obtained by the consistent couple 

stress theory was smaller compared to the one obtained by 

classical beam theory. The presented results in this work may 

provide useful guidance for design and development of AFM 

cantilever-based micro devices. 
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