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1. Introduction 

Due to the many uses they have in different structures, plates have 

always been of great importance for researchers in various 

sciences. To model dynamic and static behavior of plates, there are 

different theories. These theories are based on assumptions, 

limitations, benefits, and applications. The most common theories 

used, with regard to the plates, include the classical theory of thin 

plates known as the Kirchhoff theory [1] the first-order shear  
deformation plate theory known as Mindlin theory [2] and the 

third-order shear deformation plate  theory known as Reddy 

theory [3]. Regularly, a thin plate is a plate that the ratio of its 

thickness to its lateral dimensions is 1/20 or less. In practice, most 

plates satisfy this condition, which makes it possible to use the 

classical theory of thin plates to obtain the fundamental frequency 

(lowest frequency) of most plates. However, the second frequency 

of the plate with a thickness of 1/20 will not be accurate with this 

theory and the error will be relatively high. For higher frequencies, 

this error increases. This theory can be considered as the 

generalized version of Euler–Bernoulli beam theory. In this 

theory, it is assumed that each section of the plate, after the 

application of force, remains in the form of a plate flat and 

perpendicular to the neutral plate or the middle plate [4].The shear 

stresses and strains are ignored. This theory can be considered as 

the simplest theory used in modeling the behavior of plates. The 

field of validity of this theory is limited to thin plates. Recently, 
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some of problems with thin plates have been solved with Kirchhoff 

theory assumptions. 

Bell [5] presented the derivation of stiffness matrix for a refined, 
fully compatible triangular plate bending finite element.Liew and 
Liu [6] presented a treatment for bending analysis of Kirchhoff 
plates using the differential cubature method. Wei, Zhao and 
Xiang [7] introduces the discrete singular convolution algorithm 
for vibration analysis of rectangular plates with mixed boundary 
conditions. Lu et al. [8] used the differential quadrature method 
based on the state-space formalism for vibration analysis of 
generally supported rectangular Kirchhoff plates. Papargyri-
Beskou and Beskos [9] derived the government equation of motion 
of gradient elastic flexural Kirchhoff plates, including the effect of 
in-plane constant forces on bending. Dozio [10] presented a 
comprehensive study on the use of a set of trigonometric functions, 
as admissible solutions in Ritz method for general vibration 
analysis of rectangular orthotropic Kirchhoff plates. Shojaee et al. 
[11] presented an isogeometric finite element method for natural 
frequencies analysis of thin plate problems of various geometries. 
Brenner et al. [12] studied a Morley finite element method for the 
displacement obstacle problem of clamped Kirchhoff plates on 
polygonal domains. Millar and Mora [13] developed a finite 
element method to approximate the buckling problem of simply 
supported Kirchhoff plates subjected to general plane stress tensor. 
Cetkin and Orak [14] employed the hybrid approach of the 
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quadrature element method to generate solutions for point 
supported isotropic plates. 

Although classical theory of plates predicts the frequency of thin 
plates, it does not consider the effect of transverse shear 
deformation. In Mindlin and Reddy theories, the bending effect 
caused by shear deformation and the impact of moment of inertia 
were considered. Therefore, the little precision of Kirchhoff 
assumptions was solved in Mindlin and Reddy theories since these 
two factors increase the frequency. Also, in the third order shear 
deformation plate theory, after expanding the displacement 
relations up to the third order along the thickness, some equations 
consisting of the third order variables including relations of the 
transverse shear stresses and strains are obtained. This eliminates 
the necessity of using the shear correction coefficient of the first-
order shear theory. In recent years, a lot of researches have been 
done on moderately thick and thick plates. 

Reddy and Khdeir [15] developed an analytical and finite-

element solutions of the classical, first-order, and third-order 

laminated theories to study the buckling and free-vibration 

behavior of cross-ply rectangular composite laminates under 

various boundary conditions. Shen et al. [16] presented free and 

forced vibration analysis for Reissner-Mindlin plates with four 

free edge resting on a Pasternak-type elastic foundation. Qian, et 

al. [17] used a meshless local Petrov-Galerkin method to analyze 

three-dimensional infinitesimal elastodynamic deformations of a 

homogeneous rectangular plate subjected to different edge 

conditions. Hosseini Hashemi and Arsanjani [18] derived the 

dimensionless equations of motion based on the mindlin plate 

theory to study the transverse vibration of thick rectangular plates. 

Shi [19] presented an improved simple thire-order shear 

deformation theory for the analysis of shear flexible plates. 

Hosseini-Hashemi et al.  [20] used the Mindlin plate theory to 

study buckling of in-plane isotropic rectangular plates with 

different boundary conditions. Hosseini-Hashemi et al.  [21] 

presented an exact closed-form solutions in explicit forms for 

transverse vibration analysis of rectangular thick plates having two 

opposite edge hard simply supported based on Reddy’s third-order 

shear deformation plate theory. Eftekhari and jafari [22] proposed 

a simple mixed Ritz-differential quadrature (DQ) methodology for 

free and forced vibration, and buckling analysis of rectangular 

plates. Dongyan Shi, et al.  [23] presented a generalized Fourier 

series solution based on the first-order shear deformation theory 

for free vibration of moderately thick rectangular plates with 

variable thickness and arbitrary boundary conditions.  Pradhan and 

Chakraverty [24] investigated the four new inverse trigonometric 

shear deformation theories to study free vibration characteristics 

of isotropic thick rectangular plates subjected to various boundary 

conditions. Senjanovic et al. [25] presented a new procedure for 

determining properties of thick plate finite elements, based on the 

modified Mindlin theory for moderately thick plate. Xiang and 

Xing [26] presented a new first-order shear deformation theory 

with pure bending deflection and shearing deflection as two 

independent variables for free vibrations of rectangular plate. 

Mousavi et al.  [27] used a variational approach based on 

Hamilton’s principle to develop the governing equations for the 

dynamic analysis of plates using the Reddy third-order shear 

deformable plate theory with strain gradient and velocity gradient. 

Wanget al.  [28] presented a unified solution procedure based on 

the first-order shear deformation theory for the free vibration 

analysis of moderately thick orthotropic rectangular plates with 

general boundary restraints, internal line supports and resting on 

elastic foundation. Zhou and Zhu [29] utilized the third-order shear 

deformation plate theory to analyze the vibration and bending of 

the simply-supported magneto-electro-elastic rectangular plates. 

Babagi et al. [30] solved 3D elasticity equations by use of the 

displacement potential functions and the exact solution of a simply 

supported thick rectangular plate under moving load. Javidi et al. 

[31] considered transverse and longitudinal vibration of nonlinear 

plate under exacting of orbiting mass based on first order shear 

deformation theory. Makvandi et al. [32] proposed a hybrid 

method to investigate the nonlinear vibrations of pre- and post-

buckled rectangular plates . Daneshmehr et al. [33] investigated 

the free vibration behavior of the  nanoplate made of functionally 

graded materials with small-scale effects. The generalized 

differential quadrature method (GDQM) was used to solve the 

governing equations for various boundary conditions to obtain the 

nonlinear natural frequencies of FG nanoplates. Hosseini et al. [34] 

studied stress distribution in a single-walled carbon nanotube 

under internal pressure with various chirality. Hosseini et al. [35] 

presented the stress analysis of ratating nano-disk of functionally 

graded materials with nonlinearly varying thickness based on 

strain gradient theory. Zamani Nejad et al. [36] used a semi-

analytical iterative method as one of the newest analytical methods 

for the elastic analysis of thick-walled spherical pressure vessels 

made of functionally graded materials subjected to internal 

pressure. In other work, Zamani Nejad and Hadi [37] formulated 

the problem of the static bending of Euler-Bernoulli nano-beams 

made of bi-directional functionally graded material with small 

scale effects. Also, Zamani Nejad and Hadi [38] investigated the 

free vibration analysis of Euler-Bernoulli nano-beams made of bi-

directional functionally graded material with small scale effects. 

Zamani Nejad et al. [39] presented consistent couple-stress theory 

for free vibration analysis of Euler-Bernoulli nano-beams made of 

arbitrary bi-directional functionally graded materials Also, 

Zamani Nejad et al. [40] presented buckling analysis of the nano-

beams made of two-directional functionally graded materials with 

small scale effects based on nonlocal elasticity theory. In other 

work, Zamani Nejad et al. [41] presented an exact closed-form 

analytical solution for elasto-plastic deformations and stresses in a 

rotating disk made of functionally graded materials in which the 

elasto-perfectly-plastic material model is employed.  Shishesaz et 

al. [42] studied the thermoelastic behavior of a functionally graded 

nanodisk based on the strain gradient theory. Hadi et al. [43] 

presented buckling analysis of FGM Euler-Bernoulli nano-beams 

with 3D-varying properties based on consistent couple-stress 

theory. Zamani Nejad et al. [44] discussed some critical issues and 

problems in the development of thick shells made from 

functionally graded piezoelectric material. Hadi et al. [45] 

presented an investigation on the free vibration of three-directional 

functionally graded material Euler-Bernoulli nano-beam, with 

small scale effects.  

Even though there are some classical analytical and exact solutions 
of the nonlocal plate theory , in this methods the natural 
frequencies are obtained by applying the boundary conditions to 
the general solution of the differential equation. There is an 
alternative approach, wave propagation method, which considers 
vibrations as propagating waves traveling in the structures.  

Zhang [46] extended the wave propagation approach to coupled 
frequency analysis of finite cylindrical shells submerged in a dense 
acoustic medium. Kang et al. [47] presented wave approach for the 
free vibration analysis of planar circular curved beam system. 
Natsuki and Endo [48] presented a vibration analysis of single and 
double walled carbon nanotubes as well as nanotubes embedded 
in an elastic matrix using wave propagation approach. Lee et al. 
[49]considered wave motion in thin, uniform, curved beam with 
constant curvature. Nikkhah Bahrami et al.  [50] presented 
modified wave approach for calculation of natural frequencies and 
mode shapes in arbitrary non-uniform beams. Bahrami et al[51] 
analysed the free vibration of annular circular and sectorial 
membranes using the wave propagation approach. Bahrami and  
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Teimourian [52] combined the wave propagation approach with 
nonlocal elasticity theory to analyze the buckling and free 
vibration of Euler-Bernolli nanobeams. In another work, Bahrami 
and Teimourian [53] presented the wave propagation approach for 
free vibration analysis of composite annular and circular 
membranes. Furthermore, Bahrami and Teimourian [54] 
developed the wave propagation technique for analyzing the wave 
power reflection in circular annular nanoplates. Also, the wave 
propagation approach for free vibration analysis of non-uniform 
rectangular membranes has been presented by Bahrami and 
Teimourian [55]. Moreover Bahrami and Teimourian [56] 
presented the wave approach for analyzing the free vibration and 
wave reflection in carbon nanotubes. Ilkhani et al. [57] used wave 
propagation to analysis the free vibration analysis of thin 
rectangular nanoplates. Recently, Bahrami [58] utilized wave 
propagation method and differential constitutive law consequent 
to the Eringen strain-driven integral nonlocal elasticity model to 
analyze the free vibration, wave-power transmission and reflection 
in multi-cracked nanorods. Also he utilized wave propagation 
methods and the nonlocal elasticity theory to analyze the vibration, 

wave power transmission and reflection in multi-cracked Euler-
Bernolli nanobeams [59]. 

As mentioned in the research literature, the wave propagation 
method for thick plates has not been used so far. In addition, there 
were at most two waves in analyzing all the above- mentioned 
structures while in this study, there are four waves for the first time 
causing the more complicated problem. In this study, firstly the 
matrices of propagation and reflection are derived and by 
combining them, the characteristic equation of the plate is 
obtained.  

 

  

2. Modeling and Formulation 

In figure 1, isotropic and thick rectangular plate in length a , width 

b and height h is showed. In Reddy plate   theory [3] , the 

displacement components are assume to be given as:  

 

Figure 1. Geometry of rectangular isotropic thick plate 
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(1b) 

1 2 3 0 1 2( , , , ) ( , , )w x x x t w x x t  (1c) 

     where ,u v  and w  are the mid-plane displacements and 1

, 2 respectively shows normal rotation perpendicular to middle of 

the plate around 
2x  and 

1x  axes. 

     By using displacement fields which proposed, strain equation 

could be written as follows: 
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(2f) 

So the stress-strain relations for the plane stress problem are 

defined as: 
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(3) 

Where E  is the Young modulus of elasticity and   is 

the Poisson’s ratio. 

 

Also, the stress resultants are defined by: 
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The non-dimensional equations of motion based on third-order 

shear deformation plate theory for a thick rectangular plate are  

[21]: 
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A comma followed by 1, 2 or 3 represents the partial 

derivatives with respect to the normalized coordinates 

1 2 3( , , )X X X .w  is non-dimensional transverse displacement, 1

and 2 are non-dimensional slope due to bending alone in the 

respective planes which are defined by the following relations: 
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Also the non-dimensional variables thickness to length ratio

, aspect ratio , frequency parameter  , buckling load N  and 

dimensionless coordinates 1X and 2X are defined as follows: 
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3. Solution method 

3.1 Solving by the wave propagation method 

Solving the governing equations on the Reddy plate can be 

obtained by expressing the dimensionless functions 1 , 2  and w  

in the form of the dimensionless functions of potential 
1W ,
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and 
4W as follows [21]:  
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Based on these considered potential functions, if the plate 

equations are rewritten, the differential equations will be the so-

called decoupled for these functions: 
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(12b) 

 2 4 2

3 2

5 1008 1008 17

12
a

 



   
   

(12c) 

Also: 

2 2

4 4 4 0W W    (13) 

 

 

4 2

2

4 2

17 1008 1

102 1



 

 


 



 

(14) 

Using the method of separation of variables, an answer set is 

obtained for equations 10:                

     

     

1 1 1 2 2 1 2 1 1

1 1 2 2 1 2 1 1

sin cosh sin

sin cos cos

W A h X A X X

B h X B h X X

  

  

    

    

 
(15a) 

     

     

2 3 2 2 4 2 2 2 1

3 2 2 4 2 2 2 1

sinh cosh sin

sinh cosh cos

W A X A X X

B X B X X

  

  

    

    

 
(15b) 

     

     

3 5 3 2 6 3 2 3 1

5 2 2 6 2 2 3 1

sin cos

sin cos  

W A X A X sin X

B X B X cos X

  

  

    

    

 
(15c) 

     

     

4 7 4 2 8 4 2 4 1

7 4 2 8 4 2 4 1

sinh cosh

sinh cosh  

W A X A X cos X

B X B X sin X

  

  

    

      

(15d) 

In which 
iA and 

iB are the arbitrary constants and 
i and 

i

which are the wave numbers in two directions of 
2X

 
and 

1X , are 

depended on  𝛼𝑖: 

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3 4 4 4;  ;  ;                    
 

 

(16) 

Based on the third-order shear theory, the boundary conditions 

for two parallel corners (for example 
1 0X   and 

1 1X  ) are as 

follows: 

Simply supported: 

12 2 0w PM      (17) 

Clamped  

1 2 ,2 0w w      (18) 

In which: 

1 2
1 2

2
 ;    ;

12 12

aM aP
M P

D h D
   

(19) 

Now, by considering the simply support conditions in the 

corners 𝑋1 = 0 and 𝑋1 = 1 and applying our wave answers to 

these support conditions, answers can be written as follows: 

1 2 3 m       (20) 

     1 1 1 2 2 1 2 1  sinh cos sinW A X A h X m X        (21a) 

     2 3 2 2 4 2 2 1sinh cosh sinW A X A X m X        (21b) 

     3 5 3 2 6 3 2 1sin cosW A X A X sin m X        (21c) 
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     3 7 4 2 8 4 2 1sinh coshW A X A X cos m X        (21d) 

By substituting the formulas 
iW in equations related to 

potential function and considering the following equations, i  and 

w can be obtained: 

   

   

sin  ;cos ;  
2 2

sinh ;cosh
2 2

i i i ie e e e

i

e e e e

   

   

 

 

 

 

 
 

 
 

 

(22) 

Which we will have: 

1 2 1 2 2 2

3 2 3 22 2

4 2 4 2

' ' '

1 1 1 2 1 3 2

' ' '

4 2 5 3 6 3

' '

7 4 8 4 1

[

)cos( )

X X X

i X i XX

X X

A C m e A C m e A C m e

A C m e A C m e A C m e

A e A e m X

  

 

 

   

  

  







  

  

 

 

(23a) 

1 2 1 2 2 2

3 2 3 22 2

4 2 4 2

'' '' ''

2 1 1 1 2 1 1 3 2 2

'' '' ''

4 2 2 5 3 3 6 3 3

'' ''

7 8 1

[

]sin( )

X X X

i X i XX

X X

A C e A C e A C e

A C e A C e A C e

A m e A m e m X

  

 

 

   

  

  







  

  

 

 

(23b) 

1 2 1 2 2 2 2 2

3 2 3 2

''' ''' ''' '''

1 2 3 4

''' '''

5 6 1

[

]sin( )

X X X X

i X i X

w A e A e A e A e

A e A e m X

   

  

 



   

 
 

(23c) 

      In which: 

' ' '1 2 2 1 3 4
1 2 3;  ;  

2 2 2

A A A A A A
A A A

  
    

(24a) 

' ' '4 3 6 5 5 6
4 5 6;  ;  

2 2 2

A A A iA iA A
A A A

  
    

(24b) 

' '7 8 7 8
7 8;  

2 2

A A A A
A A

 
   

(24c) 

      As it can be seen, in the equations above, ''

iA and '''

iA can be 

written based on '

iA : 

' '' ''' ' '' ''' ' ''

1 1 1 2 2 2 3 3;   ;A A A A A A A A       (25a) 

' '' ''' ' '' ''' ' '' '''

4 4 4 5 5 5 6 6 6; ;A A A A iA A A iA A          (25b) 

''' ''' ' '' ' ''

7 8 7 7 8 80,; ; A A A A A A      (25c) 

      Finally, we will have: 

 

1 2 1 2

2 2 2 2

3 2 3 2

4 2 4 2

' '

1 1 2 1

' '

3 2 4 2

1' '

5 3 6 3

' '

7 4 8 4

1 cos

X X

X X

i X i X

X X

A C m e A C m e

A C m e A C m e
m X

A C m e A C m e

A e A e

 

 

 

 

 

 


 

 











 
 
  

  
  
   

 

(26a) 

 

1 2 1 2

2 2 2 2

3 2 3 2

4 2 4 2

' '

1 1 1 2 1 1

' '

3 2 2 4 2 2

1' '

5 3 3 6 3 3

' '

7 8

2 sin  

X X

X X

i X i X

X X

A C e A C e

A C e A C e
m X

iA C e iA C e

A m e A m e

 

 

 

 

 

 


 

 











 
 
  

  
  
   

 

(26b) 

 
1 2 1 2 2 2 2 2

3 2 3 2

' ' ' '

1 2 3 4

1' '

5 6

sin

X X X X

i X i X

A e A e A e A e
w m X

A e A e

   

 


 



   
  

   

 
(26c) 

 In above equations, sentences with even indexes show a wave that 

moves in the positive direction of the dimensionless  
2X axis and 

sentences with odd indexes show a wave that moves in the 

negative direction of the 
2X  axis.  

According to what was said, we can write: 

   

1 2 1 2

2 2 2 2

3 2 3 2

4 2 4 2

' '

2 1

' '

4 3

' '

6 5

' '

8 7

;     

X X

X X

i X i X

X X

A e A e

A e A e
a x a x

A e A e

A e A e

 

 

 

 





 





   
   
   

    
   
   
   

 

(27) 

3.2      Propagation Matrix 

Consider two points on the plate a distance 0X apart in 
2X  

direction as shown in Figure 2. Positive- and negative-going waves 

propagate from one point to another and they are related to each 

other using the following equations:   
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Figure 2 A lateral view of Reddy plate representing positive and negative going propagating waves 

 

       

   

0 0 0

0

,   a X X f X a X a X

f X a X X

   

 

 

 
 

(28) 

     Where 0 0 0 0

1 2 3( , , )X X X X , is an arbitrary point on the plate, 

1 2 3( , , )X X X X  is the position of any point relative to 0X  in 

2X  direction, and  f X  is the propagation matrix in the 

positive direction and  f X  is the propagation matrix in the 

negative direction.  By substituting the wave domain equations in 

equations above, we will have: 

   

1 2

2 2

3 2

4 2

0 0 0

0 00
             

0 00

0 00

X

X

i X

X

e

e
f X f X

e

e

 

 

 

 





 





 
 
  
 
 
  

 

(29) 

      As it is seen, the propagation functions in the positive and 

negative directions are equal to each other and they are called 

 f X .This is a property which cannot be appeared in non-

uniform plates and in them; the propagation matrices are different 

from each other in the positive and negative directions.  

3.3    Reflection Matrix 

When the propagated waves in the plate are collided to the 

boundaries, they are reflected and this action obviously presents 

that as long as the plate is vibrating, positive and negative waves 

are propagating in the environment.  

Equation between positive and negative travelling waves with 

the reflection matrix 𝑟 will be provided: 

a ra   (30) 

For obtaining the reflection of waves in the boundaries, the 

boundary conditions will be used. For two boundary modes of 

simple and clamped, we try to express the reflection of the 

propagated waves in the plate.  

3.4    Reflection matrix for the simply support boundary 

condition  

In this case, the boundary conditions, as previously said, are as 

follows: 

12 2 0w PM      (31) 

The incoming wave to this boundary is called a and the 

reflected wave from the boundary is called  a . 

4 2 2 2 2 2

2 1 1 1 1 1

4 2 2 2 2 2

1 1 1 1 1

4 2 2 2 2 2

2 2 2 2 2

4 2 2 2 2 2

2 2 2 2 2

4 2 2

3

1 1 1 1

60 15 60 15

1 1 1 1

60 15 60 15

1 1 1 1

60 15 60 15

1 1 1 1

60 15 60 15

1 1

60 15

M m C m C a

m C m C a

m C m C a

m C m C a

m C m

     

     

     

     

  









 
    
 

 
    
 

 
    
 

 
    
 

  2 2 2

3 3 3 3

4 2 2 2 2 2

3 3 3 3 3

4 2

4 4 4

4 2

4 4 4

1 1

60 15

1 1 1 1

60 15 60 15

1 1 1

60 15 15

1 1 1

60 15 15

C a

m C m C a

m m m a

m m m a

  

     

     

     









 
  

 

 
    
 

 
   
 

 
   
 

 

(32a) 



A.Zargaripoor, A.Bahrami, M.Nikkhah Bahrami 

109 

 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 0
C m a C m a C m a C m a

C m a C m a a a

   

  




   

   

   
 

     

  (32b) 

1 1 2 2 3 3 0a a a a aw a              (32c) 

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

2 2

1 1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1

m C m C a

m C m C a

m C m C a

m m C a

P

C

     

     

     

     









 
   

 

 
    
 

 
    
 

 
    
 





2 2 2 2 2 2

3 3 3 3 3

2 2 2 2 2 2

3 3 3 3 3

4 4 4

4 4 4

1 1 1

336 105 105 336

1 1 1 1

336 105 105 336

1 1

105 105

1 1

105 105

m C m C a

m C m C a

m m a

m m a

     

     

   

   









 
   

 

 
    
 

 
   
 

 
   
 

 

(32d) 

That by writing it in the form of matrix, the reflection matrix 

for the simply supported mode is:  

1

sr A B  (33) 

1

1311 12 14

31 2 4

4341 42 44

1311 12 14

31 2 4

4341 42 44

             
11 1 0

             
11 1 0

s

AA A A

C mC m C m
r

AA A A

BB B B

C mC m C m

BB B B

  

  


 
 
   
 
 
 

 
 
 
 
 
 

 

(34) 

In which: 

4 2 2 2 2 2

11 11 1 1 1 1

1 1 1 1

60 15 60 15
A B m C m C     

 
     

 
 

(35a) 

4 2 2 2 2 2

12 12 2 2 2 2

1 1 1 1

60 15 60 15
A B m C m C     

 
     

 
 

(35b) 

4 2 2 2 2 2

13 14 3 3 3 3

1 1 1 1

60 15 60 15
A B m C m C     

 
     

 
 

(35c) 

4 2

14 14 4 4

1 1 1

60 15 15
A B m m m     

 
    

 
 

(35d) 

2 2 2 2 2 2

41 41 1 1 1 1

1 1 1 1

336 105 105 336
A B m C m C     

 
     

 

 

(35e) 

2 2 2 2 2 2

42 42 2 2 2 2

1 1 1 1

336 105 105 336
A B m C m C     

 
     

 

 

(35f) 

2 2 2 2 2 2

43 43 3 3 3 3

1 1 1 1

336 105 105 336
A B m C m C     

 
     

 

 

(35g) 

44 44 4 4

1 1

105 105
A B m m   

 
    

 
 

(35h) 

In this case, this matrix will be a negative identity matrix, that 

is: 

sr I   (36) 

3.5    Reflection matrix for the Clamped boundary condition 

In the clamped mode, the boundary condition is as follows: 

1 2 ,2 0w w      (37) 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 0
C m a C m a C m a C m a

C m a C m a a a

   

  




   

   

   
 

     

  
(38a) 

1 1 1 1 1 1 2 2 2 2 2 2

3 3 3 3 3

2

3 4 4

0
C a C a C a C a

iC a iC a m a m a

   

   


   

   

   
 

     

  
(38b) 

1 1 2 2 3 3[ ] 0a a a a aw a            (38c) 

1 1 1 1 2 2 2 2 3 3 3,2 3 0a a a a i a i aw                    (38d) 

Therefore, the reflection matrix for the clamped mode is as 

follows: 

1

31 2 4

3 31 1 2 2

31 2

31 2 4

3 31 1 2 2

31 2

11 1 0

             

0

11 1 0

             

0

C

C mC m C m
r

C iC C m

i

C mC m C m

C iC C m

i

  

  

 

  

  

 


 
 
   
 
 
 

 
 
 
   
 

  

 

(39) 

3.6   Analyzing the free vibrations of the Reddy plate 

Consider the plate shown in Figure 1. For analyzing this plate 

using our wave method, two wave domains for the positive 
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travelling wave and two wave domains for the negative travelling 

wave in the direction of 𝑋2 at two beginning and ending points are 

considered. These waves can be related to each other using the 

obtained propagation and reflection matrices.  

 

   ;b f b a a f b b      (40) 

In which  f b  is the propagation matrix of the wave between 

two points of A and B in 
2X  direction. Also, using the propagation 

and reflection equations at the boundaries, we will have: 

;  A Ba r a b r b      (41) 

In which 𝑟𝐴 and 𝑟𝐵 are the reflection matrices at the boundaries 

A and B, respectively. 

By writing equations in the form of matrix, we have: 

 

 

0  0

0 0
              0

00

0 0

A

B

I r a

If b a

I f b b

r I b









  
  
  
  
  



    





 

(42) 

And for having determinant answer, this matrix must be zero. 

By equalizing the determinant of this matrix to zero, the frequency 

and critical buckling load characteristic equation of the system will 

be obtained.            

4. Results and Discussion 

For the validation of the results, the values obtained from the wave 

propagation method and the results obtained from the research 

literature are compared.  Here, the letters S and C representing the 

simply supported and clamped boundary conditions. For example, 

in the SCSC boundary condition, the edges along x = 0 and x = a 

are simply supported boundary conditions and the edges along y = 

0 and y = b are clamped boundary conditions. The values of m and 

n represented the vibrational modes has m and n half-wave in x 

and y directions, respectively. For all modes, the Poisson 

coefficient   is assumed to be 0.3.  

The procedure for obtaining the plate frequencies is specified by 

the wave propagation method shown in Figure 3. The plot of the 

real and imaginary part changes of the determinants of equation 

(42) in terms of the dimensionless frequency for the SCSC 

boundary condition and assuming m = 1, 1  , and 0.1  is 

shown in Figure 3. As shown in the figure, the intersection of the 

real and imaginary curves of the determinant with the zero axis 

represents the root of the determinant and hence the frequency of 

the plate. Furthermore, on the left of the frequency there is another 

root which is the cut-off frequency in which there is no sign change 

in the real and imaginary curves. In Table 1, the dimensionless 

frequencies of the wave method with reference results [21] for 

simply supported boundary condition, 1,2   and 

0.01,0.1,0.2  are compared and the obtained values indicate the 

high accuracy of the wave propagation method. In Tables 2-4, the 

dimensionless frequency values for the first eight modes for 

boundary conditions of SSSS, SCSS and SCSC are listed for 

different values of aspect ratio and thickness ratio. The values 

0.4,0.5,1,1.5,2  and 

0.01,0.05,0.1,0.2  are assumed. 

Figure 3  Real and imaginary parts of determinant of Eq. (42) (N=0) 
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     Table 1 Comparison of dimensionless frequency 2 h
a

D


  for simply supported plates 

Method Aspect ratio Thickness to length ratio 

  0.01   0.1   0.2   

 1      

Present 

[21] 

 

19.7320 

19.7320 

19.0653 

19.0653 

17.4523 

17.4523 

 2      

Present 

[21] 

 

12.3342 

12.3342 

12.0675 

12.0675 

11.3717 

11.3717 

Table 2 Lowest eight dimensionless frequency parameters 2 h
a

D


  for SSSS plates 

b

a
   

h

a
   

Frequency parameter 

  
11  

21  
31  

41  
12  

22  
51  

32  

0.4 0.01 71.4604 100.9753 150.0956 218.7155 255.4053 284.7216 306.6882 333.5124 

  
11  

21  
31  

41  
12  

22  
51  

32  

 0.05 69.3278 96.8135 141.2294 200.7719 231.5268 255.6034 273.3691 294.7583 

  
11  

21  
31  

41  
12  

22  
51  

32  

 0.1 63.9008 86.9235 122.1579 166.4421 188.2748 204.9556 217.0564 231.4113 

  
11  

21  
31  

41  
12  

22  
51  

32  

 0.2 51.2389 66.5123 88.3739 114.1982 126.4827 135.7246 142.3645 150.1816 

  
11  21  31  12  22  41  32  51  

0.5 0.01 49.3032 78.8421 128.0024 167.2668 196.6780 196.6780 245.6262 284.7216 

  
11  21  31  12  22  41  32  51  

 0.05 48.2699 76.2612 121.4491 156.3907 181.9487 181.9487 223.3988 255.6034 

  
11  21  31  12  22  41  32  51  
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 0.1 45.4869 69.8093 106.7350 133.7198 152.7532 152.7532 182.5649 204.9556 

  
11  

21  
31  

12  
22  

41  
32  

51  

 0.2 38.1883 55.2543 78.9865 95.2602 106.3633 106.3633 123.2923 135.7246 

  
11  

12  
21  

22  
13  

31  
23  

32  

1 0.01 19.7320 49.3032 49.3032 78.8421 98.5169 98.5169 128.0024 128.0024 

  
11  

12  
21  

22  
13  

31  
23  

32  

 0.05 19.5625 48.2699 48.2699 76.2612 94.5479 94.5479 121.4491 121.4491 

  
11  

12  
21  

22  
13  

31  
23  

32  

 0.1 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350 

  
11  

12  
21  

22  
13  

31  
23  

32  

 0.2 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865 

  
11  

12  
21  

13  
22  

23  
14  

31  

1.5 0.01 14.2523 27.4017 43.8295 49.3032 56.9645 78.8421 79.9355 93.0531 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.05 14.1635 27.0768 43.0093 48.2699 55.5937 76.2612 77.2848 89.4973 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.1 13.8984 26.1459 40.7671 45.4869 51.9753 69.8093 70.6756 80.8967 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.2 12.9938 23.3125 34.6865 38.1883 42.8899 55.2543 55.8370 62.6055 

  
11  

12  
13  

21  
14  

22  
23  

15  

2 0.01 12.3342 19.7320 32.0572 41.9134 49.3032 49.3032 61.6149 71.4604 

  
11  

12  
13  

21  
14  

22  
23  

15  

 0.05 12.2675 19.5625 31.6142 41.1622 48.2699 48.2699 60.0171 69.3278 

  
11  

12  
13  

21  
14  

22  
23  

15  

 0.1 12.0675 19.0653 30.3623 39.0977 45.4869 45.4869 55.8497 63.9008 

  
11  12  13  21  14  22  23  15  

 0.2 11.3717 17.4523 26.6838 33.4301 38.1883 38.1883 45.6412 51.2389 

 



A.Zargaripoor, A.Bahrami, M.Nikkhah Bahrami 

113 

 

      

                   Table 3 Lowest eight dimensionless frequency parameters 2 h
a

D


  for SCSS plates 

b

a
 

 

h

a
 

 

Frequency parameter 

  
11  

21  
31  

41  
12  

51  
22  

32  

0.4 0.01 103.6226 127.9081 171.6779 236.0340 318.3775 320.8481 343.9528 387.6074 

  
11  

21  
31  

41  
12  

51  
22  

32  

 0.05 97.2819 119.0858 157.7544 212.8085 274.7516 282.1870 294.6811 328.3086 

  
11  

21  
31  

41  
12  

51  
22  

32  

 0.1 83.7062 101.3013 131.6061 172.5332 209.2553 221.0698 223.0865 246.0851 

  
11  

21  
31  

41  
12  

22  
51  

32  

 0.2 60.0741 72.2825 91.8844 116.4351 133.2295 141.7247 143.9137 155.3443 

  
11  

21  
31  

41  
12  

22  
32  

51  

0.5 0.01 69.1918 94.3539 139.7691 205.8254 207.3693 233.3158 277.9118 292.0768 

  
11  

21  
31  

12  
41  

22  
32  

51  

 0.05 66.2898 89.6072 130.7921 187.2540 188.5226 208.9296 245.6071 260.3273 

  
11  

21  
31  

12  
41  

22  
32  

51  

 0.1 59.4159 79.0782 112.3944 151.2530 156.2303 167.1402 193.4631 207.1773 

  
11  

21  
31  

12  
41  

22  
32  

51  

 0.2 45.3311 59.3203 81.1868 101.3727 107.6602 111.3032 127.1003 136.5803 

  
11  

21  
12  

22  
31  

13  
32  

23  

1 0.01 23.6732 51.6188 58.5656 85.9724 100.0773 112.9469 133.4312 140.4237 

  
11  21  12  22  31  13  32  23  

 0.05 23.3076 50.3745 56.7682 82.4728 95.8532 106.9033 125.8174 131.5798 

  
11  21  12  22  31  13  32  23  

 0.1 22.4018 47.1306 52.2324 74.2252 85.9319 93.4993 109.4369 113.0723 
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11  

21  
12  

22  
31  

13  
32  

23  

 0.2 19.7695 39.0576 41.7851 57.2458 65.6858 68.8208 80.0584 81.4198 

  
11  

12  
21  

13  
22  

23  
14  

31  

1.5 0.01 15.5729 31.0506 44.5262 55.3259 59.3913 83.4628 88.2736 93.5123 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.05 15.4458 30.5479 43.6495 53.8170 57.7814 80.3014 84.6423 89.8856 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.1 15.0763 29.1608 41.2802 49.9276 53.6518 72.7034 76.0165 81.1602 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.2 13.8836 25.2698 34.9719 40.5874 43.7450 56.5721 58.2553 62.7217 

  
11  

12  
13  

21  
22  

14  
23  

15  

2 0.01 12.9151 21.5235 35.1847 42.2061 50.3817 53.7626 63.7859 77.2273 

  
11  

12  
13  

21  
22  

14  
23  

15  

 0.05 12.8339 21.2891 34.5732 41.4323 49.2546 52.3853 61.9650 74.4871 

  
11  

12  
13  

21  
22  

14  
23  

15  

 0.1 12.5937 20.6182 32.8950 39.3163 46.2637 48.7954 57.3253 67.7608 

  
11  

12  
13  

21  
22  

14  
23  

15  

 0.2 11.7827 18.5563 28.2680 33.5542 38.6067 39.9877 46.3779 53.0713 
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                   Table 4 Lowest eight dimensionless frequency parameters 2 h
a

D


  for SCSC plates 

b

a
 

 

h

a
   

Frequency parameter 

  
11  

21  
31  

41  
51  

12  
22  

61  

0.4 0.01 144.7717 163.8493 201.0120 259.3302 339.4300 388.6136 410.9773 440.7468 

  
11  

21  
31  

41  
51  

12  
22  

32  

 0.05 130.7472 146.8934 178.7189 227.8760 292.9350 318.2775 334.8247 363.5547 

  
11  

21  
31  

41  
51  

12  
22  

32  

 0.1 105.3502 117.7534 142.6176 179.5712 225.3752 225.6223 240.2965 260.5428 

  
11  

21  
31  

41  
12  

22  
51  

32  

 0.2 70.0180 78.8500 95.8596 118.9387 138.8388 145.6298 147.1191 160.3138 

  
11  

21  
31  

41  
12  

22  
51  

32  

0.5 0.01 94.9541 115.3791 155.945 217.8517 252.3445 275.2150 301.4192 315.4627 

  
11  

21  
31  

41  
12  

22  
51  

32  

 0.05 88.5692 106.8335 142.7990 196.7024 219.3453 237.6635 265.9939 269.7594 

  
11  

21  
31  

41  
12  

22  
32  

51  

 0.1 75.2832 90.1355 119.1323 160.2618 167.8807 181.3243 204.5840 209.6822 

  
11  

21  
31  

12  
41  

22  
32  

51  

 0.2 53.1087 63.8945 83.6539 106.7070 109.0941 115.9685 130.9090 137.5151 

  
11  

21  
12  

22  
31  

13  
32  

23  

1 0.01 28.9241 54.6722 69.1918 94.3539 102.0049 128.6779 139.7691 154.1991 

  
11  21  12  22  31  13  32  23  

 0.05 28.3174 53.0989 66.2898 89.6072 97.4311 119.9617 130.7921 142.4865 

  
11  21  12  22  31  13  32  23  

 0.1 26.7084 49.1756 59.4159 79.0783 56.9397 101.9652 112.3944 119.5989 

  
11  21  12  22  31  13  32  23  

 0.2 22.5355 40.0654 45.3350 59.3313 66.0079 72.2236 80.9208 83.2640 
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11  

12  
21  

13  
22  

23  
31  

14  

1.5 0.01 17.3647 35.3113 45.3875 61.9589 62.2267 88.6257 94.0450 97.2023 

  
11  

12  
21  

13  
22  

23  
31  

14  

 0.05 17.1727 34.5555 44.4324 59.8339 60.3053 84.7471 90.3301 92.3748 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.1 16.6309 32.5457 41.8923 54.5868 55.5345 75.7958 81.4351 81.4543 

  
11  

12  
21  

13  
22  

23  
14  

31  

 0.2 14.9956 27.3401 35.2962 42.9797 44.6634 57.9292 60.6219 62.8469 

  
11  

12  
13  

21  
22  

14  
23  

15  

2 0.01 13.6813 23.6321 38.6576 42.5517 51.6188 58.5656 66.2051 83.3313 

  
11  

12  
13  

21  
22  

14  
23  

15  

 0.05 13.5772 23.3076 37.8292 41.7487 50.3746 56.7682 64.1137 79.8770 

  
11  

12  
13  

21  
22  

14  
23  

15  

 0.1 13.2747 22.4018 35.6216 39.5680 47.1306 52.2324 58.9199 71.6869 

  
11  

12  
13  

21  
22  

14  
23  

15  

 0.2 12.2939 19.7696 29.8997 33.6918 39.0577 41.7851 47.1485 54.8783 

Figure 4 illustrates the plot of dimensionless frequency changes 

based on thickness ratio   for different values of   for the three 

boundary conditions of SSSS, SCSS and SCSC. Regarding the 

figures, for a constant value of   , the frequency ratio decreases 

with increasing the aspect ratio. In addition, by increasing the 

thickness ratio, the dimensionless frequency values for different 

values of   reduce, while the frequency reduction rate is low for 

larger values of  . Figure 5 shows the plot of dimensionless 

frequency changes based on the thickness ratio for the three 

boundary conditions of SSSS, SCSS, SCSC and 1  . As can be 

observed, the SCSC boundary condition has the highest and SSSS 

has the e lowest frequency values. Also, it is clear that for SCSC 

boundary condition, the frequency reduction rate will be higher. 

The plots of dimensionless frequency changes based on thickness 

ratio for the first four modes of the above boundary conditions and 

0.4   are drawn in Figure 6. It is observed that for higher modes, 

the frequency reduction rate will be higher. The method for 

obtaining the critical  buckling load is the same as for the method 

of obtaining a non-dimensional frequency, with the difference that 

the real and imaginary part of the determinant are plotted in terms 

of different values of dimensionless critical buckling load N and 

for 0   (As shown in Figure 7).  

Figures 8 illustrate the plot of dimensionless critical buckling load 

changes based on thickness ratio for different values of   for the 

three boundary conditions of SSSS, SCSS and SCSC. The 

dimensionless buckling load decreases by increasing aspect ratio 

for a constant value of  . In addition, by increasing in the 

thickness ratio, the dimensionless buckling load value for different 

values of   reduces. The buckling load reduction rate is low for 

larger values of  .  

As shown in Figure 9, the SCSC boundary condition has the 

highest and SSSS has the lowest critical load values. Also, for 

SCSC boundary condition, the buckling load reduction rate will be 

higher.  In order to verify the critical load obtained from the wave 

propagation method, in Table 5, the critical load values of the 

boundary conditions for simply supported boundary condition, 

1,2   and 0.01,0.1,0.2   are compared with the results 

obtained from [20]. As is clear, the values obtained by the present 

method are highly close to the results [20]. In Table 6, the critical 

loads of the first mode for the three boundary conditions of SSSS, 

SCSS and SCSC are listed for different values of aspect ratio and 

thickness ratio, which are assumed to be 0.4,0.5,1,1.5,2  and 

0.01,0.05,0.1,0.2   
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Figure 4  Variations of frequency parameter with thickness to length ratio for various aspect ratios 

  

 

Figure 5  Variations of frequency ratio with thickness to length ratio for various boundary conditions ( 1  ) 
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Figure 6  Variations of frequency parameter with thickness to length ratio for different modes ( 0.4  ) 
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Figure 7  Real and imaginary parts of determinant of Eq. (42) ( 0  ) 

 

Table 5 Comparison of dimensionless critical buckling load 
2

xx

a
N N

D
 for simply supported plates 

Method Aspect ratio Thickness to length ratio 

  0.01   0.1   0.2   

 1      

Present 

[20] 

 19.7281 

19.7285 

18.6861 

18.7238 

16.1139 

16.2207 

 2      

Present 

[20] 

 12.3327 

12.3328 

11.9171 

11.9325 

10.8148 

10.8641 
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Table 6 dimensionless critical buckling load 
2

xx

a
N N

D
 for different boundary conditions 

b

a
   

h

a
   

 Non-dimensional critical buckling load  

  BC                SSSS                      SCSS                      SCSC 

0.4 0.01 -71.4087  -129.6300                                         -237.1232 

 0.05 -68.0773  -117.8268                                         -202.1105 

 0.1 -59.4335  -92.0704                                           -139.0509 

 0.2 -39.5356  -50.1867                                           -63.5075 

     

0.5 0.01 -49.2782  - 84.8430                                          -150.2721 

 0.05 -47.6685  -79.5633                                           -134.9581 

 0.1 -43.2593  -66.7824                                           -102.7726 

 0.2 -31.6290  -41.2908                                           -53.6786 

     

1 0.01 -19.7281  -26.2500                                           -37.7476 

 0.05 -19.4649  -25.7204                                           -36.5557 

 0.1 -18.6861  -24.1988                                           -33.3404 

 0.2 -16.1139  -19.6873                                           -24.9667 

     

1.5 0.01 -14.2503  -16.3571                                           -19.8207 

 0.05 -14.1124  -16.1562                                           -19.4896 

 0.1 -13.6984  -15.5654                                           -18.5427 

 0.2 -12.2621  -13.6171                                           -15.6381 

     

2 0.01 -12.3327  -13.2320                                           -14.6103 

 0.05 -12.2293  -13.1055                                           -14.4416 

 0.1 -11.9171  -12.7278                                           -13.9465 

 0.2 -10.8148  -11.4286                                           -12.3115 
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Figure 8 Variations of buckling load with thickness to length ratio for various aspect ratios  
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Figure 9  Variations of buckling load with thickness to length ratio for various boundary conditions ( 1  ) 

5. Conclusion 

This paper presented free vibration and buckling analysis of the 

thick plates based on higher order shear deformation plate theory 

using wave propagation approach. Dimensionless frequencies and 

dimensionless buckling of the plate are compared with available 

results by literature that excellent agreement is observed. 

Benchmark results for natural frequencies and buckling loads are 

presented for various thickness to length ratios, aspect ratios, 

numbers of half waves and various combinations of boundary 

conditions. In future works, these results can be excellent database 

to verify approximate or other analytical solutions as they are 

regarded as exact solutions. Also, it is seen that the computer 

coding of the proposed method is much easier than the classical 

methods which makes it more appropriate in implementation. 
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